Research Article
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 2, 282 - 288, 31.12.2023
https://doi.org/10.29132/ijpas.1368045

Abstract

References

  • Aydin Akgun, F., Bayramov, A. and Bayramoğlu, M. (2013). Discontinuous boundary value problems with retarded argument and eigenparameter-dependent boundary conditions. Mediterranean journal of mathematics, 10(1), 277-288.
  • Bayramoğlu, M., Köklü, K. Ö. and Baykal, O. (2002). On the spectral properties of the regular Sturm-Liouville Problem with the lag argument for which its boundary conditions depends on the spectral parameter. Turkish Journal of Mathematics, 26(4), 421-432.
  • Cetinkaya, F. A. and Mamedov, K. R. (2017). A boundary value problem with retarded argument and discontinuous coefficient in the differential equation. Azerbaijan Journal of Mathematics, 7(1), 135-145.
  • Hira, F. (2017). A trace formula for the Sturm-Liouville type equation with retarded argument. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat, 66(1), 124-132.
  • Kolmanovskii, V. and Myshkis, A. (1999). Introduction to the Theory and Applications of Functional Differential Equations. Dordrecht, The Nederlands: Kluwer Academic Publishers.
  • Koparan, K. (2019). Sınırda parametre içeren geç kalan argümanlı Sturm Liouville probleminin özdeğerlerinin ve özfonksiyonlarının asimtotik özellikleri, Yüksek Lisans Tezi.
  • Norkin, S. B. (1956). Boundary problem for a secondorder differential equation with a retarded argument. Uchenye Zapiski Moskovskogo Gosudarstvennogo Universiteta, 181, 59-72.
  • Norkin, S. B. (1958). On periodic solutions of a linear homogeneous differential equation of second order with retarded argument. Matematicheskii Sbornik, 87(1), 71-104.
  • Norkin, S. B. (1972). Differential Equations of the Second Order with Retarded Argument, Providence, Rhode Island: American Mathematical Society.
  • Şen, E. and Bayramov, A. (2011). On calculation of eigenvalues and eigenfunctions of a Sturm-Liouville type problem with retarded argument which contains a spectral parameter in the boundary condition. Journal of Inequalities and Applications, 2011(1), 1-9.
  • Şen, E. and Bayramov, A. (2011). Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument which contains a spectral parameter in the boundary condition. Mathematical and Computer Modelling, 54(11-12), 3090-3097.
  • Şen, E. and Bayramov, A. (2013). Asymptotic formulations of the eigenvalues and eigenfunctions for a boundary value problem. Mathematical Methods in the Applied Sciences, 36(12), 1512-1519.
  • Şen, E., Seo, J. J. and Araci, S. (2013). Asymptotic behaviour of eigenvalues and eigenfunctions of a Sturm-Liouville problem with retarded argument. Journal of Applied Mathematics, 2013.
  • Yang, C. F. (2012). Trace and inverse problem of a discontinuous Sturm–Liouville operator with retarded argument. Journal of Mathematical Analysis and Applications, 395(1), 30-41.

A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition

Year 2023, Volume: 9 Issue: 2, 282 - 288, 31.12.2023
https://doi.org/10.29132/ijpas.1368045

Abstract

In this work, a discontinuous boundary value problem with retarded argument is studied. At the discontinuity point there is a transmission condition that contains a parameter. Asymptotic properties of eigenvalues and corresponding eigenfunctions of the boundary value problem are studied.

References

  • Aydin Akgun, F., Bayramov, A. and Bayramoğlu, M. (2013). Discontinuous boundary value problems with retarded argument and eigenparameter-dependent boundary conditions. Mediterranean journal of mathematics, 10(1), 277-288.
  • Bayramoğlu, M., Köklü, K. Ö. and Baykal, O. (2002). On the spectral properties of the regular Sturm-Liouville Problem with the lag argument for which its boundary conditions depends on the spectral parameter. Turkish Journal of Mathematics, 26(4), 421-432.
  • Cetinkaya, F. A. and Mamedov, K. R. (2017). A boundary value problem with retarded argument and discontinuous coefficient in the differential equation. Azerbaijan Journal of Mathematics, 7(1), 135-145.
  • Hira, F. (2017). A trace formula for the Sturm-Liouville type equation with retarded argument. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat, 66(1), 124-132.
  • Kolmanovskii, V. and Myshkis, A. (1999). Introduction to the Theory and Applications of Functional Differential Equations. Dordrecht, The Nederlands: Kluwer Academic Publishers.
  • Koparan, K. (2019). Sınırda parametre içeren geç kalan argümanlı Sturm Liouville probleminin özdeğerlerinin ve özfonksiyonlarının asimtotik özellikleri, Yüksek Lisans Tezi.
  • Norkin, S. B. (1956). Boundary problem for a secondorder differential equation with a retarded argument. Uchenye Zapiski Moskovskogo Gosudarstvennogo Universiteta, 181, 59-72.
  • Norkin, S. B. (1958). On periodic solutions of a linear homogeneous differential equation of second order with retarded argument. Matematicheskii Sbornik, 87(1), 71-104.
  • Norkin, S. B. (1972). Differential Equations of the Second Order with Retarded Argument, Providence, Rhode Island: American Mathematical Society.
  • Şen, E. and Bayramov, A. (2011). On calculation of eigenvalues and eigenfunctions of a Sturm-Liouville type problem with retarded argument which contains a spectral parameter in the boundary condition. Journal of Inequalities and Applications, 2011(1), 1-9.
  • Şen, E. and Bayramov, A. (2011). Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument which contains a spectral parameter in the boundary condition. Mathematical and Computer Modelling, 54(11-12), 3090-3097.
  • Şen, E. and Bayramov, A. (2013). Asymptotic formulations of the eigenvalues and eigenfunctions for a boundary value problem. Mathematical Methods in the Applied Sciences, 36(12), 1512-1519.
  • Şen, E., Seo, J. J. and Araci, S. (2013). Asymptotic behaviour of eigenvalues and eigenfunctions of a Sturm-Liouville problem with retarded argument. Journal of Applied Mathematics, 2013.
  • Yang, C. F. (2012). Trace and inverse problem of a discontinuous Sturm–Liouville operator with retarded argument. Journal of Mathematical Analysis and Applications, 395(1), 30-41.
There are 14 citations in total.

Details

Primary Language English
Subjects Circuits and Systems
Journal Section Articles
Authors

Özge Işık Gülmezler This is me 0009-0001-5430-2210

Özgür Mızrak 0000-0001-5961-6019

Early Pub Date December 29, 2023
Publication Date December 31, 2023
Submission Date September 28, 2023
Acceptance Date October 17, 2023
Published in Issue Year 2023 Volume: 9 Issue: 2

Cite

APA Işık Gülmezler, Ö., & Mızrak, Ö. (2023). A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences, 9(2), 282-288. https://doi.org/10.29132/ijpas.1368045
AMA Işık Gülmezler Ö, Mızrak Ö. A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences. December 2023;9(2):282-288. doi:10.29132/ijpas.1368045
Chicago Işık Gülmezler, Özge, and Özgür Mızrak. “A Boundary Value Problem With Retarded Argument Containing an Eigenparameter in the Transmission Condition”. International Journal of Pure and Applied Sciences 9, no. 2 (December 2023): 282-88. https://doi.org/10.29132/ijpas.1368045.
EndNote Işık Gülmezler Ö, Mızrak Ö (December 1, 2023) A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences 9 2 282–288.
IEEE Ö. Işık Gülmezler and Ö. Mızrak, “A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition”, International Journal of Pure and Applied Sciences, vol. 9, no. 2, pp. 282–288, 2023, doi: 10.29132/ijpas.1368045.
ISNAD Işık Gülmezler, Özge - Mızrak, Özgür. “A Boundary Value Problem With Retarded Argument Containing an Eigenparameter in the Transmission Condition”. International Journal of Pure and Applied Sciences 9/2 (December 2023), 282-288. https://doi.org/10.29132/ijpas.1368045.
JAMA Işık Gülmezler Ö, Mızrak Ö. A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences. 2023;9:282–288.
MLA Işık Gülmezler, Özge and Özgür Mızrak. “A Boundary Value Problem With Retarded Argument Containing an Eigenparameter in the Transmission Condition”. International Journal of Pure and Applied Sciences, vol. 9, no. 2, 2023, pp. 282-8, doi:10.29132/ijpas.1368045.
Vancouver Işık Gülmezler Ö, Mızrak Ö. A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences. 2023;9(2):282-8.

154501544915448154471544615445