Research Article
BibTex RIS Cite

A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE

Year 2024, Volume: 10 Issue: 1, 37 - 46, 30.06.2024
https://doi.org/10.29132/ijpas.1388624

Abstract

In today's technology, carbon-based materials (such as graphene, graphene oxide, carbon nanotubes, etc.) have become one of the most important research areas due to a large number of applications. Graphene oxide (GO) is being investigated in many applications, especially in the energy field. In this study, GO was synthesized by a modified Hummer’s method. After the synthesis of GO, nickel addition to the struc-ture was made by the hydrothermal method. The morphological and structural prop-erties of the synthesized GO were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD) and Brunauer–Emmett–Teller (BET). Ac-cording to the BET results, the surface areas of untreated GO and Ni-doped graphene oxide after heat treatment at 360°C (Ni-doped GO 360) were calculated as 3.22 m2 g-1 and 228 m2 g-1, respectively. Electrochemical properties of GO and Ni-doped GO 360 were analyzed using cyclic voltammetry (CV), long term charge/discharge analysis and impedance spectroscopy. At the end of 1000 cycles, it was determined that the Ni-doped GO 360 electrode retained 76% of its initial capacitance.

References

  • Moosa, A., and Abed, M. (2021). Graphene preparation and graphite exfoliation. Turkish Journal of Chemistry, 45(3), 493-519.
  • Brisebois, P. P., and Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
  • Paulchamy, B., Arthi, G., and Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
  • Sun, L., and Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
  • Lalire, T., Otazaghine, B., Taguet, A., and Longuet, C. (2022). Correlation between multiple chemical modification strategies on graphene or graphite and physical/electrical properties. FlatChem, 33, 100376.
  • Nimbalkar, A. S., Tiwari, S. K., Ha, S. K., and Hong, C. K. (2020). An efficient water saving step during the production of graphene oxide via chemical exfoliation of graphite. Materials Today: Pro-ceedings, 21, 1749-1754.
  • Song, Y., Zou, W., Lu, Q., Lin, L., and Liu, Z. (2021). Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small, 17(48), 2007600.
  • Zhang, J., Wang, F., Shenoy, V. B., Tang, M., and Lou, J. (2020). Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Materials Today, 40, 132-139.
  • Li, C. B., Li, Y. J., Zhao, Q., Luo, Y., Yang, G. Y., Hu, Y., and Jiang, J. J. (2020). Electro-magnetic interference shielding of graphene aerogel with layered microstructure fabricated via me-chanical compression. ACS Applied Materials and Interfaces, 12(27), 30686-30694.
  • Pastore Carbone, M. G., Manikas, A. C., Souli, I., Pavlou, C., and Galiotis, C. (2019). Mosaic pattern formation in exfoliated graphene by mechanical deformation. Nature Communications, 10(1), 1572.
  • Salverda, M., Thiruppathi, A. R., Pakravan, F., Wood, P. C., and Chen, A. (2022). Electro-chemical exfoliation of graphite to graphene-based nanomaterials. Molecules, 27(24), 8643.
  • Pingale, A. D., Owhal, A., Katarkar, A. S., Belgamwar, S. U., and Rathore, J. S. (2021). Facile synthesis of graphene by ultrasonic-assisted electrochemical exfoliation of graphite. Materials Today: Proceedings, 44, 467-472.
  • Laçin, Ö., and Dönmez, B. (2021). Modifiye Hummers Yöntemi ile Elde Edilen Grafen Oksit Sentezleri İçin: Kısım3, Fourier Dönüşümlü Kızılötesi Spektroskopisi Analizi. Avrupa Bilim ve Teknoloji Dergisi, (28), 985-989.
  • Dreyer, D. R., Park, S., Bielawski, C. W., and Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240.
  • Lavin-Lopez, M. D. P., Romero, A., Garrido, J., SanchezSilva, L., and Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial and Engineering Chemistry Research, 55(50), 12836-12847.
  • Koçak, B., and Çelikkan, H. (2021). A novel and highly sensitive reduced graphene oxide modified electrochemical sensor for the determination of chlorpyrifos in real sample. International Journal of Pure and Applied Sciences, 7(1), 1-12.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806-4814.
  • Niu, Y., Zhang, Q., Li, Y., Fang, Q., and Zhang, X. (2017). Reduction, dispersity and electrical properties of graphene oxide sheets under low-temperature thermal treatments. Journal of Materials Science: Materials in Electronics, 28, 729-733.
  • Wojtoniszak, M., Chen, X., Kalenczuk, R. J., Wajda, A., Łapczuk, J., Kurzewski, M., and Borowiak-Palen, E. (2012). Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids and Surfaces B: Biointerfaces, 89, 79-85.
  • Aliyev, E., Filiz, V., Khan, M. M., Lee, Y. J., Abetz, C., and Abetz, V. (2019). Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Na-nomaterials, 9(8), 1180.
  • Surekha, G., Krishnaiah, K. V., Ravi, N., and Suvarna, R. P. (2020, March). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. In Journal of Physics: Conference Series (Vol. 1495, No. 1, p. 012012). IOP Publishing.
  • Adel, M., Ahmed, M. A., Elabiad, M. A., and Mohamed, A. A. (2022). Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: A critical review. Environmental Nanotechnology, Monitoring and Management, 18, 100719.
  • Chao, D., and Fan, H. J. (2019). Intercalation pseudocapacitive behavior powers aqueous bat-teries. Chem, 5(6), 1359-1361.
  • Munteshari, O., Lau, J., Likitchatchawankun, A., Mei, B. A., Choi, C. S., Butts, D., Dunn, B.S., and Pilon, L. (2019). Thermal signature of ion intercalation and surface redox reactions mechanisms in model pseudocapacitive electrodes. Electrochimica Acta, 307, 512-524.
  • Jiang, Y., and Liu, J. (2019). Definitions of pseudocapacitive materials: a brief review. Energy and Environmental Materials, 2(1), 30-37.
  • Surendran, V., Arya, R. S., Vineesh, T. V., Babu, B., and Shaijumon, M. M. (2021). Engineered carbon electrodes for high performance capacitive and hybrid energy storage. Journal of Energy Storage, 35, 102340.
  • Joshi, B., Samuel, E., Kim, Y. I., Yarin, A. L., Swihart, M. T., and Yoon, S. S. (2021). Elec-trostatically sprayed nanostructured electrodes for energy conversion and storage devices. Advanced Functional Materials, 31(14), 2008181.
  • Sitaaraman, S. R., Santhosh, R., Kollu, P., Jeong, S. K., Sellappan, R., Raghavan, V., Jacob, C., and Grace, A. N. (2020). Role of graphene in NiSe2/graphene composites-Synthesis and testing for electrochemical supercapacitors. Diamond and Related Materials, 108, 107983.
  • Ahmed, A., Rafat, M., and Ahmed, S. (2020). Activated carbon derived from custard apple shell for efficient supercapacitor. Advances in Natural Sciences: Nanoscience and Nanotechnology, 11(3), 035013.
  • Yavarian, M., Melnik, R., and Mišković, Z. L. (2023). Modeling of charging dynamics in elec-trochemical systems with a graphene electrode. Journal of Electroanalytical Chemistry, 946, 117711.
  • Tanwar, S., Singh, N., and Sharma, A. L. (2022). Structural and electrochemical performance of carbon coated molybdenum selenide nanocomposite for supercapacitor applications. Journal of Energy Storage, 45, 103797.
  • Laschuk, N. O., Easton, E. B., and Zenkina, O. V. (2021). Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Advances, 11(45), 27925-27936.
  • Yuan, Y., Yuan, W., Wu, Y., Wu, X., Zhang, X., Jiang, S., Zhao, B., Chen, Y., Yang, C., Ding, L., Tang, Z., Xie, Y., and Tang, Y. (2023). High‐Performance all‐printed flexible micro‐supercapacitors with hierarchical encapsulation. Energy and Environmental Materials, e12657.
  • Liang, T., Mao, Z., Li, L., Wang, R., He, B., Gong, Y., Jin, J., Yan, C., and Wang, H. (2022). A mechanically flexible necklace‐like architecture for achieving fast charging and high capacity in ad-vanced lithium‐ion capacitors. Small, 18(27), 2201792.
  • Gharbi, O., Tran, M. T., Tribollet, B., Turmine, M., and Vivier, V. (2020). Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements. Electrochimica Acta, 343, 136109.
Year 2024, Volume: 10 Issue: 1, 37 - 46, 30.06.2024
https://doi.org/10.29132/ijpas.1388624

Abstract

References

  • Moosa, A., and Abed, M. (2021). Graphene preparation and graphite exfoliation. Turkish Journal of Chemistry, 45(3), 493-519.
  • Brisebois, P. P., and Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
  • Paulchamy, B., Arthi, G., and Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
  • Sun, L., and Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
  • Lalire, T., Otazaghine, B., Taguet, A., and Longuet, C. (2022). Correlation between multiple chemical modification strategies on graphene or graphite and physical/electrical properties. FlatChem, 33, 100376.
  • Nimbalkar, A. S., Tiwari, S. K., Ha, S. K., and Hong, C. K. (2020). An efficient water saving step during the production of graphene oxide via chemical exfoliation of graphite. Materials Today: Pro-ceedings, 21, 1749-1754.
  • Song, Y., Zou, W., Lu, Q., Lin, L., and Liu, Z. (2021). Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small, 17(48), 2007600.
  • Zhang, J., Wang, F., Shenoy, V. B., Tang, M., and Lou, J. (2020). Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Materials Today, 40, 132-139.
  • Li, C. B., Li, Y. J., Zhao, Q., Luo, Y., Yang, G. Y., Hu, Y., and Jiang, J. J. (2020). Electro-magnetic interference shielding of graphene aerogel with layered microstructure fabricated via me-chanical compression. ACS Applied Materials and Interfaces, 12(27), 30686-30694.
  • Pastore Carbone, M. G., Manikas, A. C., Souli, I., Pavlou, C., and Galiotis, C. (2019). Mosaic pattern formation in exfoliated graphene by mechanical deformation. Nature Communications, 10(1), 1572.
  • Salverda, M., Thiruppathi, A. R., Pakravan, F., Wood, P. C., and Chen, A. (2022). Electro-chemical exfoliation of graphite to graphene-based nanomaterials. Molecules, 27(24), 8643.
  • Pingale, A. D., Owhal, A., Katarkar, A. S., Belgamwar, S. U., and Rathore, J. S. (2021). Facile synthesis of graphene by ultrasonic-assisted electrochemical exfoliation of graphite. Materials Today: Proceedings, 44, 467-472.
  • Laçin, Ö., and Dönmez, B. (2021). Modifiye Hummers Yöntemi ile Elde Edilen Grafen Oksit Sentezleri İçin: Kısım3, Fourier Dönüşümlü Kızılötesi Spektroskopisi Analizi. Avrupa Bilim ve Teknoloji Dergisi, (28), 985-989.
  • Dreyer, D. R., Park, S., Bielawski, C. W., and Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240.
  • Lavin-Lopez, M. D. P., Romero, A., Garrido, J., SanchezSilva, L., and Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial and Engineering Chemistry Research, 55(50), 12836-12847.
  • Koçak, B., and Çelikkan, H. (2021). A novel and highly sensitive reduced graphene oxide modified electrochemical sensor for the determination of chlorpyrifos in real sample. International Journal of Pure and Applied Sciences, 7(1), 1-12.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806-4814.
  • Niu, Y., Zhang, Q., Li, Y., Fang, Q., and Zhang, X. (2017). Reduction, dispersity and electrical properties of graphene oxide sheets under low-temperature thermal treatments. Journal of Materials Science: Materials in Electronics, 28, 729-733.
  • Wojtoniszak, M., Chen, X., Kalenczuk, R. J., Wajda, A., Łapczuk, J., Kurzewski, M., and Borowiak-Palen, E. (2012). Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids and Surfaces B: Biointerfaces, 89, 79-85.
  • Aliyev, E., Filiz, V., Khan, M. M., Lee, Y. J., Abetz, C., and Abetz, V. (2019). Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Na-nomaterials, 9(8), 1180.
  • Surekha, G., Krishnaiah, K. V., Ravi, N., and Suvarna, R. P. (2020, March). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. In Journal of Physics: Conference Series (Vol. 1495, No. 1, p. 012012). IOP Publishing.
  • Adel, M., Ahmed, M. A., Elabiad, M. A., and Mohamed, A. A. (2022). Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: A critical review. Environmental Nanotechnology, Monitoring and Management, 18, 100719.
  • Chao, D., and Fan, H. J. (2019). Intercalation pseudocapacitive behavior powers aqueous bat-teries. Chem, 5(6), 1359-1361.
  • Munteshari, O., Lau, J., Likitchatchawankun, A., Mei, B. A., Choi, C. S., Butts, D., Dunn, B.S., and Pilon, L. (2019). Thermal signature of ion intercalation and surface redox reactions mechanisms in model pseudocapacitive electrodes. Electrochimica Acta, 307, 512-524.
  • Jiang, Y., and Liu, J. (2019). Definitions of pseudocapacitive materials: a brief review. Energy and Environmental Materials, 2(1), 30-37.
  • Surendran, V., Arya, R. S., Vineesh, T. V., Babu, B., and Shaijumon, M. M. (2021). Engineered carbon electrodes for high performance capacitive and hybrid energy storage. Journal of Energy Storage, 35, 102340.
  • Joshi, B., Samuel, E., Kim, Y. I., Yarin, A. L., Swihart, M. T., and Yoon, S. S. (2021). Elec-trostatically sprayed nanostructured electrodes for energy conversion and storage devices. Advanced Functional Materials, 31(14), 2008181.
  • Sitaaraman, S. R., Santhosh, R., Kollu, P., Jeong, S. K., Sellappan, R., Raghavan, V., Jacob, C., and Grace, A. N. (2020). Role of graphene in NiSe2/graphene composites-Synthesis and testing for electrochemical supercapacitors. Diamond and Related Materials, 108, 107983.
  • Ahmed, A., Rafat, M., and Ahmed, S. (2020). Activated carbon derived from custard apple shell for efficient supercapacitor. Advances in Natural Sciences: Nanoscience and Nanotechnology, 11(3), 035013.
  • Yavarian, M., Melnik, R., and Mišković, Z. L. (2023). Modeling of charging dynamics in elec-trochemical systems with a graphene electrode. Journal of Electroanalytical Chemistry, 946, 117711.
  • Tanwar, S., Singh, N., and Sharma, A. L. (2022). Structural and electrochemical performance of carbon coated molybdenum selenide nanocomposite for supercapacitor applications. Journal of Energy Storage, 45, 103797.
  • Laschuk, N. O., Easton, E. B., and Zenkina, O. V. (2021). Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Advances, 11(45), 27925-27936.
  • Yuan, Y., Yuan, W., Wu, Y., Wu, X., Zhang, X., Jiang, S., Zhao, B., Chen, Y., Yang, C., Ding, L., Tang, Z., Xie, Y., and Tang, Y. (2023). High‐Performance all‐printed flexible micro‐supercapacitors with hierarchical encapsulation. Energy and Environmental Materials, e12657.
  • Liang, T., Mao, Z., Li, L., Wang, R., He, B., Gong, Y., Jin, J., Yan, C., and Wang, H. (2022). A mechanically flexible necklace‐like architecture for achieving fast charging and high capacity in ad-vanced lithium‐ion capacitors. Small, 18(27), 2201792.
  • Gharbi, O., Tran, M. T., Tribollet, B., Turmine, M., and Vivier, V. (2020). Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements. Electrochimica Acta, 343, 136109.
There are 35 citations in total.

Details

Primary Language English
Subjects Material Characterization
Journal Section Articles
Authors

Harun Kaya 0000-0002-6090-0559

Early Pub Date June 28, 2024
Publication Date June 30, 2024
Submission Date November 9, 2023
Acceptance Date March 25, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Kaya, H. (2024). A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE. International Journal of Pure and Applied Sciences, 10(1), 37-46. https://doi.org/10.29132/ijpas.1388624
AMA Kaya H. A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE. International Journal of Pure and Applied Sciences. June 2024;10(1):37-46. doi:10.29132/ijpas.1388624
Chicago Kaya, Harun. “A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE”. International Journal of Pure and Applied Sciences 10, no. 1 (June 2024): 37-46. https://doi.org/10.29132/ijpas.1388624.
EndNote Kaya H (June 1, 2024) A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE. International Journal of Pure and Applied Sciences 10 1 37–46.
IEEE H. Kaya, “A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE”, International Journal of Pure and Applied Sciences, vol. 10, no. 1, pp. 37–46, 2024, doi: 10.29132/ijpas.1388624.
ISNAD Kaya, Harun. “A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE”. International Journal of Pure and Applied Sciences 10/1 (June 2024), 37-46. https://doi.org/10.29132/ijpas.1388624.
JAMA Kaya H. A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE. International Journal of Pure and Applied Sciences. 2024;10:37–46.
MLA Kaya, Harun. “A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE”. International Journal of Pure and Applied Sciences, vol. 10, no. 1, 2024, pp. 37-46, doi:10.29132/ijpas.1388624.
Vancouver Kaya H. A RESEARCH ON ELECTRODE APPLICATIONS: SYNTHESIS OF NICKEL-DOPED GRAPHENE OXIDE. International Journal of Pure and Applied Sciences. 2024;10(1):37-46.

154501544915448154471544615445