Research Article
BibTex RIS Cite

Boron Accumulations by Alyssum Murale which Grows in Basic Soils

Year 2024, Volume: 10 Issue: 1, 228 - 241, 30.06.2024
https://doi.org/10.29132/ijpas.1474051

Abstract

The area around Alacakaya district of Elazığ province was chosen as the study area, and samples of naturally growing Alyssum murale species were collected from this area. The aim of this study is to investigate boron removal from soil and boron ac-cumulation capacities in the roots and shoots of this plant by using the Alyssum mu-rale plant, which grows in basic soils (serpentine soils) containing low concentra-tions of boron. In this context, the soil, roots and shoots of 12 Alyssum murale plants growing on serpentine soils were collected and chemically analyzed for boron. Chemical analyzes were carried out in ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). On average, boron values were determined as 6.5 ppm in the soil, 24.4 ppm in the roots and 76.4 ppm in the shoots. Boron enrichment values (ECR, ECS and TLF) in the soil, roots and shoots of this plant were quite high. This also indicates that the Alyssum murale plant accumulates a significant amount of boron from the soil to both roots and shoots. As a result, Alyssum murale showed that it has the ability to accumulate high amounts of boron in boron-poor soils. These results indicated that A. murale is a good accumulator plant, especially for cleaning and re-habilitating boron from boron-contaminated soils, and therefore can be easily used in phytoremediation studies.

Ethical Statement

.

Supporting Institution

FÜBAP

Project Number

FUBAP-MF.20.16

Thanks

.

References

  • Kot, F.S. (2009). Boron sources, speciation and its potential impact on health Rev. Environ. Sci. Biotechnol., 8 (1), 3-28.
  • Haghnazar, H., Pourakbar, M., Mahdavianpour, M., Aghayani, E. (2021). Spatial distribution and risk assessment of agricultural soil pollution by hazardous elements in a transboundary river basin. Environ. Monit. Assess., 193 (4), 1-17.
  • Kumar,V., Pandita, S., Kaur, R., Kumar,A., Bhardwaj, R. (2022). Biogeochemical cycling, tol-erance mechanism and phytoremediation strategies of boron in plants: a critical review. Chemo-sphere, 300.
  • Huang, H., Liu, J., Zhang, P., Zhang, D., Gao, F. (2017). Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J., 307, 696–706.
  • Woods, G. (1994). An introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect., 102 (Suppl. 7), 5-11.
  • CCME (Canadian Council for Ministers of the Environment). (2009). Canadian Water Quality Guidelines for the Protection of Aquatic Life-Boron Winnipeg, Manitoba.
  • Dordas, C., Chrispeels, M.J., Brown, P.H. (2000). Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol., 124, 1349-1361.
  • Bailey, D.G., Lupulescu, M.V., Darling, M.S., Singer, J.W., Chamberlain, S.C. (2019). A review of boron-bearing minerals (excluding tourmaline) in the Adirondack region of New York State. Minerals, 9 (10), 644.
  • WHO (Word Health Organization), (1998a). Boron: 8.1.1. Short-Term Toxicity and Poisoning Incidents. Eviromental Health Criteria 204: Ge-Neva World Health Organization, Switzerland.
  • WHO (World Health Organization), (1998b). International Programme on Chemical Safety En-vironmental Health Criteria, Boron, 204.
  • Princi, M.P., Lupini, A., Araniti, F., Longo, C., Mauceri, A., Sunseri, F., Abenavoli, M.R. (2016). Boron Toxicity and Tolerance in Plants: Recent Advances and Future Perspectives. Plant Metal Interaction Elsevier, Amsterdam, 115-147.
  • Shorrocks, V.M. (1997). The occurrence and correction of boron deficiency. Plant Soil, 193, 121–148.
  • Ataslar, E., Potoglu, I., Tokur, S. (1995). Eskisehir Hamidiye’de Yayılış Gösteren Bazı Bitkilerde Bor Degisimi. I. Spil Fen Bilimleri Kongresi, 4–5 Eylül, Celal Bayar Üniversitesi, Fen–Edebiyat Fakültesi, Manisa.
  • Archana, N.P.,Verma, P. (2017). Boron deficiency and toxicity and their tolerance in plants: a review. J. Global Biosci., 6, 4958-4965.
  • Das, R., Mandal, B., Sarkar, D., Pradhan, A.K., Datta, A., Padhan, D., Narkhede,W.N. (2019). Boron availability in soils and its nutrition of crops under long-term fertility experiments in India. Geoderma, 351, 116-129.
  • Dar, A.A., Chen, J., Shad, A., X., Pan, Yao, J., Bin-Jumah, M., Wang, Z. (2020). A combined experimental and computational study on the oxidative degradation of bromophenols by Fe (VI) and the formation of self-coupling products. Environ. Pollut., 258, 113678.
  • Dar, A.A., Pan, B., Qin, J., Zhu, Q., Lichtfouse, E., Usman, M., Wang, C. (2021). Sustainable ferrate oxidation: reaction chemistry, mechanisms and removal of pollutants in wastewater. En-viron. Pollut., 290, 117957.
  • Muntean, V., Mihailov, A., Lancu, C., Toganel, R., Fabian, O., Domsa, I., Muntean, M.V. (2009). Staging laparoscopy in gastric cancer. Accuracy and impact on therapy. J Gastrointest Liver Dis., 18(2), 189–195.
  • Marín, C.M.D.C., Oron, G. (2007). Boron removal by the duckweed Lemna gibba: A potential method for the remediation of boron-polluted waters. Water Res., 41, 4579–4584.
  • Yermiyahu, U., Keren, R., Chen, Y., (1995). Boron sorption by soil in the presence of organic matter. Soil Sci. Soc. Amer. J., 59, 405-409.
  • Çelik, H., Ağaoğlu, S. Y., Fidan, Y., Maraslı, B., Söylemezoglu, G. (1998). Genel Bağcılık, Sunfidan A. Mesleki Kitaplar Serisi:1, Ankara,182-183.
  • Harite, Ü.İ. (2008); Pamukta bor toksitesine dayanıklılık. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 74 s.
  • Uluisik, I., Karakaya, H.C., Koc, A. (2018). The importance of boron in biological systems. Journal of Trace Elements in Medicine and Biolog., 45,156-162.
  • Özden, Y. (2008). Enne ve porsuk barajı sedimentine bağlı ağır metallerin cyprinus carpio’ nun değişik dokularına biyoakümülasyonunun araştırılması. Yüksek Lisans Tezi, Dumlupınar Üni-versitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Kütahya.
  • Uygan, D., Çetin, Ö. (2004). Bor’un Tarimsal ve Çevresel Etkileri: Seydisuyu su toplama havzası. In: II. Uluslararası Bor Sempozyumu, Eskişehir, Türkiye, 527–540.
  • Taiz, L., Zeiger, E. (1991). Plant physiology. The Benjamin/Cummings Publishing Company Inc. Redwood City.
  • Ozturk, M., Sakcali, S., Gucel, S., Tombuloğlu, H. (2010). Boron and plants, in Plant Adaptation and Phytoremediation, eds. M. Ashraf, M. Ozturk and M.S.A. Ahmad (Berlin:Springer), 275-311.
  • Çıkıllı, Y., Samet, H. (2016). Response of cape gooseberry (Physalis peruviana L.) plant at early growth stage to mutual effects of boron and potassium. Journal of Agricultural Faculty of Gazi-osmanpasa University, Tokat, 33(2), 184-193.
  • Baker, A.J.M. & Brooks, R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81-126.
  • Babaoglu, M., Gezgin, S., Topal, A., Sade, B., Dural, H. (2004). Gypsophila sphaerocephala Fenzl ex Tchihat: A boron hyperaccumulator plant species that may phytoremediate soils with toxic B levels. Turkish J. Bot., 28, 273–278.
  • Gezgin, S., Hamurcu, M., Dursun, N., Ayalsi, Y., Nalcioglu, C. (1999). Konya Ovasında Şeker Pancarının Gübrelenmesi, Şeker Pancarı Tarım Tekniği. 1. Uluslararası Sempozyumu, 5, 40 – 47.
  • Torun, A., Yılmaz, A., Kalaycı, M., Gültekin, İ., Torun, B., Eker, S., Çakmak, İ., (1999). Konya koşullarında yetiştirilen farklı buğday çeşitlerinin bor toksitesine duyarlılığının sera ve tarla koşullarında araştırılması. Hububat Sempozyumu, Altıncı oturum: Hububat Yetiştirme, 317-327, 8-11 Haziran, Konya.
  • Yorgancılar, M., & Babaoğlu, M. (2005). Buğday çeşitlerinde borun çimlenme üzerine etkisinin in vitro ve saksı şartlarında araştırılması. S.Ü. Ziraat Fakültesi Dergisi, 19, 109-114.
  • Sasmaz, A., Ozkan, S., Gursu, M.F., Sasmaz, M. (2017). The hematological and biochemical changes in rats exposed to britholite mineral. Applied Radiation and Isotopes, 129, 185-188.
  • Azizi, M.R., Abedini, A., Alipour, S., Niroomand, S., Sasmaz, A., Talaei, B. (2017). Rare earth element geochemistry and tetrad effect in fluorites: A case study from the QahrAbad deposit, Iran. Neues Jahrb. Geol. Palaontol. Abh., 283, 255-273.
  • Brooks, R.R., Dunn, C.E., Hall, G.E.M., (1995). Biological system in mineral exploration and processing. Elles Horwood Limited, 538 s.
  • Dunn, C., (2007). Biogeochemistry in mineralexploration. Consulting Geochemist., 480 s.
  • Demir, E., & Özdemir, Z. (2013). Kazanlı- Mersin Bölgesinde Cu, Mn, Zn, Cd ve Pb İçin Biyo-jeokimyasal Anomalilerin incelenmesi ve çevresel ortamın Yorumlanması., Jeoloji Mühendisliği Dergisi, 37 (4), 119-140.
  • Turan, H., Özdemir, Z., Zorlu, S. (2006). Çiftehan (Ulukışla-Niğde) Bölgesinin Cu, Zn, Fe, Mn, ve Ni için biyojeokimyasal anomalilerin araştırılması, İ.Ü. Müh. Fak. Yerbilimleri Dergisi, 19(2), 131-140.
  • Terzi, H. & Yıldız, M. (2013). Ağır metal toleransında kükürt metabolizmasının önemi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 3(2), 105-125.
  • Sasmaz, A. (2009) The distribution and accumulation of selenium in roots and shoots of plants naturally grown in the soils of Keban’s Pb-Zn-F mining area, Turkey. Int., J. Phytorem., 11 (4), 385-395.
  • Obek, E. & Sasmaz, A. (2011). Bioaccumulation of Aluminum by Lemna gibba L. from Secondary Treated Municipal Wastewater Effluents. Bull. Env. Cont. Tox., 86, 217-220.
  • Reeves, R. D. (1992). Hyperaccumulation of nickel by serpentine plants. In The Vegetation of Ultramafic (Serpentine) Soils; Baker, A. J. M., Proctor, J., Reeves, R. D., Eds.; Intercept Ltd.: Andover, 253-277.
  • Reeves, R.D., Baker, A.J.M., Borhidi, A., Berazain, R. (1996). Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol., 133(2), 217-224.
  • Reeves, R.D., Baker, A.J.M., Borhidi A., Berazan, R. (1999). Nickel hyperaccumulation in the serpentine flora of Cuba. Ann. Bot., 83, 29–38.
  • Rajakaruna, N., Baker, A.J.M. (2004). Serpentine: a model habitat for botanical research in Sri Lanka Ceylon. J. Sci., 32, 1-19.
  • Avcı, M. (2005). Diversity and endemism in Turkey’s vegetation. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi,13,27-55.
  • Kurt, L., Ozbey, B.G., Kurt, F., Ozdeniz, E., Bolukbaşı, A. (2013). Serpentine Flora of Turkey. Biological Diversity and Conservation, 6(1), 134-152.
  • Rajakaruna, N., Boyd, R.S. (2014). Serpentine soils. D. Gibson (Ed.), Oxford Bibliographies in Ecology, Oxford University Press, New York.
  • Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotech., 74, 21–31.
  • Konakci, N., Sasmaz Kislioglu, M., Sasmaz, A. (2023). Ni, Cr and Co Phytoremediations by Alyssum murale Grown in the Serpentine Soils Around Guleman Cr Deposits, Elazig Turkey. Bull. Environ. Cont. Tox., 110, 97. https://doi.org/10.1007/s00128-023-03736-2.
  • Konakcı, N., (2024). Strontium Accumulations by Teucrium polium which Grows Naturally in Serpentine Soils. G.U. J. Sci., Part A, 11(1), 203-209.
  • Reeves, R.D., Kruckeberg, A.R., Adıgüzel, N., Krımer, U. (2001). Studies on the flora of ser-pentine and other metalliferous areas of western Turkey. South African Journal of Sciences, 97, 513-517.
  • Davis M. A., Boyd R. S., Cane J. H., (2001). Host- switching does not circumvent the Ni-based defense of the Ni hyperaccumulator Streptanthus polygaloides (Brassicaceae). South African Journal of Science, 97:554-57.
  • Özdeniz, E., Özbey, B.G., Kurt, L., Bölükbaşı, A. (2017). Serpantin ekolojisi ve Türkiye serpantin florası’na katkılar. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1), 22–33.
  • Raskyn, I., Smith, R., Salt, D. (1997). Phytoremediation of metals: using plants to remove pol-lutants from the environment. Curr. Opin. Biotechnol., 8, 221-226.
  • Miçillioğlu, S. (2010). Lactuca Sativa Bitkisi Kullanılarak Bor Konsantrasyonu Yüksek Suların Arıtılabilirliğinin Araştırılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Adana.
  • Özkan, Y. Z. (1983). Guleman (Elazığ) ofiyolitinin yapısal incelenmesi. MTA Dergisi, 37,78-85.
  • NGBB, (2022). Bizim Bitkiler. https://bizimbitkiler.org.tr. Erişim tarihi 5 Ağu 2022 (Türkiye bitkileri listesi, yayılış bilgileri ve Türkçe adları).
  • Zhao, F.J., Lombi, E., Mc Grath, S.P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil, 249, 37–43.
  • Chen Z, Zhu, Y.G., Liu, W.J., Meharg, A.A. (2005) Direct evidence show¬ing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol., 165:91–97.
  • Zu, Y.Q., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ. Int., 31, 755–762.
  • Lasat, M.M., Pence, N.S., Garvin, D.F., Ebbs, S.D., Kochian, L.V. (2000). Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J. Exp. Bot., 51 (342), 71–79.
  • Kabata-Pendias, A, Pendias, H. (2001). Trace elements in soils and plants. CRC Press, London.
  • Goldberg, S. (1997). Reactions of boron with soils. Plant and soil, 19, 35-48.
  • Chen, W.T., Sheng-Bin, H., Dar-Yuan., L. (2009). Effect of pH on boron adsorption desorption hysteresis of soils. Soil Sci., 174, 330–338.
  • Arora, S., & Chadal, D.S. (2010). Effect of soil properties on boron adsorption and release in arid and semi-arid benchmark soils. Commun. Soil Sci. Plant Anal., 41, 532–2544.
  • Ok, S.S., & Akay, A. (2016). The effects of boron mining on boron content of soil-sediment and plants. Int. J. Innov. Res. Eng. Manage., 3(5), 454–457.
  • Raza, M., Mermut, A.R., Schoenau, J.J., Malhi, S.S. (2002). Boron Fractions in Some Sas-katchewan Soils. Can. J. Soil Sci., 82, 173-179.
  • Sasmaz, A. (2008). Translocation and accumulation of boron in roots and shoots of plants grown in soils of low B concentration in Turkey’s Keban Pb–Zn mining area. Int. J. Phytoremed., 10, 302–310.
  • Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants. 4th ed. Boca Raton, FL: CRC Press.
  • Saltalı, K., Bılgılı, A.V., Tarakcıoglu, C., Durak, A. (2005). Boron adsorption in soils with different characteristics. Asian Journal of Chemistry, 17, 2487-2494.
  • Lucho-Constantino, C.A., Álvarez, M., Beltrán, R.I., Prieto, F. Poggi, H. (2005). A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environmental International, 31(3), 313-323.
  • Qian, J.H., Zayed, A., Zhu, Y.L., Yu, M.Y., Terry, N., (1999). Phytoaccumulation of trace ele-ments by wetland plants: III.Uptake and accumulation of ten trace elements by twelve plant spe-cies. J. Environ. Qual., 28, 1448–1455.
  • Turker, O., Bocuk, H., Yakar, A. (2013). The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. J. Hazard. Mater., 252, 132-141.
  • Sasmaz, M., Senel, G.U., Obek, E. (2021). Boron bioaccumulation by the dominant macrophytes grown in various discharge water environments. Bull. Environ. Contam. Toxicol., 1–9.
  • Gür, N., Türker, O.C., Böcük, H., (2016). Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Chemosphere, 157, 1-9.

Bazik Topraklarda Yetişen Alyssum murale ile Bor Akümülasyonu

Year 2024, Volume: 10 Issue: 1, 228 - 241, 30.06.2024
https://doi.org/10.29132/ijpas.1474051

Abstract

Çalışma alanı olarak Elazığ ili Alacakaya ilçesi çevresi seçilmiş ve bu alandan doğal olarak yetişen Alyssum murale türlerine ait örnekler toplanmıştır. Bu çalışmanın amacı, düşük konsantrasyonlarda bor içeren bazik topraklarda (serpantinli topraklar) yetişen Alyssum murale bitkisi kullanılarak, topraktan bor giderimi ve bu bitkinin kök ve dalında bor birikim kapasitelerinin araştırılmasıdır. Bu kapsamda serpantinli topraklar üzerinde yetişen 12 adet Alyssum murale bitkisi toprağı, kök ve dalı ile birlikte toplanarak, bor için kimyasal analizleri yapılmıştır. Kimyasal analizler ICP-MS (İndüktif Eşleşmiş Plazma-Kütle Spektrometresi)’ de gerçekleştirilmiştir. Ortalama olarak, toprakta 6.5 ppm, kökte 24.4 ppm ve dalda ise 76.4 ppm bor değerleri saptanmıştır. Bu bitkinin toprak, kök ve dallarındaki bor zenginleşme değerleri (ECR, ECS ve TLF) oldukça yüksek çıkmıştır. Bu da Alyssum murale bitkisinin topraktan hem köke, hem de dala önemli oranda bor akümülasyonu gerçekleştirdiğini işaret etmektedir. Sonuç olarak, Alyssum murale, bor bakımından fakir topraklarda yüksek oranda bor akümüle etme yeteneğine sahip olduğunu göstermiştir. Bu da özellikle bor ile kirlenmiş topraklardan borun temizlenmesi ve rehabilite edilmesi için iyi bir akümülatör bitki olduğunu, dolayısıyla da fitoremedi-asyon çalışmalarında kolaylıkla kullanılabileceği sonucuna varılmıştır.

Project Number

FUBAP-MF.20.16

References

  • Kot, F.S. (2009). Boron sources, speciation and its potential impact on health Rev. Environ. Sci. Biotechnol., 8 (1), 3-28.
  • Haghnazar, H., Pourakbar, M., Mahdavianpour, M., Aghayani, E. (2021). Spatial distribution and risk assessment of agricultural soil pollution by hazardous elements in a transboundary river basin. Environ. Monit. Assess., 193 (4), 1-17.
  • Kumar,V., Pandita, S., Kaur, R., Kumar,A., Bhardwaj, R. (2022). Biogeochemical cycling, tol-erance mechanism and phytoremediation strategies of boron in plants: a critical review. Chemo-sphere, 300.
  • Huang, H., Liu, J., Zhang, P., Zhang, D., Gao, F. (2017). Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J., 307, 696–706.
  • Woods, G. (1994). An introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect., 102 (Suppl. 7), 5-11.
  • CCME (Canadian Council for Ministers of the Environment). (2009). Canadian Water Quality Guidelines for the Protection of Aquatic Life-Boron Winnipeg, Manitoba.
  • Dordas, C., Chrispeels, M.J., Brown, P.H. (2000). Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol., 124, 1349-1361.
  • Bailey, D.G., Lupulescu, M.V., Darling, M.S., Singer, J.W., Chamberlain, S.C. (2019). A review of boron-bearing minerals (excluding tourmaline) in the Adirondack region of New York State. Minerals, 9 (10), 644.
  • WHO (Word Health Organization), (1998a). Boron: 8.1.1. Short-Term Toxicity and Poisoning Incidents. Eviromental Health Criteria 204: Ge-Neva World Health Organization, Switzerland.
  • WHO (World Health Organization), (1998b). International Programme on Chemical Safety En-vironmental Health Criteria, Boron, 204.
  • Princi, M.P., Lupini, A., Araniti, F., Longo, C., Mauceri, A., Sunseri, F., Abenavoli, M.R. (2016). Boron Toxicity and Tolerance in Plants: Recent Advances and Future Perspectives. Plant Metal Interaction Elsevier, Amsterdam, 115-147.
  • Shorrocks, V.M. (1997). The occurrence and correction of boron deficiency. Plant Soil, 193, 121–148.
  • Ataslar, E., Potoglu, I., Tokur, S. (1995). Eskisehir Hamidiye’de Yayılış Gösteren Bazı Bitkilerde Bor Degisimi. I. Spil Fen Bilimleri Kongresi, 4–5 Eylül, Celal Bayar Üniversitesi, Fen–Edebiyat Fakültesi, Manisa.
  • Archana, N.P.,Verma, P. (2017). Boron deficiency and toxicity and their tolerance in plants: a review. J. Global Biosci., 6, 4958-4965.
  • Das, R., Mandal, B., Sarkar, D., Pradhan, A.K., Datta, A., Padhan, D., Narkhede,W.N. (2019). Boron availability in soils and its nutrition of crops under long-term fertility experiments in India. Geoderma, 351, 116-129.
  • Dar, A.A., Chen, J., Shad, A., X., Pan, Yao, J., Bin-Jumah, M., Wang, Z. (2020). A combined experimental and computational study on the oxidative degradation of bromophenols by Fe (VI) and the formation of self-coupling products. Environ. Pollut., 258, 113678.
  • Dar, A.A., Pan, B., Qin, J., Zhu, Q., Lichtfouse, E., Usman, M., Wang, C. (2021). Sustainable ferrate oxidation: reaction chemistry, mechanisms and removal of pollutants in wastewater. En-viron. Pollut., 290, 117957.
  • Muntean, V., Mihailov, A., Lancu, C., Toganel, R., Fabian, O., Domsa, I., Muntean, M.V. (2009). Staging laparoscopy in gastric cancer. Accuracy and impact on therapy. J Gastrointest Liver Dis., 18(2), 189–195.
  • Marín, C.M.D.C., Oron, G. (2007). Boron removal by the duckweed Lemna gibba: A potential method for the remediation of boron-polluted waters. Water Res., 41, 4579–4584.
  • Yermiyahu, U., Keren, R., Chen, Y., (1995). Boron sorption by soil in the presence of organic matter. Soil Sci. Soc. Amer. J., 59, 405-409.
  • Çelik, H., Ağaoğlu, S. Y., Fidan, Y., Maraslı, B., Söylemezoglu, G. (1998). Genel Bağcılık, Sunfidan A. Mesleki Kitaplar Serisi:1, Ankara,182-183.
  • Harite, Ü.İ. (2008); Pamukta bor toksitesine dayanıklılık. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 74 s.
  • Uluisik, I., Karakaya, H.C., Koc, A. (2018). The importance of boron in biological systems. Journal of Trace Elements in Medicine and Biolog., 45,156-162.
  • Özden, Y. (2008). Enne ve porsuk barajı sedimentine bağlı ağır metallerin cyprinus carpio’ nun değişik dokularına biyoakümülasyonunun araştırılması. Yüksek Lisans Tezi, Dumlupınar Üni-versitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Kütahya.
  • Uygan, D., Çetin, Ö. (2004). Bor’un Tarimsal ve Çevresel Etkileri: Seydisuyu su toplama havzası. In: II. Uluslararası Bor Sempozyumu, Eskişehir, Türkiye, 527–540.
  • Taiz, L., Zeiger, E. (1991). Plant physiology. The Benjamin/Cummings Publishing Company Inc. Redwood City.
  • Ozturk, M., Sakcali, S., Gucel, S., Tombuloğlu, H. (2010). Boron and plants, in Plant Adaptation and Phytoremediation, eds. M. Ashraf, M. Ozturk and M.S.A. Ahmad (Berlin:Springer), 275-311.
  • Çıkıllı, Y., Samet, H. (2016). Response of cape gooseberry (Physalis peruviana L.) plant at early growth stage to mutual effects of boron and potassium. Journal of Agricultural Faculty of Gazi-osmanpasa University, Tokat, 33(2), 184-193.
  • Baker, A.J.M. & Brooks, R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81-126.
  • Babaoglu, M., Gezgin, S., Topal, A., Sade, B., Dural, H. (2004). Gypsophila sphaerocephala Fenzl ex Tchihat: A boron hyperaccumulator plant species that may phytoremediate soils with toxic B levels. Turkish J. Bot., 28, 273–278.
  • Gezgin, S., Hamurcu, M., Dursun, N., Ayalsi, Y., Nalcioglu, C. (1999). Konya Ovasında Şeker Pancarının Gübrelenmesi, Şeker Pancarı Tarım Tekniği. 1. Uluslararası Sempozyumu, 5, 40 – 47.
  • Torun, A., Yılmaz, A., Kalaycı, M., Gültekin, İ., Torun, B., Eker, S., Çakmak, İ., (1999). Konya koşullarında yetiştirilen farklı buğday çeşitlerinin bor toksitesine duyarlılığının sera ve tarla koşullarında araştırılması. Hububat Sempozyumu, Altıncı oturum: Hububat Yetiştirme, 317-327, 8-11 Haziran, Konya.
  • Yorgancılar, M., & Babaoğlu, M. (2005). Buğday çeşitlerinde borun çimlenme üzerine etkisinin in vitro ve saksı şartlarında araştırılması. S.Ü. Ziraat Fakültesi Dergisi, 19, 109-114.
  • Sasmaz, A., Ozkan, S., Gursu, M.F., Sasmaz, M. (2017). The hematological and biochemical changes in rats exposed to britholite mineral. Applied Radiation and Isotopes, 129, 185-188.
  • Azizi, M.R., Abedini, A., Alipour, S., Niroomand, S., Sasmaz, A., Talaei, B. (2017). Rare earth element geochemistry and tetrad effect in fluorites: A case study from the QahrAbad deposit, Iran. Neues Jahrb. Geol. Palaontol. Abh., 283, 255-273.
  • Brooks, R.R., Dunn, C.E., Hall, G.E.M., (1995). Biological system in mineral exploration and processing. Elles Horwood Limited, 538 s.
  • Dunn, C., (2007). Biogeochemistry in mineralexploration. Consulting Geochemist., 480 s.
  • Demir, E., & Özdemir, Z. (2013). Kazanlı- Mersin Bölgesinde Cu, Mn, Zn, Cd ve Pb İçin Biyo-jeokimyasal Anomalilerin incelenmesi ve çevresel ortamın Yorumlanması., Jeoloji Mühendisliği Dergisi, 37 (4), 119-140.
  • Turan, H., Özdemir, Z., Zorlu, S. (2006). Çiftehan (Ulukışla-Niğde) Bölgesinin Cu, Zn, Fe, Mn, ve Ni için biyojeokimyasal anomalilerin araştırılması, İ.Ü. Müh. Fak. Yerbilimleri Dergisi, 19(2), 131-140.
  • Terzi, H. & Yıldız, M. (2013). Ağır metal toleransında kükürt metabolizmasının önemi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 3(2), 105-125.
  • Sasmaz, A. (2009) The distribution and accumulation of selenium in roots and shoots of plants naturally grown in the soils of Keban’s Pb-Zn-F mining area, Turkey. Int., J. Phytorem., 11 (4), 385-395.
  • Obek, E. & Sasmaz, A. (2011). Bioaccumulation of Aluminum by Lemna gibba L. from Secondary Treated Municipal Wastewater Effluents. Bull. Env. Cont. Tox., 86, 217-220.
  • Reeves, R. D. (1992). Hyperaccumulation of nickel by serpentine plants. In The Vegetation of Ultramafic (Serpentine) Soils; Baker, A. J. M., Proctor, J., Reeves, R. D., Eds.; Intercept Ltd.: Andover, 253-277.
  • Reeves, R.D., Baker, A.J.M., Borhidi, A., Berazain, R. (1996). Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol., 133(2), 217-224.
  • Reeves, R.D., Baker, A.J.M., Borhidi A., Berazan, R. (1999). Nickel hyperaccumulation in the serpentine flora of Cuba. Ann. Bot., 83, 29–38.
  • Rajakaruna, N., Baker, A.J.M. (2004). Serpentine: a model habitat for botanical research in Sri Lanka Ceylon. J. Sci., 32, 1-19.
  • Avcı, M. (2005). Diversity and endemism in Turkey’s vegetation. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi,13,27-55.
  • Kurt, L., Ozbey, B.G., Kurt, F., Ozdeniz, E., Bolukbaşı, A. (2013). Serpentine Flora of Turkey. Biological Diversity and Conservation, 6(1), 134-152.
  • Rajakaruna, N., Boyd, R.S. (2014). Serpentine soils. D. Gibson (Ed.), Oxford Bibliographies in Ecology, Oxford University Press, New York.
  • Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotech., 74, 21–31.
  • Konakci, N., Sasmaz Kislioglu, M., Sasmaz, A. (2023). Ni, Cr and Co Phytoremediations by Alyssum murale Grown in the Serpentine Soils Around Guleman Cr Deposits, Elazig Turkey. Bull. Environ. Cont. Tox., 110, 97. https://doi.org/10.1007/s00128-023-03736-2.
  • Konakcı, N., (2024). Strontium Accumulations by Teucrium polium which Grows Naturally in Serpentine Soils. G.U. J. Sci., Part A, 11(1), 203-209.
  • Reeves, R.D., Kruckeberg, A.R., Adıgüzel, N., Krımer, U. (2001). Studies on the flora of ser-pentine and other metalliferous areas of western Turkey. South African Journal of Sciences, 97, 513-517.
  • Davis M. A., Boyd R. S., Cane J. H., (2001). Host- switching does not circumvent the Ni-based defense of the Ni hyperaccumulator Streptanthus polygaloides (Brassicaceae). South African Journal of Science, 97:554-57.
  • Özdeniz, E., Özbey, B.G., Kurt, L., Bölükbaşı, A. (2017). Serpantin ekolojisi ve Türkiye serpantin florası’na katkılar. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1), 22–33.
  • Raskyn, I., Smith, R., Salt, D. (1997). Phytoremediation of metals: using plants to remove pol-lutants from the environment. Curr. Opin. Biotechnol., 8, 221-226.
  • Miçillioğlu, S. (2010). Lactuca Sativa Bitkisi Kullanılarak Bor Konsantrasyonu Yüksek Suların Arıtılabilirliğinin Araştırılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Adana.
  • Özkan, Y. Z. (1983). Guleman (Elazığ) ofiyolitinin yapısal incelenmesi. MTA Dergisi, 37,78-85.
  • NGBB, (2022). Bizim Bitkiler. https://bizimbitkiler.org.tr. Erişim tarihi 5 Ağu 2022 (Türkiye bitkileri listesi, yayılış bilgileri ve Türkçe adları).
  • Zhao, F.J., Lombi, E., Mc Grath, S.P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil, 249, 37–43.
  • Chen Z, Zhu, Y.G., Liu, W.J., Meharg, A.A. (2005) Direct evidence show¬ing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol., 165:91–97.
  • Zu, Y.Q., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ. Int., 31, 755–762.
  • Lasat, M.M., Pence, N.S., Garvin, D.F., Ebbs, S.D., Kochian, L.V. (2000). Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J. Exp. Bot., 51 (342), 71–79.
  • Kabata-Pendias, A, Pendias, H. (2001). Trace elements in soils and plants. CRC Press, London.
  • Goldberg, S. (1997). Reactions of boron with soils. Plant and soil, 19, 35-48.
  • Chen, W.T., Sheng-Bin, H., Dar-Yuan., L. (2009). Effect of pH on boron adsorption desorption hysteresis of soils. Soil Sci., 174, 330–338.
  • Arora, S., & Chadal, D.S. (2010). Effect of soil properties on boron adsorption and release in arid and semi-arid benchmark soils. Commun. Soil Sci. Plant Anal., 41, 532–2544.
  • Ok, S.S., & Akay, A. (2016). The effects of boron mining on boron content of soil-sediment and plants. Int. J. Innov. Res. Eng. Manage., 3(5), 454–457.
  • Raza, M., Mermut, A.R., Schoenau, J.J., Malhi, S.S. (2002). Boron Fractions in Some Sas-katchewan Soils. Can. J. Soil Sci., 82, 173-179.
  • Sasmaz, A. (2008). Translocation and accumulation of boron in roots and shoots of plants grown in soils of low B concentration in Turkey’s Keban Pb–Zn mining area. Int. J. Phytoremed., 10, 302–310.
  • Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants. 4th ed. Boca Raton, FL: CRC Press.
  • Saltalı, K., Bılgılı, A.V., Tarakcıoglu, C., Durak, A. (2005). Boron adsorption in soils with different characteristics. Asian Journal of Chemistry, 17, 2487-2494.
  • Lucho-Constantino, C.A., Álvarez, M., Beltrán, R.I., Prieto, F. Poggi, H. (2005). A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environmental International, 31(3), 313-323.
  • Qian, J.H., Zayed, A., Zhu, Y.L., Yu, M.Y., Terry, N., (1999). Phytoaccumulation of trace ele-ments by wetland plants: III.Uptake and accumulation of ten trace elements by twelve plant spe-cies. J. Environ. Qual., 28, 1448–1455.
  • Turker, O., Bocuk, H., Yakar, A. (2013). The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. J. Hazard. Mater., 252, 132-141.
  • Sasmaz, M., Senel, G.U., Obek, E. (2021). Boron bioaccumulation by the dominant macrophytes grown in various discharge water environments. Bull. Environ. Contam. Toxicol., 1–9.
  • Gür, N., Türker, O.C., Böcük, H., (2016). Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Chemosphere, 157, 1-9.
There are 77 citations in total.

Details

Primary Language Turkish
Subjects Mineral Stratum and Geochemistry
Journal Section Articles
Authors

Nevin Konakcı 0000-0002-0163-0966

Ahmet Şaşmaz 0000-0003-1154-732X

Project Number FUBAP-MF.20.16
Early Pub Date June 28, 2024
Publication Date June 30, 2024
Submission Date April 26, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Konakcı, N., & Şaşmaz, A. (2024). Bazik Topraklarda Yetişen Alyssum murale ile Bor Akümülasyonu. International Journal of Pure and Applied Sciences, 10(1), 228-241. https://doi.org/10.29132/ijpas.1474051
AMA Konakcı N, Şaşmaz A. Bazik Topraklarda Yetişen Alyssum murale ile Bor Akümülasyonu. International Journal of Pure and Applied Sciences. June 2024;10(1):228-241. doi:10.29132/ijpas.1474051
Chicago Konakcı, Nevin, and Ahmet Şaşmaz. “Bazik Topraklarda Yetişen Alyssum Murale Ile Bor Akümülasyonu”. International Journal of Pure and Applied Sciences 10, no. 1 (June 2024): 228-41. https://doi.org/10.29132/ijpas.1474051.
EndNote Konakcı N, Şaşmaz A (June 1, 2024) Bazik Topraklarda Yetişen Alyssum murale ile Bor Akümülasyonu. International Journal of Pure and Applied Sciences 10 1 228–241.
IEEE N. Konakcı and A. Şaşmaz, “Bazik Topraklarda Yetişen Alyssum murale ile Bor Akümülasyonu”, International Journal of Pure and Applied Sciences, vol. 10, no. 1, pp. 228–241, 2024, doi: 10.29132/ijpas.1474051.
ISNAD Konakcı, Nevin - Şaşmaz, Ahmet. “Bazik Topraklarda Yetişen Alyssum Murale Ile Bor Akümülasyonu”. International Journal of Pure and Applied Sciences 10/1 (June 2024), 228-241. https://doi.org/10.29132/ijpas.1474051.
JAMA Konakcı N, Şaşmaz A. Bazik Topraklarda Yetişen Alyssum murale ile Bor Akümülasyonu. International Journal of Pure and Applied Sciences. 2024;10:228–241.
MLA Konakcı, Nevin and Ahmet Şaşmaz. “Bazik Topraklarda Yetişen Alyssum Murale Ile Bor Akümülasyonu”. International Journal of Pure and Applied Sciences, vol. 10, no. 1, 2024, pp. 228-41, doi:10.29132/ijpas.1474051.
Vancouver Konakcı N, Şaşmaz A. Bazik Topraklarda Yetişen Alyssum murale ile Bor Akümülasyonu. International Journal of Pure and Applied Sciences. 2024;10(1):228-41.

154501544915448154471544615445