Research Article
BibTex RIS Cite

Growth, fatty acid and amino acid composition of Nannochloropsis sp. (D.J. Hibberd, 1981) used in the feeding trials of crab Callinectes sapidus larvae

Year 2024, Volume: 10 Issue: 1, 276 - 282, 30.06.2024
https://doi.org/10.29132/ijpas.1477244

Abstract

In aquaculture hatcheries, microalgae, including Nannochloropsis sp. (D.J. Hibberd, 1981), are utilized as live food sources, The development of algal cultures employed in inoculation can satisfy the need for Nannochloropsis. This process begins with stock cultures on a laboratory scale and advances to intensive algal cultures in higher volume structures set up in both indoor and outdoor environments. The aim of the study was (1) to determine the specific growth rate (μ) of Nannochloropsis sp. grown under labora-tory conditions as a live feed source to feed crab larvae of Callinectes sapidus (Rathbun, 1896) (Brachyura: Portunidae), and (2) to determine the fatty acid and ami-no acid compositions of Nannochloropsis sp. According to the study's findings, Nan-nochloropsis sp. had a specific growth rate (μ) of 0.553 ± 0.004 when grown in Guil-lard F/2 culture medium with aeration, 25 ppt salinity, and 25 0C room temperature. Out of all the necessary fatty acids, DHA, at 22:6 (ω-3) made up 0.5 ± 0.07 percent, and EPA, at 20:5 (ω-3) made up 24.25 ± 3.45 percent. The total amino acid content of Nannochloropsis was observed to range from 0.00 ± 0.00% (taurine) to 16.35 ± 3.56% (proline).

References

  • Hibberd, D. J. (1981). Notes on the taxonomy and nomenclature of the algal classes Eustigmato-phyceae and Tribophyceae (synonym Xanthophyceae). Botanical Journal of the Linnean Socie-ty, 82(2), 93–119.
  • Fawley (2007). Observations on the Diversity and Ecology of Freshwater Nannochloropsis (Eustigmatophyceae), with Descriptions of New Taxa. Protist., 158 (3), 325–336.
  • Lubian, L. M.; et al. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 12 (3/5): 249–255.
  • Boussiba, S., Vonshak, A., Cohen, Z., Avissar, Y., Richmond, A. (1987). Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass, 12, 37–47.
  • Canini, D., Ceschi, E., Perozeni, F. (2024). Toward the Exploitation of Sustainable Green Fac-tory: Biotechnology Use of Nannochloropsis spp. Biology, 13, 292.
  • Demirbaş, A., and Demirbaş, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management. 52, 163-170.
  • Assaf Sukenik, Y. C. T. B. (1989). Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochloropsis sp. Journal of Phycology. 25(4), 686–692.
  • Guillard R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Culture of marine invertebrate animals (Ed. by W. L. Smith & M.H. Chanley), 29–60. Plenum Press, New York, USA.
  • Rodolfi, L, Zittelli, Chini, et al. (2008). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengi-neering. 102(1), 100–112.
  • Simionato, D., Block, M. A., Rocca, N. L, Jouhet, J., Maréchal, E., Finazzi, G., Morosinotto, T. (2013). The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganisation of the photosynthetic apparatus. Eukaryotic Cell. 12(5), 665–676.
  • Dong, H. P., Williams, E., Wang, D. Z., Xie, Z. X., Hsia, R. C, Jenck, A., Halden, R., Li, J., Chen, F., and Place, A. R. (2013). Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiology, 162(2), 1110–1126.
  • Gani, P., Sunar, N. M,, Matias-Peralta, H. et al (2016). Influence of initial cell concentrations on the growth rate and biomass productivity of microalgae in domestic wastewater. Appl Ecol Environ Res 14, 399–409. https://doi.org/10.15666/aeer/1402_399409 [7] El Gamal, A. A. (2010). Biological im-portance of marine algae. Saudi Pharmaceutical Journal, 18(1), 1-25.
  • Liu, J., Liu, Y., Wang, H., and Xue, S. (2015). Direct transesterification of fresh microalgal cells. Bioresource Technology, 176, 284–287.
  • Meng, Y., Jiang, J., Wang, H., Cao, X., Xue, S., Yang, Q., and Wang, W. (2015). The charac-teristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes. Bioresource Technology, 179, 483–489.
  • Gao, G., Clare, A. S., Rose, C., and Caldwell, G. S. (2017). Reproductive sterility increases the capacity to exploit the green seaweed Ulva rigida for commercial applications. Algal Research, 24,64–71.
  • Ganuza, E., Etomi, E. H., Olson, M., and Whisner, C.M. (2024). Omega-3 eicosapentaenoic polar-lipid rich extract from microalgae Nannochloropsis decreases plasma triglycerides and choles-terol in a real-world normolipidemic supplement consumer population. Front Nutr., 6, 11, 1293909.
  • Khan, M. I., Shin, J. H., Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17, 36.
  • Abıshek, P., M., Patel, J., and Prem Rajan, A. (2014). Algae oil: a sustainable renewable fuel of future. Biotechnology Research International.
  • Ünver Alçay, A., Bostan, K., Dinçel, E., Varlık, C. (2017). Alglerin insan gıdası olarak kullanımı. Aydın Gastronomy, 1(1), 47-59.
  • Villarruel-López, A., Ascencio, F., Nuño, K. (2017). Microalgae, a potential natural functional food source – a review. Polish Journal of Food and Nutrition Sciences, 67(4), 251-263.
  • Ye, Y., Liu, M., Yu, L., Sun, H., Liu, J. (2024). Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Mar. Drugs, 2024, 22, 54.
Year 2024, Volume: 10 Issue: 1, 276 - 282, 30.06.2024
https://doi.org/10.29132/ijpas.1477244

Abstract

References

  • Hibberd, D. J. (1981). Notes on the taxonomy and nomenclature of the algal classes Eustigmato-phyceae and Tribophyceae (synonym Xanthophyceae). Botanical Journal of the Linnean Socie-ty, 82(2), 93–119.
  • Fawley (2007). Observations on the Diversity and Ecology of Freshwater Nannochloropsis (Eustigmatophyceae), with Descriptions of New Taxa. Protist., 158 (3), 325–336.
  • Lubian, L. M.; et al. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 12 (3/5): 249–255.
  • Boussiba, S., Vonshak, A., Cohen, Z., Avissar, Y., Richmond, A. (1987). Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass, 12, 37–47.
  • Canini, D., Ceschi, E., Perozeni, F. (2024). Toward the Exploitation of Sustainable Green Fac-tory: Biotechnology Use of Nannochloropsis spp. Biology, 13, 292.
  • Demirbaş, A., and Demirbaş, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management. 52, 163-170.
  • Assaf Sukenik, Y. C. T. B. (1989). Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochloropsis sp. Journal of Phycology. 25(4), 686–692.
  • Guillard R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Culture of marine invertebrate animals (Ed. by W. L. Smith & M.H. Chanley), 29–60. Plenum Press, New York, USA.
  • Rodolfi, L, Zittelli, Chini, et al. (2008). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengi-neering. 102(1), 100–112.
  • Simionato, D., Block, M. A., Rocca, N. L, Jouhet, J., Maréchal, E., Finazzi, G., Morosinotto, T. (2013). The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganisation of the photosynthetic apparatus. Eukaryotic Cell. 12(5), 665–676.
  • Dong, H. P., Williams, E., Wang, D. Z., Xie, Z. X., Hsia, R. C, Jenck, A., Halden, R., Li, J., Chen, F., and Place, A. R. (2013). Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiology, 162(2), 1110–1126.
  • Gani, P., Sunar, N. M,, Matias-Peralta, H. et al (2016). Influence of initial cell concentrations on the growth rate and biomass productivity of microalgae in domestic wastewater. Appl Ecol Environ Res 14, 399–409. https://doi.org/10.15666/aeer/1402_399409 [7] El Gamal, A. A. (2010). Biological im-portance of marine algae. Saudi Pharmaceutical Journal, 18(1), 1-25.
  • Liu, J., Liu, Y., Wang, H., and Xue, S. (2015). Direct transesterification of fresh microalgal cells. Bioresource Technology, 176, 284–287.
  • Meng, Y., Jiang, J., Wang, H., Cao, X., Xue, S., Yang, Q., and Wang, W. (2015). The charac-teristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes. Bioresource Technology, 179, 483–489.
  • Gao, G., Clare, A. S., Rose, C., and Caldwell, G. S. (2017). Reproductive sterility increases the capacity to exploit the green seaweed Ulva rigida for commercial applications. Algal Research, 24,64–71.
  • Ganuza, E., Etomi, E. H., Olson, M., and Whisner, C.M. (2024). Omega-3 eicosapentaenoic polar-lipid rich extract from microalgae Nannochloropsis decreases plasma triglycerides and choles-terol in a real-world normolipidemic supplement consumer population. Front Nutr., 6, 11, 1293909.
  • Khan, M. I., Shin, J. H., Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17, 36.
  • Abıshek, P., M., Patel, J., and Prem Rajan, A. (2014). Algae oil: a sustainable renewable fuel of future. Biotechnology Research International.
  • Ünver Alçay, A., Bostan, K., Dinçel, E., Varlık, C. (2017). Alglerin insan gıdası olarak kullanımı. Aydın Gastronomy, 1(1), 47-59.
  • Villarruel-López, A., Ascencio, F., Nuño, K. (2017). Microalgae, a potential natural functional food source – a review. Polish Journal of Food and Nutrition Sciences, 67(4), 251-263.
  • Ye, Y., Liu, M., Yu, L., Sun, H., Liu, J. (2024). Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Mar. Drugs, 2024, 22, 54.
There are 21 citations in total.

Details

Primary Language English
Subjects Algology
Journal Section Articles
Authors

Övgü Gencer 0000-0001-8403-1274

Early Pub Date June 28, 2024
Publication Date June 30, 2024
Submission Date May 7, 2024
Acceptance Date June 3, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Gencer, Ö. (2024). Growth, fatty acid and amino acid composition of Nannochloropsis sp. (D.J. Hibberd, 1981) used in the feeding trials of crab Callinectes sapidus larvae. International Journal of Pure and Applied Sciences, 10(1), 276-282. https://doi.org/10.29132/ijpas.1477244
AMA Gencer Ö. Growth, fatty acid and amino acid composition of Nannochloropsis sp. (D.J. Hibberd, 1981) used in the feeding trials of crab Callinectes sapidus larvae. International Journal of Pure and Applied Sciences. June 2024;10(1):276-282. doi:10.29132/ijpas.1477244
Chicago Gencer, Övgü. “Growth, Fatty Acid and Amino Acid Composition of Nannochloropsis Sp. (D.J. Hibberd, 1981) Used in the Feeding Trials of Crab Callinectes Sapidus Larvae”. International Journal of Pure and Applied Sciences 10, no. 1 (June 2024): 276-82. https://doi.org/10.29132/ijpas.1477244.
EndNote Gencer Ö (June 1, 2024) Growth, fatty acid and amino acid composition of Nannochloropsis sp. (D.J. Hibberd, 1981) used in the feeding trials of crab Callinectes sapidus larvae. International Journal of Pure and Applied Sciences 10 1 276–282.
IEEE Ö. Gencer, “Growth, fatty acid and amino acid composition of Nannochloropsis sp. (D.J. Hibberd, 1981) used in the feeding trials of crab Callinectes sapidus larvae”, International Journal of Pure and Applied Sciences, vol. 10, no. 1, pp. 276–282, 2024, doi: 10.29132/ijpas.1477244.
ISNAD Gencer, Övgü. “Growth, Fatty Acid and Amino Acid Composition of Nannochloropsis Sp. (D.J. Hibberd, 1981) Used in the Feeding Trials of Crab Callinectes Sapidus Larvae”. International Journal of Pure and Applied Sciences 10/1 (June 2024), 276-282. https://doi.org/10.29132/ijpas.1477244.
JAMA Gencer Ö. Growth, fatty acid and amino acid composition of Nannochloropsis sp. (D.J. Hibberd, 1981) used in the feeding trials of crab Callinectes sapidus larvae. International Journal of Pure and Applied Sciences. 2024;10:276–282.
MLA Gencer, Övgü. “Growth, Fatty Acid and Amino Acid Composition of Nannochloropsis Sp. (D.J. Hibberd, 1981) Used in the Feeding Trials of Crab Callinectes Sapidus Larvae”. International Journal of Pure and Applied Sciences, vol. 10, no. 1, 2024, pp. 276-82, doi:10.29132/ijpas.1477244.
Vancouver Gencer Ö. Growth, fatty acid and amino acid composition of Nannochloropsis sp. (D.J. Hibberd, 1981) used in the feeding trials of crab Callinectes sapidus larvae. International Journal of Pure and Applied Sciences. 2024;10(1):276-82.

154501544915448154471544615445