Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections

Yıl 2025, Cilt: 11 Sayı: 1, 30 - 55, 30.06.2025
https://doi.org/10.29132/ijpas.1523117

Öz

In this study, we examine the geometric properties of Riemannian submersions with quarter symmetric non-metric connections. Our work provides a compre-hensive analysis of the Weyl projective curvature tensor, the concircular curvature tensor, and the conharmonic curvature tensor. We also investigate how these curvature tensors interact with the total umbilic fibers, particularly focusing on their behavior when such fibers are present in Riemannian submersions. First we introduce basic properties of quarter symmetric non-metric connections. Subse-quently, we compute the relevant curvature tensors and analyze their interplay with total umbilic fibers. In this context, we elucidate relationships between var-ious curvature tensors and certain geometric properties, as well as the effects of these relationships on Riemannian submersions.

Kaynakça

  • Friedmann, A. and Schouten, J. A. (1924). Über die Geometrie der halbsymmetrischen Übertragungen, Mathematische Zeitschrift, 21(1), 211-223.
  • Hayden, H. A. (1932). Subspaces of a space with torsion, Proceedings of the London Mathematical Society, 2(1), 27-50.
  • Yano, K. (1970). On semi symmetric metric connection, Revue Roumaine de Mathѐmatiques pures et appliquѐes, 15, 1579-1586.
  • Ayar, G. and Demirhan, D. (2019). Ricci solutions on nearly Kenmotsu manifolds with semi-symmetric metric connection, Journal of Engineering Technology and Applied Sciences, 4(3), 131-140.
  • Altın, M. (2020). Projective curvature tensor on N(к) contact metric manifold admitting semi-symmetric non-metric connection, Fundamental Journal of Mathematics and Applications, 3(2), 94-100.
  • Chaubey, S. K. and Ojha, R. H. (2008). On a semi-symmetric non-metric and quarter symmetric metric connexions, Tensor N. S., 70(2), 202-213.
  • O’Neill, B. (1966). The fundamental equations of a submersion, Michigan Mathematical Journal, 13(4), 459-469.
  • Gray, A. (1967). Pseudo-Riemannian almost product manifolds and submersions, Journal of Mathematics and Mechanics, 16(7), 715-737.
  • Escobales, Jr. and Richard, H. (1975). Riemannian submersions with totally geodesic fibers, J. Differential Geometry, 10, 253-276.
  • Ianus, S., Mazzocco, R., and Vilcu, G. E. (2008). Riemannian submersions from quaternionic manifolds, Acta Applicandae Mathematicae, 104, 83-89.
  • Berestovskii, V. N. and Guijarro, L. (2000). A metric characterization of Riemannian submersions, Annals of Global Analysis and Geometry, 18, 577-588.
  • Eken Meriç, Ş., Gülbahar, M., and Kılıç, E. (2017). Some inequalities for Riemannian submersions, Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi-Serie Noua- Mathematica, 63, 1-12.
  • Şahin, B. (2013). Riemannian submersions from almost Hermitian manifolds, Taiwanese Journal of Mathematics, 17, 629-659.
  • Narita, F. (1993). Riemannian submersion with isometric reflections with respect to the fibers. Kodai Math. J., 16, 416-427.
  • Karatas, E., Zeren, S., and Altın, M. (2023). Riemannian submersions endowed with a new type of semi-symmetric non-metric connection, Thermal Science, 27(4B), 3393-3403.
  • Ayar, G. (2021). Pseudo‐projective and quasi‐conformal curvature tensors on Riemannian submersions, Mathematical Methods in the Applied Sciences 44(17), 13791-13798.
  • Karataş, E., Zeren, S., and Altın, M. (2024). Geometric Analysis of Riemannian Submersions: Curvature Tensors and Total Umbilic Fibers. Konuralp Journal of Mathematics, 12(2), 158-171.
  • Akyol, M. A. and Beyendi S. (2018). Riemannian submersions endowed with a semi-symmetric non-metric connection, Konuralp Journal of Mathematics, 6(1), 188-193.
  • Sarı, R. (2021). Semi-invariant Riemannian submersions with semi-symmetric non-metric connection, Journal of New Theory, (35), 62-71.
  • Demir, H. and Sarı, R. (2022). Riemannian submersions endowed with a semi-symmetric metric connection, Tbilisi Centre for Mathematical Sciences, 10, 99-108.
  • Golab, S. (1975). On semi-symmetric and quarter symmetric linear connections, Tensor N. S., 29, 249-254.
  • Demir, H. and Sarı, R. (2021). Riemannian submersions with quarter symmetric non-metric connection, Journal of Engineering Technology and Applied Sciences, 6(1), 1-8.
  • Mishra, R. S. (1970). H-Projective curvature tensor in Kӓhler manifold, Indian Journal of Pure and Applied Mathematics, 1, 336-340.
  • Pokhariyal, G. P. and Mishra, R. S. (1971). Curvature tensors and their relativistic significance, II. Yokohama Math. J., 19(2), 97-103.
  • Ojha, R. H. (1975). A note on the 𝘔- projective curvature tensor, Indian Journal of Pure and Applied Mathematics, 8(12), 1531-1534.
  • Doric, M., Petrovic- Torgasev, M., and Versraelen L. (1988). Conditions on the conharmonic curvature tensor of Kaehler hypersurfaces in complex space forms, Publications de I’Institut Mathѐmatique (N. S), 44(58), 97-108.
  • Ahsan, Z. and Siddiqui, S. A. (2009). Concircular curvature tensor and fluid spacetimes, International Journal of Theoretical Physics, 48, 3202-3212.
  • Hall, G. (2018). Einstein’s geodesic postulate, projective relatedness and Weyl’s projective tensor. In Mathematical Physics. Proceedings of the 14th Regional Conference, 27-35.
  • Ayar, G. and Akyol, M. A. (2023). New curvature tensors along Riemannian submersions, Miskolc Mathematical Notes, 24, 1161-1184.
  • Sahin, B. (2017). Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Academic Press.
  • Falcitelli, M., Ianus, S., and Pastore, A. M. (2004). Riemannian Submersions and Related Topics, World Scientific.
  • Gundmundson, S. (2014). An Introduction to Riemannian Geometry. Lecture Notes in Mathematics, University of Lund, Faculty of Science. Lund, Sweden.
  • Şahin, B. (2013). Semi-invariant Submersions from Almost Hermitian Manifolds, Canadian Mathematical Bulletin, 56(1), 173-183.
  • Doğru, Y. (2011). On some properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection, Analele Stiintifice ale Universitatii Ovidius Constanta, Serie Matematica, 19(3), 85-100.

Quarter-Simetrik Non-Metrik Konneksiyonlu Riemann Submersiyonlarda Total Umbilik Liflerin Analizi

Yıl 2025, Cilt: 11 Sayı: 1, 30 - 55, 30.06.2025
https://doi.org/10.29132/ijpas.1523117

Öz

Bu çalışmada quarter simetrik non-metrik konneksiyona sahip Riemann sub-mersiyonların geometrik özellikleri incelenmektedir. Çalışma, Weyl projektif eğrilik tensörü, koncircular eğrilik tensörü ve konharmonic eğrilik tensorlerine ilişkin kapsamlı bir analiz sunmaktadır. Ayrıca bu eğrilik tensörlerinin total um-bilik lifler üzerindeki etkileşimleri de araştırılmaktadır. Ek olarak söz konusu tensörlerin Riemann submersiyonlarında total umbilik liflerinin varlığı du-ru-munda ortaya çıkan yapısal özellikleri de ele alınmaktadır. İlk olarak, quarter simetrik non-metrik konneksiyonların tanımı ve temel özellikleri incelenmekte, sonrasında bu konneksiyonların Riemann submersiyonları üzerindeki etkileri incelenmektedir. Eğrilik tensörleri hesaplanarak total umbilik liflerle etkileşim-leri analiz edilmektedir. Bu bağlamda, farklı eğrilik tensörlerinin ge-ometrik özel-liklerinin birbiri ile ilişkisi ve Riemann submersiyonları üzerindeki etkileri ortaya konulmaktadır.

Kaynakça

  • Friedmann, A. and Schouten, J. A. (1924). Über die Geometrie der halbsymmetrischen Übertragungen, Mathematische Zeitschrift, 21(1), 211-223.
  • Hayden, H. A. (1932). Subspaces of a space with torsion, Proceedings of the London Mathematical Society, 2(1), 27-50.
  • Yano, K. (1970). On semi symmetric metric connection, Revue Roumaine de Mathѐmatiques pures et appliquѐes, 15, 1579-1586.
  • Ayar, G. and Demirhan, D. (2019). Ricci solutions on nearly Kenmotsu manifolds with semi-symmetric metric connection, Journal of Engineering Technology and Applied Sciences, 4(3), 131-140.
  • Altın, M. (2020). Projective curvature tensor on N(к) contact metric manifold admitting semi-symmetric non-metric connection, Fundamental Journal of Mathematics and Applications, 3(2), 94-100.
  • Chaubey, S. K. and Ojha, R. H. (2008). On a semi-symmetric non-metric and quarter symmetric metric connexions, Tensor N. S., 70(2), 202-213.
  • O’Neill, B. (1966). The fundamental equations of a submersion, Michigan Mathematical Journal, 13(4), 459-469.
  • Gray, A. (1967). Pseudo-Riemannian almost product manifolds and submersions, Journal of Mathematics and Mechanics, 16(7), 715-737.
  • Escobales, Jr. and Richard, H. (1975). Riemannian submersions with totally geodesic fibers, J. Differential Geometry, 10, 253-276.
  • Ianus, S., Mazzocco, R., and Vilcu, G. E. (2008). Riemannian submersions from quaternionic manifolds, Acta Applicandae Mathematicae, 104, 83-89.
  • Berestovskii, V. N. and Guijarro, L. (2000). A metric characterization of Riemannian submersions, Annals of Global Analysis and Geometry, 18, 577-588.
  • Eken Meriç, Ş., Gülbahar, M., and Kılıç, E. (2017). Some inequalities for Riemannian submersions, Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi-Serie Noua- Mathematica, 63, 1-12.
  • Şahin, B. (2013). Riemannian submersions from almost Hermitian manifolds, Taiwanese Journal of Mathematics, 17, 629-659.
  • Narita, F. (1993). Riemannian submersion with isometric reflections with respect to the fibers. Kodai Math. J., 16, 416-427.
  • Karatas, E., Zeren, S., and Altın, M. (2023). Riemannian submersions endowed with a new type of semi-symmetric non-metric connection, Thermal Science, 27(4B), 3393-3403.
  • Ayar, G. (2021). Pseudo‐projective and quasi‐conformal curvature tensors on Riemannian submersions, Mathematical Methods in the Applied Sciences 44(17), 13791-13798.
  • Karataş, E., Zeren, S., and Altın, M. (2024). Geometric Analysis of Riemannian Submersions: Curvature Tensors and Total Umbilic Fibers. Konuralp Journal of Mathematics, 12(2), 158-171.
  • Akyol, M. A. and Beyendi S. (2018). Riemannian submersions endowed with a semi-symmetric non-metric connection, Konuralp Journal of Mathematics, 6(1), 188-193.
  • Sarı, R. (2021). Semi-invariant Riemannian submersions with semi-symmetric non-metric connection, Journal of New Theory, (35), 62-71.
  • Demir, H. and Sarı, R. (2022). Riemannian submersions endowed with a semi-symmetric metric connection, Tbilisi Centre for Mathematical Sciences, 10, 99-108.
  • Golab, S. (1975). On semi-symmetric and quarter symmetric linear connections, Tensor N. S., 29, 249-254.
  • Demir, H. and Sarı, R. (2021). Riemannian submersions with quarter symmetric non-metric connection, Journal of Engineering Technology and Applied Sciences, 6(1), 1-8.
  • Mishra, R. S. (1970). H-Projective curvature tensor in Kӓhler manifold, Indian Journal of Pure and Applied Mathematics, 1, 336-340.
  • Pokhariyal, G. P. and Mishra, R. S. (1971). Curvature tensors and their relativistic significance, II. Yokohama Math. J., 19(2), 97-103.
  • Ojha, R. H. (1975). A note on the 𝘔- projective curvature tensor, Indian Journal of Pure and Applied Mathematics, 8(12), 1531-1534.
  • Doric, M., Petrovic- Torgasev, M., and Versraelen L. (1988). Conditions on the conharmonic curvature tensor of Kaehler hypersurfaces in complex space forms, Publications de I’Institut Mathѐmatique (N. S), 44(58), 97-108.
  • Ahsan, Z. and Siddiqui, S. A. (2009). Concircular curvature tensor and fluid spacetimes, International Journal of Theoretical Physics, 48, 3202-3212.
  • Hall, G. (2018). Einstein’s geodesic postulate, projective relatedness and Weyl’s projective tensor. In Mathematical Physics. Proceedings of the 14th Regional Conference, 27-35.
  • Ayar, G. and Akyol, M. A. (2023). New curvature tensors along Riemannian submersions, Miskolc Mathematical Notes, 24, 1161-1184.
  • Sahin, B. (2017). Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Academic Press.
  • Falcitelli, M., Ianus, S., and Pastore, A. M. (2004). Riemannian Submersions and Related Topics, World Scientific.
  • Gundmundson, S. (2014). An Introduction to Riemannian Geometry. Lecture Notes in Mathematics, University of Lund, Faculty of Science. Lund, Sweden.
  • Şahin, B. (2013). Semi-invariant Submersions from Almost Hermitian Manifolds, Canadian Mathematical Bulletin, 56(1), 173-183.
  • Doğru, Y. (2011). On some properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection, Analele Stiintifice ale Universitatii Ovidius Constanta, Serie Matematica, 19(3), 85-100.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematiksel Fizik (Diğer)
Bölüm Makaleler
Yazarlar

Esra Karataş 0000-0003-0858-1340

Semra Zeren 0000-0003-0083-3507

Mustafa Altın 0000-0001-5544-5910

Erken Görünüm Tarihi 27 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 26 Temmuz 2024
Kabul Tarihi 28 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Karataş, E., Zeren, S., & Altın, M. (2025). Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections. International Journal of Pure and Applied Sciences, 11(1), 30-55. https://doi.org/10.29132/ijpas.1523117
AMA Karataş E, Zeren S, Altın M. Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections. International Journal of Pure and Applied Sciences. Haziran 2025;11(1):30-55. doi:10.29132/ijpas.1523117
Chicago Karataş, Esra, Semra Zeren, ve Mustafa Altın. “Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections”. International Journal of Pure and Applied Sciences 11, sy. 1 (Haziran 2025): 30-55. https://doi.org/10.29132/ijpas.1523117.
EndNote Karataş E, Zeren S, Altın M (01 Haziran 2025) Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections. International Journal of Pure and Applied Sciences 11 1 30–55.
IEEE E. Karataş, S. Zeren, ve M. Altın, “Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections”, International Journal of Pure and Applied Sciences, c. 11, sy. 1, ss. 30–55, 2025, doi: 10.29132/ijpas.1523117.
ISNAD Karataş, Esra vd. “Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections”. International Journal of Pure and Applied Sciences 11/1 (Haziran2025), 30-55. https://doi.org/10.29132/ijpas.1523117.
JAMA Karataş E, Zeren S, Altın M. Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections. International Journal of Pure and Applied Sciences. 2025;11:30–55.
MLA Karataş, Esra vd. “Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections”. International Journal of Pure and Applied Sciences, c. 11, sy. 1, 2025, ss. 30-55, doi:10.29132/ijpas.1523117.
Vancouver Karataş E, Zeren S, Altın M. Analysis of Total Umbilical Fibers in Riemannian Submersions with Quarter Symmetric Non-Metric Connections. International Journal of Pure and Applied Sciences. 2025;11(1):30-55.