Araştırma Makalesi
BibTex RIS Kaynak Göster

Veri Odaklı Yaklaşımlar ile Zihinsel İyi Oluş Durumunun Tespiti

Yıl 2025, Cilt: 11 Sayı: 1, 17 - 29, 30.06.2025
https://doi.org/10.29132/ijpas.1619385

Öz

Ruhsal iyi oluş düzeyi bozuklukları, modern yaşam biçimlerinin en önemli sorunları arasında yer almaktadır ve hastalıkların erken teşhisinin etkili bir önleme için ne kadar önemli olduğu artık bilinen bir gerçektir. Diğer yandan, Makine Öğrenimi (MÖ) algoritmaları günümüzde hastalık tespitinde değerli bir rol oynamaktadır. Bu çalışmanın amacı yalnızca çeşitli ML sınıflandırıcılarının performansını araştırmak değil aynı zamanda ruh sağlığı tanısı için modern bir teknik sunmaktır. Bu bağlamda, araştırmamızda literatürde yaygın olarak bilinen ML sınıflandırıcılarından Bootstrap Aggregating (Bagging), Extremely Randomized Trees (ExtraTrees), Passive-Aggressive, Light Gradient Boosting Machine (LGBM), Perceptron ve Stochastic Gradient Descent (SGD) algoritmaları ele alınmıştır. Seçilen bireylerde ruhsal sağlık hastalıklarına katkıda bulunan faktörleri ele almak için üç aşamalı bir veri işleme yaklaşımı kullanıyoruz: parçalara ayırma, özellik çıkarımı ve sınıflandırma. Ele alınan veri setindeki özellik önemini analiz eden araştırmamız, yaşın, aile geçmişinin ve işyeri ortamının bir çalışanın ruh sağlığı durumu üzerinde önemli bir etkiye sahip olduğunu ortaya koymaktadır.

Etik Beyan

Veriler herkese açık bir veri tabanından elde edildiğinden etik kurul değerlendirmesine gerek yoktur.

Kaynakça

  • Doupe, P., Faghmous, J. and Basu, S. (2006). Data mining: Introductory and advanced topics, Pearson Education India.
  • Ghahramani, Z. (2004). Unsupervised learning. Advanced lectures on machine learning, Springer; pp. 72-112.
  • Dunham, M.H. (2006). Data mining: Introductory and advanced topics. Pearson Education India.
  • Kotsiantis, S.B. (2007). Supervised Machine Learning: A Review of Classification Techniques. Informatica, 31, 249–268
  • Cortes, C. and Vapnik, V.N. (1995). Support Vector Network, Machine learning, 20, 1-25.
  • Panch, T., Szolovits, P. and Atun, R. (2018). Artificial intelligence, machine learning and health systems. J. Glob. Health, 8(2), 020303.
  • Doupe, P., Faghmous, J. and Basu, S. (2019). Machine Learning for Health Services Researchers. Value in Health, 22, 808-815.
  • Husnain, A., et al. (2024). Advancements in Health through Artificial Intelligence and Machine Learning: A Focus on Brain Health. Revista Española de Documentación Científica, 18(01), 100-123.
  • Gogas, P. and Papadimitriou, T. (2021). Machine Learning in Economics and Finance. Computational Economics, 57, 1-4.
  • Shami, L. and Lazebnik, T. (2024). Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy. Computational Economics, 63, 1459–1476.
  • Ntampaka, M., et al. (2019). A Deep Learning Approach to Galaxy Cluster X-Ray Masses. ApJ, 876, 82.
  • Kangal, E.E., Salti, M. and Aydogdu, O. (2019). Machine learning algorithm in a caloric view point of cosmology. Physics of the Dark Universe, 26, 100369.
  • Tilaver, H., Salti, M., Aydogdu, O. and Kangal, E.E. (2021). Deep learning approach to Hubble parameter. Computer Physics Communications, 261, 107809.
  • Salti, M., Kangal, E.E. and Aydogdu, O. (2021). Evolution of CMB temperature in a Chaplygin gas model from deep learning perspective. Astronomy and Computing, 37, 100504.
  • Chase, R.J., et al. (2022). A Machine Learning Tutorial for Operational Meteorology - Part I: Traditional Machine Learning. Weather and Forecasting, 37(8), 1509–1529.
  • Buster, G., Benton, B.N., Glaws, A. and King, R.N. (2024 High-resolution meteorology with climate change impacts from global climate model data using generative machine learning. Nature Energy, 9, 894-906.
  • Sumathi, M.R. and Poorna, B. (2016). Prediction of Mental Health Problems Among Children Using Machine Learning Techniques. International Journal of Advanced Computer Science and Applications, 7(1), 552-557.
  • Powers, S.I., Hauser, S. T. and Kilner, L.A. (1989). Adolescent mental health. American Psychologist, 44(2), 200–208.
  • Bhugra D., Till A. and Sartorius N. (2013). What is mental health? International Journal of Social Psychiatry, 59(1), 3-4.
  • Reddy, U.S., Thota, A.V. and Dharun, A. (2018). Machine Learning Techniques for Stress Prediction in Working Employees, 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), (pp. 1-4), Madurai, India.
  • Katarya, R. and Maan, S. (2020). Predicting Mental health disorders using Machine Learning for employees in technical and non-technical companies, 2020 IEEE International Conference on Advances and Developments in Electrical and Electronics Engineering (ICADEE), (pp. 1-5), Coimbatore, India.
  • Jain, T., Jain, A., Hada, P.S., Kumar, H., Verma, V. K. and Patni, A. (2021). Machine Learning Techniques for Prediction of Mental Health, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), (pp1 1606-1613), Coimbatore, India.
  • Garriga, R., Mas, J., Abraha, S. et al. (2022). Machine learning model to predict mental health crises from electronic health records. Nat Med 28, 1240–1248.
  • Rezapour, M. and Hansen, L. (2022). A machine learning analysis of COVID-19 mental health data. Scientific Reports, 12, 14965.
  • Mulye, A. (2021). Mental Health at Workplace. Kaggle.
  • Hall, M.A. (1999). Correlation-based Feature Selection for Machine Learning. PhD Thesis / University of Waikato, Hamilton, New Zealand.
  • Cunningham, S.J., Littin, J. and Witten, I.H. (1997). Applications of machine learning in information retrieval. University of Waikato Technical Report 97/6.
  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
  • Geurts, P., Ernst, D. and Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3-42.
  • Crammer, K., Dredze, M., & Pereira, F. (2006). Passive-Aggressive Algorithms for Huge Online Tasks. Journal of Machine Learning Research, 7, 551-585.
  • Ke, G. et al. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA.
  • Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65(6), 386-408.
  • Bottou, L. (1998). Stochastic Gradient Descent. Online Learning and Neural Networks, MIT Press.
  • Caruana, R., Niculescu-Mizil, A. (2004). Data mining in metric space: an empirical analysis of supervised learning performance criteria. Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining, Seattle-WA, USA.
  • Labatut, V. and Cherifi, H. (2011). Evaluation of Performance Measures for Classifiers Comparison. Ubiquitous Computing and Communication Journal, 6:21-34.
  • Chen, T., et al. (2019). Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient Boosting Machine. IEEE Access, 7, 150960-150968.
  • Project Jupyter. Jupyter Notebook: The Classic Notebook Interface. Available at the website https://jupyter.org.

Detection of Mental Well-Being Status Through Data-Driven Approaches

Yıl 2025, Cilt: 11 Sayı: 1, 17 - 29, 30.06.2025
https://doi.org/10.29132/ijpas.1619385

Öz

Mental well-being disorders are among the most significant challenges in the modern lifestyles, and it is well-established that early detection of diseases is essential for effective prevention. On the other hand, Machine Learning (ML) algorithms currently play a valuable role in disease detection. The aim of this study is not only to investigate the performance of various ML classifiers but also to propose a modern technique for mental health diagnosis. In this context, our research considers Bootstrap Aggregating (Bagging), Extremely Randomized Trees (ExtraTrees), Passive-Aggressive, Light Gradient Boosting Machine (LGBM), Perceptron, and Stochastic Gradient Descent (SGD) algorithms, which are among the widely recognized ML classifiers in literature. To address the factors contributing to mental health illnesses among the selected individuals, we employ a three-phase data processing approach: segmentation, feature extraction, and classification. Analyzing feature importance from the selected dataset, our study highlights the significant impact of age, family history, and workplace environment on a worker's mental health status.

Etik Beyan

The data is sourced from an open-access database, so there is no need for an ethics committee’s evaluation.

Kaynakça

  • Doupe, P., Faghmous, J. and Basu, S. (2006). Data mining: Introductory and advanced topics, Pearson Education India.
  • Ghahramani, Z. (2004). Unsupervised learning. Advanced lectures on machine learning, Springer; pp. 72-112.
  • Dunham, M.H. (2006). Data mining: Introductory and advanced topics. Pearson Education India.
  • Kotsiantis, S.B. (2007). Supervised Machine Learning: A Review of Classification Techniques. Informatica, 31, 249–268
  • Cortes, C. and Vapnik, V.N. (1995). Support Vector Network, Machine learning, 20, 1-25.
  • Panch, T., Szolovits, P. and Atun, R. (2018). Artificial intelligence, machine learning and health systems. J. Glob. Health, 8(2), 020303.
  • Doupe, P., Faghmous, J. and Basu, S. (2019). Machine Learning for Health Services Researchers. Value in Health, 22, 808-815.
  • Husnain, A., et al. (2024). Advancements in Health through Artificial Intelligence and Machine Learning: A Focus on Brain Health. Revista Española de Documentación Científica, 18(01), 100-123.
  • Gogas, P. and Papadimitriou, T. (2021). Machine Learning in Economics and Finance. Computational Economics, 57, 1-4.
  • Shami, L. and Lazebnik, T. (2024). Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy. Computational Economics, 63, 1459–1476.
  • Ntampaka, M., et al. (2019). A Deep Learning Approach to Galaxy Cluster X-Ray Masses. ApJ, 876, 82.
  • Kangal, E.E., Salti, M. and Aydogdu, O. (2019). Machine learning algorithm in a caloric view point of cosmology. Physics of the Dark Universe, 26, 100369.
  • Tilaver, H., Salti, M., Aydogdu, O. and Kangal, E.E. (2021). Deep learning approach to Hubble parameter. Computer Physics Communications, 261, 107809.
  • Salti, M., Kangal, E.E. and Aydogdu, O. (2021). Evolution of CMB temperature in a Chaplygin gas model from deep learning perspective. Astronomy and Computing, 37, 100504.
  • Chase, R.J., et al. (2022). A Machine Learning Tutorial for Operational Meteorology - Part I: Traditional Machine Learning. Weather and Forecasting, 37(8), 1509–1529.
  • Buster, G., Benton, B.N., Glaws, A. and King, R.N. (2024 High-resolution meteorology with climate change impacts from global climate model data using generative machine learning. Nature Energy, 9, 894-906.
  • Sumathi, M.R. and Poorna, B. (2016). Prediction of Mental Health Problems Among Children Using Machine Learning Techniques. International Journal of Advanced Computer Science and Applications, 7(1), 552-557.
  • Powers, S.I., Hauser, S. T. and Kilner, L.A. (1989). Adolescent mental health. American Psychologist, 44(2), 200–208.
  • Bhugra D., Till A. and Sartorius N. (2013). What is mental health? International Journal of Social Psychiatry, 59(1), 3-4.
  • Reddy, U.S., Thota, A.V. and Dharun, A. (2018). Machine Learning Techniques for Stress Prediction in Working Employees, 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), (pp. 1-4), Madurai, India.
  • Katarya, R. and Maan, S. (2020). Predicting Mental health disorders using Machine Learning for employees in technical and non-technical companies, 2020 IEEE International Conference on Advances and Developments in Electrical and Electronics Engineering (ICADEE), (pp. 1-5), Coimbatore, India.
  • Jain, T., Jain, A., Hada, P.S., Kumar, H., Verma, V. K. and Patni, A. (2021). Machine Learning Techniques for Prediction of Mental Health, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), (pp1 1606-1613), Coimbatore, India.
  • Garriga, R., Mas, J., Abraha, S. et al. (2022). Machine learning model to predict mental health crises from electronic health records. Nat Med 28, 1240–1248.
  • Rezapour, M. and Hansen, L. (2022). A machine learning analysis of COVID-19 mental health data. Scientific Reports, 12, 14965.
  • Mulye, A. (2021). Mental Health at Workplace. Kaggle.
  • Hall, M.A. (1999). Correlation-based Feature Selection for Machine Learning. PhD Thesis / University of Waikato, Hamilton, New Zealand.
  • Cunningham, S.J., Littin, J. and Witten, I.H. (1997). Applications of machine learning in information retrieval. University of Waikato Technical Report 97/6.
  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
  • Geurts, P., Ernst, D. and Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3-42.
  • Crammer, K., Dredze, M., & Pereira, F. (2006). Passive-Aggressive Algorithms for Huge Online Tasks. Journal of Machine Learning Research, 7, 551-585.
  • Ke, G. et al. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA.
  • Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65(6), 386-408.
  • Bottou, L. (1998). Stochastic Gradient Descent. Online Learning and Neural Networks, MIT Press.
  • Caruana, R., Niculescu-Mizil, A. (2004). Data mining in metric space: an empirical analysis of supervised learning performance criteria. Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining, Seattle-WA, USA.
  • Labatut, V. and Cherifi, H. (2011). Evaluation of Performance Measures for Classifiers Comparison. Ubiquitous Computing and Communication Journal, 6:21-34.
  • Chen, T., et al. (2019). Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient Boosting Machine. IEEE Access, 7, 150960-150968.
  • Project Jupyter. Jupyter Notebook: The Classic Notebook Interface. Available at the website https://jupyter.org.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Görüşü ve Çoklu Ortam Hesaplama (Diğer)
Bölüm Makaleler
Yazarlar

Aysun Kazak Saltı 0000-0001-7151-1391

Evrim Ersin Kangal 0000-0001-5906-3143

Erken Görünüm Tarihi 27 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 13 Ocak 2025
Kabul Tarihi 25 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Kazak Saltı, A., & Kangal, E. E. (2025). Detection of Mental Well-Being Status Through Data-Driven Approaches. International Journal of Pure and Applied Sciences, 11(1), 17-29. https://doi.org/10.29132/ijpas.1619385
AMA Kazak Saltı A, Kangal EE. Detection of Mental Well-Being Status Through Data-Driven Approaches. International Journal of Pure and Applied Sciences. Haziran 2025;11(1):17-29. doi:10.29132/ijpas.1619385
Chicago Kazak Saltı, Aysun, ve Evrim Ersin Kangal. “Detection of Mental Well-Being Status Through Data-Driven Approaches”. International Journal of Pure and Applied Sciences 11, sy. 1 (Haziran 2025): 17-29. https://doi.org/10.29132/ijpas.1619385.
EndNote Kazak Saltı A, Kangal EE (01 Haziran 2025) Detection of Mental Well-Being Status Through Data-Driven Approaches. International Journal of Pure and Applied Sciences 11 1 17–29.
IEEE A. Kazak Saltı ve E. E. Kangal, “Detection of Mental Well-Being Status Through Data-Driven Approaches”, International Journal of Pure and Applied Sciences, c. 11, sy. 1, ss. 17–29, 2025, doi: 10.29132/ijpas.1619385.
ISNAD Kazak Saltı, Aysun - Kangal, Evrim Ersin. “Detection of Mental Well-Being Status Through Data-Driven Approaches”. International Journal of Pure and Applied Sciences 11/1 (Haziran2025), 17-29. https://doi.org/10.29132/ijpas.1619385.
JAMA Kazak Saltı A, Kangal EE. Detection of Mental Well-Being Status Through Data-Driven Approaches. International Journal of Pure and Applied Sciences. 2025;11:17–29.
MLA Kazak Saltı, Aysun ve Evrim Ersin Kangal. “Detection of Mental Well-Being Status Through Data-Driven Approaches”. International Journal of Pure and Applied Sciences, c. 11, sy. 1, 2025, ss. 17-29, doi:10.29132/ijpas.1619385.
Vancouver Kazak Saltı A, Kangal EE. Detection of Mental Well-Being Status Through Data-Driven Approaches. International Journal of Pure and Applied Sciences. 2025;11(1):17-29.