Fish Species Classification with Deep Learning and Bayesian Optimization: Effectiveness and Comparative Results
Yıl 2025,
Cilt: 11 Sayı: 1, 92 - 107, 30.06.2025
Hüseyin Aydilek
,
Mustafa Yasin Erten
Öz
This study examines the effectiveness of deep learning-based models in the classification and monitoring of fish species. A dataset obtained from the Kaggle platform, containing 31 different fish species, was used to train MobileNetV2, DenseNet121, and VGG19 models. Bayesian optimization was applied to enhance model performance and determine the optimal hyperparameters. The results indicate that models trained with Bayesian optimization achieved significantly higher accuracy compared to those trained with randomly assigned hyperparameters. Additionally, the ensemble learning approach, which combined the outputs of individual models, yielded the best classification performance. This study demonstrates that deep learning techniques serve as a crucial tool for marine ecosystem conservation and sustainable fisheries practices.
Kaynakça
-
Zarco-Perello, S., Enríquez, S. (2019). Remote underwater video reveals higher fish diversity and abundance in seagrass meadows, and habitat differences in trophic interactions. Sci Rep 9, 6596. https://doi.org/10.1038/s41598-019-43037-5
-
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., ... & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological reviews, 94(3), 849-873.
-
Barange, M., Bahri, T., Beveridge, M. C., Cochrane, K. L., Funge-Smith, S., & Poulain, F. (2018). Impacts of climate change on fisheries and aquaculture. United Nations’ Food and Agriculture Organization, 12(4), 628-635.
-
Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R. E. G., Zeller, D., & Pauly, D. (2010). Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global change biology, 16(1), 24-35.
-
Pikitch, E., Boersma, P. D., Boyd, I. L., Conover, D. O., Cury, P., Essington, T., ... & Steneck, R. S. (2012). Little fish, big impact: Managing a crucial link in ocean food webs. Lenfest Ocean Program. Washington, DC.
-
Liu, S., Li, X., Gao, M., Cai, Y., Nian, R., Li, P., ... & Lendasse, A. (2018, October). Embedded online fish detection and tracking system via YOLOv3 and parallel correlation filter. In Oceans 2018 Mts/Ieee Charleston (pp. 1-6). IEEE.
-
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
-
Kaya, V., Akgül, İ., & Tanır, Ö. Z. (2023). IsVoNet8: a proposed deep learning model for classification of some fish species. Journal of Agricultural Sciences, 29(1), 298-307.
-
Cui, S., Zhou, Y., Wang, Y., & Zhai, L. (2020). Fish detection using deep learning. Applied Computational Intelligence and Soft Computing, 2020(1), 3738108.
-
Chen, G., Sun, P., & Shang, Y. (2017, November). Automatic fish classification system using deep learning. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 24-29). IEEE.
-
Aziz, R. M., Mahto, R., Das, A., Ahmed, S. U., Roy, P., Mallik, S., & Li, A. (2023). CO‐WOA: novel optimization approach for deep learning classification of fish image. Chemistry & Biodiversity, 20(8), e202201123.
-
Shammi, S. A., Das, S., Hasan, M., & Noori, S. R. H. (2021, July). FishNet: fish classification using convolutional neural network. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-5). IEEE.
-
Kandimalla, V., Richard, M., Smith, F., Quirion, J., Torgo, L., & Whidden, C. (2022). Automated detection, classification and counting of fish in fish passages with deep learning. Frontiers in Marine Science, 8, 823173.
-
Salman, A., Jalal, A., Shafait, F., Mian, A., Shortis, M., Seager, J., & Harvey, E. (2016). Fish species classification in unconstrained underwater environments based on deep learning. Limnology and Oceanography: Methods, 14(9), 570-585.
-
Varalakshmi, P., & Rachel, J. J. L. (2019, February). Recognition of fish categories using deep learning technique. In 2019 3rd International Conference on Computing and Communications Technologies (ICCCT) (pp. 168-172). IEEE.
-
Iqbal, M. A., Wang, Z., Ali, Z. A., & Riaz, S. (2021). Automatic fish species classification using deep convolutional neural networks. Wireless Personal Communications, 116, 1043-1053.
-
Deep, B. V., & Dash, R. (2019, March). Underwater fish species recognition using deep learning techniques. In 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 665-669). IEEE.
-
Mark Daniel Lampa, Rose Claire Librojo, and Mary Mae Calamba. (2022). Fish Dataset [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/4323384
-
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).
-
Simonyan, K. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
-
Alibabaei, K., Gaspar, P. D., Lima, T. M., Campos, R. M., Girão, I., Monteiro, J., & Lopes, C. M. (2022). A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities. Remote Sensing, 14(3), 638.
-
Howard, A. G. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
-
Li, Z., Li, Y., Yan, C., Yan, P., Li, X., Yu, M., ... & Xie, B. (2024). Enhancing Tea Leaf Disease Identification with Lightweight MobileNetV2. Computers, Materials & Continua, 80(1).
-
Lévesque, J. C., Gagné, C., & Sabourin, R. (2016). Bayesian hyperparameter optimization for ensemble learning. arXiv preprint arXiv:1605.06394.
-
Snoek, J., Larochelle, H., Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems (pp. 2951-2959). 2012.
-
Tanyıldızı, E., & Demirtaş, F. (2019). Hiper parametre optimizasyonu hyper parameter optimization. In 2019 1st International Informatics and Software Engineering Conference (UBMYK) (pp. 1-5). IEEE.
-
Seni, G., & Elder, J. (2010). Ensemble methods in data mining: improving accuracy through combining predictions. Morgan & Claypool Publishers.
-
Yacouby, R., & Axman, D. (2020, November). Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. In Proceedings of the first workshop on evaluation and comparison of NLP systems (pp. 79-91).
Balık Türü Sınıflandırmasında Derin Öğrenme ve Bayes Optimizasyonu: Model Etkinlik ve Karşılaştırmalı Sonuçlar
Yıl 2025,
Cilt: 11 Sayı: 1, 92 - 107, 30.06.2025
Hüseyin Aydilek
,
Mustafa Yasin Erten
Öz
Bu çalışma, derin öğrenme tabanlı modellerin balık türlerinin sınıflandırılması ve izlenmesindeki etkinliğini incelemektedir. Kaggle platformundan elde edilen ve 31 farklı balık türünü içeren veri kümesi kullanılarak MobileNetV2, DenseNet121 ve VGG19 modelleri uygulanmıştır. Model performansını artırmak amacıyla Bayes optimi-zasyonu kullanılmış ve en iyi hiperparametreler belirlenmiştir. Sonuçlar, Bayes opti-mizasyonu uygulanmış modellerin rastgele hiperparametrelerle eğitilmiş modellere kıyasla önemli ölçüde daha yüksek doğruluk oranlarına ulaştığını göstermektedir. Ayrıca, bireysel modellerin çıktılarının birleştirildiği toplu öğrenme yaklaşımı, en iyi sınıflandırma başarımını sağlamıştır. Bu çalışma, derin öğrenme tekniklerinin deniz ekosistemlerinin korunması ve sürdürülebilir balıkçılık uygulamalarında kritik bir araç olduğunu göstermektedir.
Kaynakça
-
Zarco-Perello, S., Enríquez, S. (2019). Remote underwater video reveals higher fish diversity and abundance in seagrass meadows, and habitat differences in trophic interactions. Sci Rep 9, 6596. https://doi.org/10.1038/s41598-019-43037-5
-
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., ... & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological reviews, 94(3), 849-873.
-
Barange, M., Bahri, T., Beveridge, M. C., Cochrane, K. L., Funge-Smith, S., & Poulain, F. (2018). Impacts of climate change on fisheries and aquaculture. United Nations’ Food and Agriculture Organization, 12(4), 628-635.
-
Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R. E. G., Zeller, D., & Pauly, D. (2010). Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global change biology, 16(1), 24-35.
-
Pikitch, E., Boersma, P. D., Boyd, I. L., Conover, D. O., Cury, P., Essington, T., ... & Steneck, R. S. (2012). Little fish, big impact: Managing a crucial link in ocean food webs. Lenfest Ocean Program. Washington, DC.
-
Liu, S., Li, X., Gao, M., Cai, Y., Nian, R., Li, P., ... & Lendasse, A. (2018, October). Embedded online fish detection and tracking system via YOLOv3 and parallel correlation filter. In Oceans 2018 Mts/Ieee Charleston (pp. 1-6). IEEE.
-
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
-
Kaya, V., Akgül, İ., & Tanır, Ö. Z. (2023). IsVoNet8: a proposed deep learning model for classification of some fish species. Journal of Agricultural Sciences, 29(1), 298-307.
-
Cui, S., Zhou, Y., Wang, Y., & Zhai, L. (2020). Fish detection using deep learning. Applied Computational Intelligence and Soft Computing, 2020(1), 3738108.
-
Chen, G., Sun, P., & Shang, Y. (2017, November). Automatic fish classification system using deep learning. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 24-29). IEEE.
-
Aziz, R. M., Mahto, R., Das, A., Ahmed, S. U., Roy, P., Mallik, S., & Li, A. (2023). CO‐WOA: novel optimization approach for deep learning classification of fish image. Chemistry & Biodiversity, 20(8), e202201123.
-
Shammi, S. A., Das, S., Hasan, M., & Noori, S. R. H. (2021, July). FishNet: fish classification using convolutional neural network. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-5). IEEE.
-
Kandimalla, V., Richard, M., Smith, F., Quirion, J., Torgo, L., & Whidden, C. (2022). Automated detection, classification and counting of fish in fish passages with deep learning. Frontiers in Marine Science, 8, 823173.
-
Salman, A., Jalal, A., Shafait, F., Mian, A., Shortis, M., Seager, J., & Harvey, E. (2016). Fish species classification in unconstrained underwater environments based on deep learning. Limnology and Oceanography: Methods, 14(9), 570-585.
-
Varalakshmi, P., & Rachel, J. J. L. (2019, February). Recognition of fish categories using deep learning technique. In 2019 3rd International Conference on Computing and Communications Technologies (ICCCT) (pp. 168-172). IEEE.
-
Iqbal, M. A., Wang, Z., Ali, Z. A., & Riaz, S. (2021). Automatic fish species classification using deep convolutional neural networks. Wireless Personal Communications, 116, 1043-1053.
-
Deep, B. V., & Dash, R. (2019, March). Underwater fish species recognition using deep learning techniques. In 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 665-669). IEEE.
-
Mark Daniel Lampa, Rose Claire Librojo, and Mary Mae Calamba. (2022). Fish Dataset [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/4323384
-
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).
-
Simonyan, K. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
-
Alibabaei, K., Gaspar, P. D., Lima, T. M., Campos, R. M., Girão, I., Monteiro, J., & Lopes, C. M. (2022). A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities. Remote Sensing, 14(3), 638.
-
Howard, A. G. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
-
Li, Z., Li, Y., Yan, C., Yan, P., Li, X., Yu, M., ... & Xie, B. (2024). Enhancing Tea Leaf Disease Identification with Lightweight MobileNetV2. Computers, Materials & Continua, 80(1).
-
Lévesque, J. C., Gagné, C., & Sabourin, R. (2016). Bayesian hyperparameter optimization for ensemble learning. arXiv preprint arXiv:1605.06394.
-
Snoek, J., Larochelle, H., Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems (pp. 2951-2959). 2012.
-
Tanyıldızı, E., & Demirtaş, F. (2019). Hiper parametre optimizasyonu hyper parameter optimization. In 2019 1st International Informatics and Software Engineering Conference (UBMYK) (pp. 1-5). IEEE.
-
Seni, G., & Elder, J. (2010). Ensemble methods in data mining: improving accuracy through combining predictions. Morgan & Claypool Publishers.
-
Yacouby, R., & Axman, D. (2020, November). Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. In Proceedings of the first workshop on evaluation and comparison of NLP systems (pp. 79-91).