Research Article
BibTex RIS Cite
Year 2020, , 92 - 97, 26.08.2020
https://doi.org/10.38058/ijsl.774962

Abstract

References

  • Referans1 J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules supplements and projectivity in module theory, Frontiers in Mathematics, Birkhauser Basel, 2006.
  • Referans2 A.Ç Ozcan, A. Harmancı, and P.F. Smith, Duo modules, Glasgow Mathematical Journal 48 (2006), 533-545.
  • Referans3 S. H. Mohamed and B. J. Müller, Continuous and discrete modules, London Math. Soc. LNS 147 Cambridge University, Cambridge, 1990.
  • Referans4 R. Wisbauer, Foundations of modules and rings theory , Gordon and Breach, 1991.
  • Referans5 R. Wisbauer, Modules and algebras: bimodule structure and group actions on algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics81, 1996.
  • Referans6 H. Zoschinger, Komplementierte moduln uber Dedekindringen, J. Algebra 29 (1974), 42-56.

Coatomic refinable modules

Year 2020, , 92 - 97, 26.08.2020
https://doi.org/10.38058/ijsl.774962

Abstract

In this article, we define the concept of (strongly) coatomic refinable modules as a proper generalization of (strongly) refinable modules. It is shown that: (1) every direct summand of a coatomic refinable module is coatomic refinable; (2) over a left max ring a module M is (strongly) coatomic refinable if and only if it is (strongly) refinable; (3) if a coatomic refinable module M is π-projective, then it is strongly coatomic refinable; (4) if coatomic direct summands lift modulo every coatomic submodule of M, then M is coatomic refinable.

References

  • Referans1 J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules supplements and projectivity in module theory, Frontiers in Mathematics, Birkhauser Basel, 2006.
  • Referans2 A.Ç Ozcan, A. Harmancı, and P.F. Smith, Duo modules, Glasgow Mathematical Journal 48 (2006), 533-545.
  • Referans3 S. H. Mohamed and B. J. Müller, Continuous and discrete modules, London Math. Soc. LNS 147 Cambridge University, Cambridge, 1990.
  • Referans4 R. Wisbauer, Foundations of modules and rings theory , Gordon and Breach, 1991.
  • Referans5 R. Wisbauer, Modules and algebras: bimodule structure and group actions on algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics81, 1996.
  • Referans6 H. Zoschinger, Komplementierte moduln uber Dedekindringen, J. Algebra 29 (1974), 42-56.
There are 6 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Burcu Nişancı Türkmen 0000-0001-7900-0529

Ergül Türkmen 0000-0002-7082-1176

Publication Date August 26, 2020
Published in Issue Year 2020

Cite

APA Nişancı Türkmen, B., & Türkmen, E. (2020). Coatomic refinable modules. International Journal of Science Letters, 2(2), 92-97. https://doi.org/10.38058/ijsl.774962
AMA Nişancı Türkmen B, Türkmen E. Coatomic refinable modules. IJSL. August 2020;2(2):92-97. doi:10.38058/ijsl.774962
Chicago Nişancı Türkmen, Burcu, and Ergül Türkmen. “Coatomic Refinable Modules”. International Journal of Science Letters 2, no. 2 (August 2020): 92-97. https://doi.org/10.38058/ijsl.774962.
EndNote Nişancı Türkmen B, Türkmen E (August 1, 2020) Coatomic refinable modules. International Journal of Science Letters 2 2 92–97.
IEEE B. Nişancı Türkmen and E. Türkmen, “Coatomic refinable modules”, IJSL, vol. 2, no. 2, pp. 92–97, 2020, doi: 10.38058/ijsl.774962.
ISNAD Nişancı Türkmen, Burcu - Türkmen, Ergül. “Coatomic Refinable Modules”. International Journal of Science Letters 2/2 (August 2020), 92-97. https://doi.org/10.38058/ijsl.774962.
JAMA Nişancı Türkmen B, Türkmen E. Coatomic refinable modules. IJSL. 2020;2:92–97.
MLA Nişancı Türkmen, Burcu and Ergül Türkmen. “Coatomic Refinable Modules”. International Journal of Science Letters, vol. 2, no. 2, 2020, pp. 92-97, doi:10.38058/ijsl.774962.
Vancouver Nişancı Türkmen B, Türkmen E. Coatomic refinable modules. IJSL. 2020;2(2):92-7.