Research Article
BibTex RIS Cite

Purification and characterization of protease from Bacillus thuringiensis isolated from soil

Year 2021, Volume: 3 Issue: 1, 18 - 31, 24.02.2021
https://doi.org/10.38058/ijsl.842485

Abstract

Proteases are one of the most important groups of industrial enzymes. These enzymes are used in detergent, protein, meat, leather, dairy, pharmaceutical and food industry. In this study, protease enzymes produced from Bacillus thuringiensis which was isolated from soil was purified. The optimum conditions of this purified enzyme were investigated. The effect of the different production environment, different pH, different temperature degrees and different metal ions of the enzyme produced from Bacillus thuringiensis were observed. It was seen that the highest protease activity was at 55ᵒC and at pH-7.

Supporting Institution

Amasya University

Project Number

FMB-BAP-13-026

References

  • Ahmetoglu, N., Bekler, F. M., Acer, O., Guven, R. G., Guven, K. 2015. Production, purification and characterisation of thermostable metallo-protease from newly isolated Bacillus sp. KG5. EurAsian Journal of BioSciences, (9).
  • Annamalai, N., Rajeswari, M. V., Balasubramanian, T. 2014. Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food and Bioproducts Processing, 92(4), 335-342.
  • Asker, M. M., Mahmoud, M. G., El Shebwy, K., el Aziz, M. S. A. 2013. Purification and characterization of two thermostable protease fractions from Bacillus megaterium. Journal of Genetic Engineering and Biotechnology, 11(2), 103-109.
  • Bekler, F. M., Acer, Ö., Güven, K. 2015. Co-production of thermostable, calcium-independent α-amylase and alkali-metallo protease from newly isolated Bacillus licheniformis DV3. Innovative Romanian Food Biotechnology, 16, 21-30.
  • Brar, S. K., Verma, M., Tyagi, R. D., Surampalli, R. Y., Barnabé, S., et al. 2007. Bacillus thuringiensis proteases: production and role in growth, sporulation and synergism. Process Biochemistry, 42(5), 773-790.
  • Divakar, K., Priya, J. D. A., Gautam, P. 2010. Purification and characterization of thermostable organic solvent-stable protease from Aeromonas veronii PG01. Journal of Molecular Catalysis B: Enzymatic, 66(3-4), 311-318.
  • El-Safey, E. M., Abdul-Raouf, U. M. 2004, March. Production, purification and characterization of protease enzyme from Bacillus subtilis. In International Conferences for Development and the Environment in the Arab World (p. 14). Assiut University.
  • Eren Kiran, Ö., Çomlekcioglu, U., Dostbil, N. 2006. Some microbial enzymes and usage fields in industry. KSU Journal of Science and Engineering, 9, 12-19.
  • Ferrero, M. A., Castro, G. R., Abate, C. M., Baigori, M. D., Sineriz, F. 1996. Thermostable alkaline proteases of Bacillus licheniformis MIR 29: isolation, production and characterization. Applied Microbiology and Biotechnology, 45(3), 327-332.
  • Gupta, R., Beg, Q., Lorenz, P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59(1), 15-32.
  • Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., et al. 2009. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresource Technology, 100(13), 3366-3373.
  • Helmann, J. D. 1995. Compilation and analysis of Bacillus subtilis σ A-dependent promoter sequences: evidence for extended contact between RNA polymerse and upstream promoter DNA. Nucleic Acids Research, 23(13), 2351-2360.
  • Hmidet, N., Ali, N. E. H., Haddar, A., Kanoun, S., Alya, S. K, 2009. Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochemical Engineering Journal, 47(1-3), 71-79.
  • Imanaka, T., Shibazaki, M., Takagi, M. 1986. A new way of enhancing the thermostability of proteases. Nature, 324(6098), 695.
  • Jellouli, K., Ghorbel-Bellaaj, O., Ayed, H. B., Manni, L., Agrebi, R. 2011. Alkaline-protease from Bacillus licheniformis MP1: purification, characterization and potential application as a detergent additive and for shrimp waste deproteinization. Process Biochemistry, 46(6), 1248-1256.
  • Johnvesly, B., Naik, G. R. 2001. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochemistry, 37(2), 139-144.
  • Kalisz, H. M. 1988. Microbial proteinases. In Enzyme studies (pp. 1-65). Springer, Berlin, Heidelberg.
  • Kaur, D., Pandy, A. K. 2009. Partial characterization of bacterial proteases. International Journal of Pharma Recent Research, 1, 12-17.
  • Kebabci, O., Cihangir, N. 2011. Partial purification of protease by a novel bacterium, Bacillus cereus and enzymatic properties. Journal of Biological and Biochemistry, 39, 39-43.
  • Kobata, A.,Yamashita, K., Tachibana, Y. 1972. Methods in Enzymology. by V. Ginsburg, Academic Press Inc., New York, 28, 262.
  • Kohlmann, K. L., Nielsen, S. S., Steenson, L. R., Ladisch, M. R. 1991. Production of proteases by psychrotrophic microorganisms. Journal of Dairy Science, 74(10), 3275-3283.
  • Kumar, C. G., Takagi, H. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances, 17(7), 561-594.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680.
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.
  • Muthulakshmi, C., Gomathi, D., Kumar, D. G. 2011. Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan Journal of Biological Sciences, 147(621), 1-12.
  • Nascimento, W. C. A. D., Martins, M. L. L. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp. Brazilian Journal of Microbiology, 35(1-2), 91-96.
  • Rao, M. B., Tanksale, A. M., Ghatge, M. S., Deshpande, V. V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3), 597-635.
  • Reddy, Y. C., Venkateswerlu, G. 2002. Intracellular proteases of Bacillus thuringiensis subsp. kurstaki and a protease-deficient mutant Btk-q. Current Microbiology, 45(6), 0405-0409.
  • Samal, B. B., Karan, B., Parker, C., Stabinsky, Y. 1991. Isolation and thermal stability studies of two novel serine proteinases from the fungus Tritirachium album Limber. Enzyme and Microbial Technology, 13(1), 66-70.
  • Sellami-Kamoun, A., Haddar, A., Ali, N. E. H., Ghorbel-Frikha, B., Kanoun, S. 2008. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiological Research, 163(3), 299-306.
  • Shivanand, P., Jayaraman, G. 2009. Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochemistry, 44(10), 1088-1094.
  • Suresh Kumar, N., Venkateswerlu, G. 1998. Endogenous protease-activated 66-kDa toxin from Bacillus thuringiensis subsp. kurstaki active against Spodoptera littoralis. FEMS Microbiology Letters, 159(1), 113-120.
  • Wang, S. L., Chao, C. H., Liang, T. W., Chen, C. C. 2009. Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Marine Biotechnology, 11(3), 334-344.
  • Wu, Y. Y., Wang, H. X., Ng, T. B. 2011. A novel metalloprotease from the wild basidiomycete mushroom Lepista nuda. Journal of Microbiology and Biotechnology, 21(3), 256-262.
Year 2021, Volume: 3 Issue: 1, 18 - 31, 24.02.2021
https://doi.org/10.38058/ijsl.842485

Abstract

Project Number

FMB-BAP-13-026

References

  • Ahmetoglu, N., Bekler, F. M., Acer, O., Guven, R. G., Guven, K. 2015. Production, purification and characterisation of thermostable metallo-protease from newly isolated Bacillus sp. KG5. EurAsian Journal of BioSciences, (9).
  • Annamalai, N., Rajeswari, M. V., Balasubramanian, T. 2014. Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food and Bioproducts Processing, 92(4), 335-342.
  • Asker, M. M., Mahmoud, M. G., El Shebwy, K., el Aziz, M. S. A. 2013. Purification and characterization of two thermostable protease fractions from Bacillus megaterium. Journal of Genetic Engineering and Biotechnology, 11(2), 103-109.
  • Bekler, F. M., Acer, Ö., Güven, K. 2015. Co-production of thermostable, calcium-independent α-amylase and alkali-metallo protease from newly isolated Bacillus licheniformis DV3. Innovative Romanian Food Biotechnology, 16, 21-30.
  • Brar, S. K., Verma, M., Tyagi, R. D., Surampalli, R. Y., Barnabé, S., et al. 2007. Bacillus thuringiensis proteases: production and role in growth, sporulation and synergism. Process Biochemistry, 42(5), 773-790.
  • Divakar, K., Priya, J. D. A., Gautam, P. 2010. Purification and characterization of thermostable organic solvent-stable protease from Aeromonas veronii PG01. Journal of Molecular Catalysis B: Enzymatic, 66(3-4), 311-318.
  • El-Safey, E. M., Abdul-Raouf, U. M. 2004, March. Production, purification and characterization of protease enzyme from Bacillus subtilis. In International Conferences for Development and the Environment in the Arab World (p. 14). Assiut University.
  • Eren Kiran, Ö., Çomlekcioglu, U., Dostbil, N. 2006. Some microbial enzymes and usage fields in industry. KSU Journal of Science and Engineering, 9, 12-19.
  • Ferrero, M. A., Castro, G. R., Abate, C. M., Baigori, M. D., Sineriz, F. 1996. Thermostable alkaline proteases of Bacillus licheniformis MIR 29: isolation, production and characterization. Applied Microbiology and Biotechnology, 45(3), 327-332.
  • Gupta, R., Beg, Q., Lorenz, P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59(1), 15-32.
  • Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., et al. 2009. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresource Technology, 100(13), 3366-3373.
  • Helmann, J. D. 1995. Compilation and analysis of Bacillus subtilis σ A-dependent promoter sequences: evidence for extended contact between RNA polymerse and upstream promoter DNA. Nucleic Acids Research, 23(13), 2351-2360.
  • Hmidet, N., Ali, N. E. H., Haddar, A., Kanoun, S., Alya, S. K, 2009. Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochemical Engineering Journal, 47(1-3), 71-79.
  • Imanaka, T., Shibazaki, M., Takagi, M. 1986. A new way of enhancing the thermostability of proteases. Nature, 324(6098), 695.
  • Jellouli, K., Ghorbel-Bellaaj, O., Ayed, H. B., Manni, L., Agrebi, R. 2011. Alkaline-protease from Bacillus licheniformis MP1: purification, characterization and potential application as a detergent additive and for shrimp waste deproteinization. Process Biochemistry, 46(6), 1248-1256.
  • Johnvesly, B., Naik, G. R. 2001. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochemistry, 37(2), 139-144.
  • Kalisz, H. M. 1988. Microbial proteinases. In Enzyme studies (pp. 1-65). Springer, Berlin, Heidelberg.
  • Kaur, D., Pandy, A. K. 2009. Partial characterization of bacterial proteases. International Journal of Pharma Recent Research, 1, 12-17.
  • Kebabci, O., Cihangir, N. 2011. Partial purification of protease by a novel bacterium, Bacillus cereus and enzymatic properties. Journal of Biological and Biochemistry, 39, 39-43.
  • Kobata, A.,Yamashita, K., Tachibana, Y. 1972. Methods in Enzymology. by V. Ginsburg, Academic Press Inc., New York, 28, 262.
  • Kohlmann, K. L., Nielsen, S. S., Steenson, L. R., Ladisch, M. R. 1991. Production of proteases by psychrotrophic microorganisms. Journal of Dairy Science, 74(10), 3275-3283.
  • Kumar, C. G., Takagi, H. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances, 17(7), 561-594.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680.
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.
  • Muthulakshmi, C., Gomathi, D., Kumar, D. G. 2011. Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan Journal of Biological Sciences, 147(621), 1-12.
  • Nascimento, W. C. A. D., Martins, M. L. L. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp. Brazilian Journal of Microbiology, 35(1-2), 91-96.
  • Rao, M. B., Tanksale, A. M., Ghatge, M. S., Deshpande, V. V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3), 597-635.
  • Reddy, Y. C., Venkateswerlu, G. 2002. Intracellular proteases of Bacillus thuringiensis subsp. kurstaki and a protease-deficient mutant Btk-q. Current Microbiology, 45(6), 0405-0409.
  • Samal, B. B., Karan, B., Parker, C., Stabinsky, Y. 1991. Isolation and thermal stability studies of two novel serine proteinases from the fungus Tritirachium album Limber. Enzyme and Microbial Technology, 13(1), 66-70.
  • Sellami-Kamoun, A., Haddar, A., Ali, N. E. H., Ghorbel-Frikha, B., Kanoun, S. 2008. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiological Research, 163(3), 299-306.
  • Shivanand, P., Jayaraman, G. 2009. Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochemistry, 44(10), 1088-1094.
  • Suresh Kumar, N., Venkateswerlu, G. 1998. Endogenous protease-activated 66-kDa toxin from Bacillus thuringiensis subsp. kurstaki active against Spodoptera littoralis. FEMS Microbiology Letters, 159(1), 113-120.
  • Wang, S. L., Chao, C. H., Liang, T. W., Chen, C. C. 2009. Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Marine Biotechnology, 11(3), 334-344.
  • Wu, Y. Y., Wang, H. X., Ng, T. B. 2011. A novel metalloprotease from the wild basidiomycete mushroom Lepista nuda. Journal of Microbiology and Biotechnology, 21(3), 256-262.
There are 34 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Önder İdil 0000-0003-1744-4006

Üzeyir Söylemez 0000-0002-8125-7128

Emine Çelikoğlu 0000-0002-5956-0008

Umut Çelikoğlu 0000-0003-0995-8154

Project Number FMB-BAP-13-026
Publication Date February 24, 2021
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA İdil, Ö., Söylemez, Ü., Çelikoğlu, E., Çelikoğlu, U. (2021). Purification and characterization of protease from Bacillus thuringiensis isolated from soil. International Journal of Science Letters, 3(1), 18-31. https://doi.org/10.38058/ijsl.842485
AMA İdil Ö, Söylemez Ü, Çelikoğlu E, Çelikoğlu U. Purification and characterization of protease from Bacillus thuringiensis isolated from soil. IJSL. February 2021;3(1):18-31. doi:10.38058/ijsl.842485
Chicago İdil, Önder, Üzeyir Söylemez, Emine Çelikoğlu, and Umut Çelikoğlu. “Purification and Characterization of Protease from Bacillus Thuringiensis Isolated from Soil”. International Journal of Science Letters 3, no. 1 (February 2021): 18-31. https://doi.org/10.38058/ijsl.842485.
EndNote İdil Ö, Söylemez Ü, Çelikoğlu E, Çelikoğlu U (February 1, 2021) Purification and characterization of protease from Bacillus thuringiensis isolated from soil. International Journal of Science Letters 3 1 18–31.
IEEE Ö. İdil, Ü. Söylemez, E. Çelikoğlu, and U. Çelikoğlu, “Purification and characterization of protease from Bacillus thuringiensis isolated from soil”, IJSL, vol. 3, no. 1, pp. 18–31, 2021, doi: 10.38058/ijsl.842485.
ISNAD İdil, Önder et al. “Purification and Characterization of Protease from Bacillus Thuringiensis Isolated from Soil”. International Journal of Science Letters 3/1 (February 2021), 18-31. https://doi.org/10.38058/ijsl.842485.
JAMA İdil Ö, Söylemez Ü, Çelikoğlu E, Çelikoğlu U. Purification and characterization of protease from Bacillus thuringiensis isolated from soil. IJSL. 2021;3:18–31.
MLA İdil, Önder et al. “Purification and Characterization of Protease from Bacillus Thuringiensis Isolated from Soil”. International Journal of Science Letters, vol. 3, no. 1, 2021, pp. 18-31, doi:10.38058/ijsl.842485.
Vancouver İdil Ö, Söylemez Ü, Çelikoğlu E, Çelikoğlu U. Purification and characterization of protease from Bacillus thuringiensis isolated from soil. IJSL. 2021;3(1):18-31.