Review
BibTex RIS Cite

Utililization of Myotonometry for Assessment of Rigidity in Parkinson’s Disease

Year 2023, , 1095 - 1098, 08.10.2023
https://doi.org/10.61399/ikcusbfd.1257181

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease, following Alzheimer's, caused by the impairment in the nigrostriatal dopaminergic pathway. Rigidity is defined as increased resistance to passive movement in a limb or axial body part, independent of speed and direction. Rigidity is a key and prevalent symptom of PD, and its assessment is crucial for diagnosing PD, monitoring motor symptoms, evaluating disease progression, assessing treatment efficacy, and determining medication dosages. Thus, objective and quantitative methods for evaluating rigidity, like Myotonometry, are of significant importance. Myotonometry is a non-invasive, easily applicable, inexpensive, valid, and reliable method used to determine the mechanical properties of muscles. It can be utilized to quantitatively assess muscle mechanical properties, such as rigidity or spasticity, which cause changes in muscle tone, besides determining the healthy state of the muscle. The purpose of this review is to provide a general overview of the methods used for rigidity assessment and to determine the role of myotonometry among these methods.

References

  • Hirtz D, Thurman D, Gwinn-Hardy K, Mohamed M, Chaudhuri A, Zalutsky R. How common are the “common” neurologic disorders? Neurology. 2007;68(5):326-37. doi: 10.1212/01.wnl.0000252807.38124. a3.
  • Raza C, Anjum R. Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci. 2019;226:77-90. doi: 10.1016/j.lfs.2019.03.057.
  • Wong SL, Gilmour HL, Ramage-Morin PL. Parkinson’s disease: prevalence, diagnosis and impact. Health Rep. 2014;25(11):10–4.
  • Tysnes O-B, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017;124(8):901-5. doi: 10.1007/s00702-017-1686-y.
  • Delwaide PJ. Parkinsonian rigidity. Funct Neurol. 2001;16(2):147-56.
  • Mutch WJ, Strudwick A, Roy SK, Downie AW. Parkinson's disease: disability, review, and management. Br Med J (Clin Res Ed). 1986;293(6548):675-7. doi: 10.1136/bmj.293.6548.675.
  • Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, et al. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol. 2009;8(12):1128-39. doi: 10.1016/S1474-4422(09)70293-5.
  • Hong M, Perlmutter JS, Earhart GM. Enhancement of rigidity in Parkinson's disease with activation. Mov Disord. 2007;22(8):1164-8. doi: 10.1002/mds.21524.
  • Berardelli A, Sabra A, Hallett M. Physiological mechanisms of rigidity in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1983;46(1):45-53. doi: 10.1136/jnnp.46.1.45.
  • Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. Motor symptoms in Parkinson’s disease: A unified framework. Neurosci Biobehav Rev. 2016;68:727-40. doi: 10.1016/j.neubiorev.2016.07.010.
  • Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30(12):1591-601. doi: 10.1002/mds.26424.
  • Teshuva I, Hillel I, Gazit E, Giladi N, Mirelman A, Hausdorff JM. Using wearables to assess bradykinesia and rigidity in patients with Parkinson’s disease: a focused, narrative review of the literature. J Neural Transm. 2019;126(6):699-710. doi: 10.1007/s00702-019-02017-9.
  • Patrick SK, Denington AA, Gauthier MJ, Gillard DM, Prochazka A. Quantification of the UPDRS rigidity scale. IEEE Trans Neural Syst Rehabil Eng. 2001;9(1):31-41. doi: 10.1109/7333.918274.
  • Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016;86(6):566-76. doi: 10.1212/ WNL.0000000000002350.
  • Prochazka A, Bennett DJ, Stephens MJ, Patrick SK, Sears‐Duru R, Roberts T, et al. Measurement of rigidity in Parkinson's disease. Mov Disord. 1997;12(1):24-32. doi: 10.1002/mds.870120106.
  • Ferreira-Sánchez MdR, Moreno-Verdú M, Cano-de-la-Cuerda R. Quantitative Measurement of Rigidity in Parkinson´ s Disease: A Systematic Review. Sensors. 2020;20(3):880. doi: 10.3390/s20030880.
  • Gao J, He W, Du L-J, Li S, Cheng L-G, Shih G, et al. Ultrasound strain elastography in assessment of resting biceps brachii muscle stiffness in patients with Parkinson's disease: a primary observation. Clin Imaging. 2016;40(3):440-4. doi: 10.1016/j.clinimag.2015.12.008.
  • Du L-J, He W, Cheng L-G, Li S, Pan Y-S, Gao J. Ultrasound shear wave elastography in assessment of muscle stiffness in patients with Parkinson's disease: a primary observation. Clin Imaging. 2016;40(6):1075-80. doi: 10.1016/j.clinimag.2016.05.008.
  • López de Celis C, Pérez Bellmunt A., Bueno Gracia E, Fanlo Mazas P, Zárate Tejero CA, Llurda Almuzara L, Cadellanas Arróniz A, Rodriguez Rubio PR. Effect of diacutaneous fibrolysis on the muscular properties of gastrocnemius muscle. PLoS ONE. 2020;15:e0243225. doi: 10.1371/ journal.pone.0243225.
  • Mak MK, Wong EC, Hui-Chan CW. Quantitative measurement of trunk rigidity in parkinsonian patients. J Neurol. 2007;254(2):202-9. doi: 10.1007/s00415-006-0327-4.
  • Fung VS, Burne JA, Morris JG. Objective quantification of resting and activated parkinsonian rigidity: a comparison of angular impulse and work scores. Mov Disaord. 2000;15(1):48-55. doi: 10.1002/1531-8257(200001)15:1<48::aid-mds1009>3.0.co;2-e.
  • Levin J, Krafczyk S, Valkovič P, Eggert T, Claassen J, Bötzel K. Objective measurement of muscle rigidity in Parkinsonian patients treated with subthalamic stimulation. Mov Disord. 2009;24(1):57-63. doi: 10.1002/ mds.22291.
  • Marusiak J, Jarocka E, Jaskólska A, Jaskólski A. Influence of number of records on reliability of myotonometric measurements of muscle stiffness at rest and contraction. Acta Bioeng Biomech. 2018;20:123– 131.
  • Marusiak J, Jaskólska A, Budrewicz S, Koszewicz M, Jaskólski A. Increased muscle belly and tendon stiffness in patients with Parkinson's disease, as measured by myotonometry. Mov Disord. 2011;26(11):2119- 22. doi: 10.1002/mds.23841
  • Marusiak J, Kisiel-Sajewicz K, Jaskólska A, Jaskólski A. Higher muscle passive stiffness in Parkinson's disease patients than in controls measured by myotonometry. Arch Phys Med Rehabil. 2010;91(5):800-2. doi: 10.1016/j.apmr.2010.01.012.
  • Lo WLA, Zhao JL, Li L, Mao YR, Huang DF. Relative and absolute interrater reliabilities of a hand-held myotonometer to quantify mechanical muscle properties in patients with acute stroke in an inpatient ward. Biomed Res Int. 2017;2017:4294028. doi: 10.1155/2017/4294028.
  • Kisilewicz A, Madeleine P, Ignasiak Z, Ciszek B, Kawczynski A, Larsen RG. Eccentric exercise reduces upper trapezius muscle stiffness assessed by shear wave elastography and myotonometry. Front Bioeng Biotechnol. 2020;8:928. doi: 10.3389/fbioe.2020.00928.
  • Agyapong-Badu S, Warner M, Samuel D, Stokes M. Practical considerations for standardized recording of muscle mechanical properties using a myometric device: Recording site, muscle length, state of contraction and prior activity. Journal of Musculoskeletal Research. 2018;21(02):1850010. doi: 10.1142/S0218957718500100.
  • Ianieri G, Saggini R, Marvulli R, Tondi G, Aprile A, Ranieri M, et al. New approach in the assessment of the tone, elasticity and the muscular resistance: nominal scales vs MYOTON. Int J Immunopathol Pharmacol. 2009;22(3):21-4. doi: 10.1177/03946320090220S304.
  • Gapeyeva H, Vain A. Methodological guide: principles of applying Myoton in physical medicine and rehabilitation. Tartu, Estonia: Muomeetria Ltd. 2008.
  • Marusiak J, Jaskólska A, Koszewicz M, Budrewicz S, Jaskólski A. Myometry revealed medication-induced decrease in resting skeletal muscle stiffness in Parkinson's disease patients. Clin Biomech. 2012;27(6):632-5. doi: 10.1016/j.clinbiomech.2012.02.001.
  • Rätsep T, Asser T. Changes in viscoelastic properties of skeletal muscles induced by subthalamic stimulation in patients with Parkinson's disease. Clin Biomech. 2011;26(2):213-7. doi: 10.1016/j. clinbiomech.2010.09.014.
  • Rätsep T, Asser T. The effect of subthalamic stimulation on viscoelastic stiffness of skeletal muscles in patients with Parkinson's disease. Clin Biomech. 2017;44:94-8. doi: 10.1016/j.clinbiomech.2017.03.012.
  • Marusiak J, Jaskolska A, Budrewicz S, Koszewicz M, Andrzejewska R, Kisiel-Sajewicz K, et al. Influence of dopaminergic treatment on resting elbow joint angle control mechanisms in patients with Parkinson’s disease–a preliminary report. Acta Bioeng Biomech. 2018;20(4):75--82.
  • Technical specification of MyotonPRO. 2021. MyotonPRO Digital Palpation Device User Manual [User manual on the internet]. [updated 2022 Nov 30; cited 2023 Jan 05]. Available from https://www.myoton. com/UserFiles/Updates/MyotonPRO_User_Manual.pdf

Parkinson Hastalığı'nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı

Year 2023, , 1095 - 1098, 08.10.2023
https://doi.org/10.61399/ikcusbfd.1257181

Abstract

Parkinson hastalığı (PH) nigrostriatal dopaminerjik yolaktaki bozulmadan kaynaklı, Alzheimer Hastalığından sonra en sık görülen ikinci nörodejeneratif hastalıktır. Rijidite, bir ekstremitenin ya da aksiyal vücut parçasının pasif harekete karşı hızdan ve hareketin yönünden bağımsız olarak gösterdiği artmış direnç olarak tanımlanmaktadır. Rijidite, PH’nin tanı koydurucu, temel ve en sık görülen semptomlarından biridir ve rijidite değerlendirilmesi PH’de motor semptomları takip etme, hastalığın seyrini izleme ve tedavilerin etkinliğini değerlendirme, ilaç dozunu belirleme gibi önemli konularda kullanılabilmektedir. Rijidite değerlendirilmesinde kullanılan objektif ve kantitatif yöntemler bu nedenle büyük önem taşımaktadır. Myotonometri; kasın mekanik özelliklerinin belirlenmesinde kullanılan noninvaziv, kolay uygulanabilir, ucuz, geçerli ve güvenilir bir yöntemdir. Myotonometri aynı zamanda kasın sağlıklı olma durumu dışında tonusta değişikliklere yol açan rijidite ya da spastisite gibi durumlarında kasın mekanik özeliklerinin kantitatif olarak değerlendirilmesinde dolayısıyla kasın hastalık durumunun sayısal olarak ifade edilmesinde de kullanılmaktadır. Bu derlemenin amacı rijiditenin değerlendirilmesinde kullanılan yöntemleri genel olarak açıklamak ve bu yöntemler arasında myotonometrinin yerini belirlemektir.

Supporting Institution

Bulunmamaktadır

References

  • Hirtz D, Thurman D, Gwinn-Hardy K, Mohamed M, Chaudhuri A, Zalutsky R. How common are the “common” neurologic disorders? Neurology. 2007;68(5):326-37. doi: 10.1212/01.wnl.0000252807.38124. a3.
  • Raza C, Anjum R. Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci. 2019;226:77-90. doi: 10.1016/j.lfs.2019.03.057.
  • Wong SL, Gilmour HL, Ramage-Morin PL. Parkinson’s disease: prevalence, diagnosis and impact. Health Rep. 2014;25(11):10–4.
  • Tysnes O-B, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017;124(8):901-5. doi: 10.1007/s00702-017-1686-y.
  • Delwaide PJ. Parkinsonian rigidity. Funct Neurol. 2001;16(2):147-56.
  • Mutch WJ, Strudwick A, Roy SK, Downie AW. Parkinson's disease: disability, review, and management. Br Med J (Clin Res Ed). 1986;293(6548):675-7. doi: 10.1136/bmj.293.6548.675.
  • Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, et al. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol. 2009;8(12):1128-39. doi: 10.1016/S1474-4422(09)70293-5.
  • Hong M, Perlmutter JS, Earhart GM. Enhancement of rigidity in Parkinson's disease with activation. Mov Disord. 2007;22(8):1164-8. doi: 10.1002/mds.21524.
  • Berardelli A, Sabra A, Hallett M. Physiological mechanisms of rigidity in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1983;46(1):45-53. doi: 10.1136/jnnp.46.1.45.
  • Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. Motor symptoms in Parkinson’s disease: A unified framework. Neurosci Biobehav Rev. 2016;68:727-40. doi: 10.1016/j.neubiorev.2016.07.010.
  • Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30(12):1591-601. doi: 10.1002/mds.26424.
  • Teshuva I, Hillel I, Gazit E, Giladi N, Mirelman A, Hausdorff JM. Using wearables to assess bradykinesia and rigidity in patients with Parkinson’s disease: a focused, narrative review of the literature. J Neural Transm. 2019;126(6):699-710. doi: 10.1007/s00702-019-02017-9.
  • Patrick SK, Denington AA, Gauthier MJ, Gillard DM, Prochazka A. Quantification of the UPDRS rigidity scale. IEEE Trans Neural Syst Rehabil Eng. 2001;9(1):31-41. doi: 10.1109/7333.918274.
  • Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016;86(6):566-76. doi: 10.1212/ WNL.0000000000002350.
  • Prochazka A, Bennett DJ, Stephens MJ, Patrick SK, Sears‐Duru R, Roberts T, et al. Measurement of rigidity in Parkinson's disease. Mov Disord. 1997;12(1):24-32. doi: 10.1002/mds.870120106.
  • Ferreira-Sánchez MdR, Moreno-Verdú M, Cano-de-la-Cuerda R. Quantitative Measurement of Rigidity in Parkinson´ s Disease: A Systematic Review. Sensors. 2020;20(3):880. doi: 10.3390/s20030880.
  • Gao J, He W, Du L-J, Li S, Cheng L-G, Shih G, et al. Ultrasound strain elastography in assessment of resting biceps brachii muscle stiffness in patients with Parkinson's disease: a primary observation. Clin Imaging. 2016;40(3):440-4. doi: 10.1016/j.clinimag.2015.12.008.
  • Du L-J, He W, Cheng L-G, Li S, Pan Y-S, Gao J. Ultrasound shear wave elastography in assessment of muscle stiffness in patients with Parkinson's disease: a primary observation. Clin Imaging. 2016;40(6):1075-80. doi: 10.1016/j.clinimag.2016.05.008.
  • López de Celis C, Pérez Bellmunt A., Bueno Gracia E, Fanlo Mazas P, Zárate Tejero CA, Llurda Almuzara L, Cadellanas Arróniz A, Rodriguez Rubio PR. Effect of diacutaneous fibrolysis on the muscular properties of gastrocnemius muscle. PLoS ONE. 2020;15:e0243225. doi: 10.1371/ journal.pone.0243225.
  • Mak MK, Wong EC, Hui-Chan CW. Quantitative measurement of trunk rigidity in parkinsonian patients. J Neurol. 2007;254(2):202-9. doi: 10.1007/s00415-006-0327-4.
  • Fung VS, Burne JA, Morris JG. Objective quantification of resting and activated parkinsonian rigidity: a comparison of angular impulse and work scores. Mov Disaord. 2000;15(1):48-55. doi: 10.1002/1531-8257(200001)15:1<48::aid-mds1009>3.0.co;2-e.
  • Levin J, Krafczyk S, Valkovič P, Eggert T, Claassen J, Bötzel K. Objective measurement of muscle rigidity in Parkinsonian patients treated with subthalamic stimulation. Mov Disord. 2009;24(1):57-63. doi: 10.1002/ mds.22291.
  • Marusiak J, Jarocka E, Jaskólska A, Jaskólski A. Influence of number of records on reliability of myotonometric measurements of muscle stiffness at rest and contraction. Acta Bioeng Biomech. 2018;20:123– 131.
  • Marusiak J, Jaskólska A, Budrewicz S, Koszewicz M, Jaskólski A. Increased muscle belly and tendon stiffness in patients with Parkinson's disease, as measured by myotonometry. Mov Disord. 2011;26(11):2119- 22. doi: 10.1002/mds.23841
  • Marusiak J, Kisiel-Sajewicz K, Jaskólska A, Jaskólski A. Higher muscle passive stiffness in Parkinson's disease patients than in controls measured by myotonometry. Arch Phys Med Rehabil. 2010;91(5):800-2. doi: 10.1016/j.apmr.2010.01.012.
  • Lo WLA, Zhao JL, Li L, Mao YR, Huang DF. Relative and absolute interrater reliabilities of a hand-held myotonometer to quantify mechanical muscle properties in patients with acute stroke in an inpatient ward. Biomed Res Int. 2017;2017:4294028. doi: 10.1155/2017/4294028.
  • Kisilewicz A, Madeleine P, Ignasiak Z, Ciszek B, Kawczynski A, Larsen RG. Eccentric exercise reduces upper trapezius muscle stiffness assessed by shear wave elastography and myotonometry. Front Bioeng Biotechnol. 2020;8:928. doi: 10.3389/fbioe.2020.00928.
  • Agyapong-Badu S, Warner M, Samuel D, Stokes M. Practical considerations for standardized recording of muscle mechanical properties using a myometric device: Recording site, muscle length, state of contraction and prior activity. Journal of Musculoskeletal Research. 2018;21(02):1850010. doi: 10.1142/S0218957718500100.
  • Ianieri G, Saggini R, Marvulli R, Tondi G, Aprile A, Ranieri M, et al. New approach in the assessment of the tone, elasticity and the muscular resistance: nominal scales vs MYOTON. Int J Immunopathol Pharmacol. 2009;22(3):21-4. doi: 10.1177/03946320090220S304.
  • Gapeyeva H, Vain A. Methodological guide: principles of applying Myoton in physical medicine and rehabilitation. Tartu, Estonia: Muomeetria Ltd. 2008.
  • Marusiak J, Jaskólska A, Koszewicz M, Budrewicz S, Jaskólski A. Myometry revealed medication-induced decrease in resting skeletal muscle stiffness in Parkinson's disease patients. Clin Biomech. 2012;27(6):632-5. doi: 10.1016/j.clinbiomech.2012.02.001.
  • Rätsep T, Asser T. Changes in viscoelastic properties of skeletal muscles induced by subthalamic stimulation in patients with Parkinson's disease. Clin Biomech. 2011;26(2):213-7. doi: 10.1016/j. clinbiomech.2010.09.014.
  • Rätsep T, Asser T. The effect of subthalamic stimulation on viscoelastic stiffness of skeletal muscles in patients with Parkinson's disease. Clin Biomech. 2017;44:94-8. doi: 10.1016/j.clinbiomech.2017.03.012.
  • Marusiak J, Jaskolska A, Budrewicz S, Koszewicz M, Andrzejewska R, Kisiel-Sajewicz K, et al. Influence of dopaminergic treatment on resting elbow joint angle control mechanisms in patients with Parkinson’s disease–a preliminary report. Acta Bioeng Biomech. 2018;20(4):75--82.
  • Technical specification of MyotonPRO. 2021. MyotonPRO Digital Palpation Device User Manual [User manual on the internet]. [updated 2022 Nov 30; cited 2023 Jan 05]. Available from https://www.myoton. com/UserFiles/Updates/MyotonPRO_User_Manual.pdf
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

Birön Onur Üğüt 0000-0002-1474-9050

Arzu Genç 0000-0001-9481-6083

Early Pub Date October 8, 2023
Publication Date October 8, 2023
Submission Date February 27, 2023
Published in Issue Year 2023

Cite

APA Üğüt, B. O., & Genç, A. (2023). Parkinson Hastalığı’nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 8(3), 1095-1098. https://doi.org/10.61399/ikcusbfd.1257181
AMA Üğüt BO, Genç A. Parkinson Hastalığı’nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı. İKÇÜSBFD. October 2023;8(3):1095-1098. doi:10.61399/ikcusbfd.1257181
Chicago Üğüt, Birön Onur, and Arzu Genç. “Parkinson Hastalığı’nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 8, no. 3 (October 2023): 1095-98. https://doi.org/10.61399/ikcusbfd.1257181.
EndNote Üğüt BO, Genç A (October 1, 2023) Parkinson Hastalığı’nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 8 3 1095–1098.
IEEE B. O. Üğüt and A. Genç, “Parkinson Hastalığı’nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı”, İKÇÜSBFD, vol. 8, no. 3, pp. 1095–1098, 2023, doi: 10.61399/ikcusbfd.1257181.
ISNAD Üğüt, Birön Onur - Genç, Arzu. “Parkinson Hastalığı’nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 8/3 (October 2023), 1095-1098. https://doi.org/10.61399/ikcusbfd.1257181.
JAMA Üğüt BO, Genç A. Parkinson Hastalığı’nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı. İKÇÜSBFD. 2023;8:1095–1098.
MLA Üğüt, Birön Onur and Arzu Genç. “Parkinson Hastalığı’nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, vol. 8, no. 3, 2023, pp. 1095-8, doi:10.61399/ikcusbfd.1257181.
Vancouver Üğüt BO, Genç A. Parkinson Hastalığı’nda Myotonometri Yönteminin Rijidite Değerlendirmesinde Kullanımı. İKÇÜSBFD. 2023;8(3):1095-8.