Research Article
BibTex RIS Cite

Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation

Year 2025, Volume: 10 Issue: 28, 695 - 711
https://doi.org/10.25204/iktisad.1578630

Abstract

Transportation problems are considered as a fundamental topic in operations research. In large-scale and complex network structures, initial solutions provide cost effectiveness by influencing the quality and speed of algorithms. Transportation problems aim to balance supply-demand and minimize costs. Appropriate initial solutions save time by producing results close to the optimal solution. Using a single appropriate initial solution algorithm for balanced and unbalanced transportation problems can be more efficient. The new approach proposed in this study is called the Logarithmic Fermi Approach. To analyze the performance of the approach, P1 and P2 test problems with different cost ranges were generated. Analyses have shown that Logarithmic Fermi Method (LFM) and Karagül-Şahin Approximation Method (KSAM) stand out in balanced and unbalanced problems, while North-West Corner Method (NCW) demonstrates poor performance. In large-scale problems, Logarithmic Fermi Method (LFM) and Least Cost Method (LCM) algorithms have produced results close to the optimal solution. The proposed method has shown to have a competitive structure in the analyses.

References

  • Adhikari, P., and Thapa, G. B. (2014). A note on feasibility and optimality of transportation problem. Journal of the Institute of Engineering, 10(1), 59–68. https://doi.org/10.3126/jie.v10i1.10879
  • Ahmed, M. M., Islam, M. A., Katun, M., Yesmin, S., and Uddin, M. S. (2015). New procedure of finding an initial basic feasible solution of the time minimizing transportation problems. Open Journal of Applied Sciences, 5(10), 634–640. https://doi.org/10.4236/ojapps.2015.510062
  • Amaliah, B., Fatichah, C., and Suryani, E. (2022). A new heuristic method of finding the initial basic feasible solution to solve the transportation problem. Journal of King Saud University – Computer and Information Sciences, 34(5), 2298–2307. https://doi.org/10.1016/j.jksuci.2020.07.007
  • Babu, M. A., Ahmmed, M. M., Salim, Z. R., Babu, M. S., and Hoque, M. A. (2020). A brief overview of the classical transportation problem. Journal of Xi'an University of Architecture & Technology, 12(4), 3425.
  • Baranidharan, B., and Mahapatra, G. S. (2024). A new solution technique for fuzzy transportation problem using novel ranking functions on heptagonal fuzzy numbers: A case study of regional shipment. Journal of Computational and Cognitive Engineering, 00(00), 1–16. https://doi.org/10.47852/bonviewJCCE42023253
  • Ekanayake, E. M. U. S. B., Daundasekara, W. B. and Perera, S. P. C. (2021). Solution of a transportation problem using bipartite graph. Global Journal of Science Frontier Research: F Mathematics and Decision Sciences, 10(1), 59-68.
  • Fermi, E. (1962). Nuclear physics: A course given by Enrico Fermi at the University of Chicago. University of Chicago Press.
  • Garg, H., Rizk-Allah, R.M. (2021). A novel approach for solving rough multi-objective transportation problem: Development and prospects. Computational and Applied Mathematics, 40, 149. https://doi.org/10.1007/s40314-021-01507-5
  • Gass, S. I. (1990). On solving the transportation problem. The Journal of the Operational Research Society, 41(4), 291-297. https://doi.org/10.2307/2583799
  • Hillier, F. S., and Lieberman, G. J. (2020). Introduction to operations research (11th ed.). McGraw-Hill Education. Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics, 20(1-4), 224–230. https://doi.org/10.1002/sapm1941201224
  • Hussein, H. A., Shiker, M. A. K., and Zabiba, M. S. M. (2020). A new revised efficient of VAM to find the initial solution for the transportation problem. Journal of Physics: Conference Series, 1591(1), 012032. https://doi.org/10.1088/1742-6596/1591/1/012032
  • Kalaivani, N., and Visalakshidevi, E. M. (2024). A generalized novel approach to transportation problem using multi-partite graph method. Measurement: Sensors, 33, 101060. https://doi.org/10.1016/j.measurementsensors.2024.101060
  • Karagül, K. and Şahin, Y (2020). A novel approximation method to obtain initial basic feasible solution of transportation problem. Journal of King Saud University - Engineering Sciences, 32(3): 211–218. https://doi.org/10.1016/j.jksues.2019.03.003
  • Mallia, B., Das, M., and Das, C. (2021). Fundamentals of transportation problem. International Journal of Engineering and Advanced Technology, 10(5), 90-103. https://doi.org/10.35940/ijeat.E2654.0610521
  • Mutlu, Ö., Karagül, K., and Şahin, Y. (2022). Avoid maximum cost method for determining the initial basic feasible solution of the transportation problem. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 569-576. https://doi.org/10.5505/pajes.2022.61426
  • Peter-Koop, A. (2009). Teaching and understanding mathematical modelling through Fermi-problems. In B. Clarke, B. Grevholm, & R. Millman (Eds.), Tasks in primary mathematics teacher education (pp. 131-146). Springer. https://doi.org/10.1007/978-0-387-09669-8_10
  • Pishvaee, M. S., Rabbani, M., and Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637-649. https://doi.org/10.1016/j.apm.2010.07.013
  • Rathod, A. J. and Pajgade, P. S. (2024). Transportation problems: Analysis and solutions. International Journal for Research in Applied Science & Engineering Technology, 12(3), 215-221. https://doi.org/10.22214/ijraset.2024.58740
  • ReVelle, C. S., and Swain, R. W. (1970). Central facilities location. Geographical Analysis, 2(1), 30-42. https://doi.org/10.1111/j.1538-4632.1970.tb00142.x
  • Right Attitudes. (2017, August 28). The Fermi rule of guesstimation. https://www.rightattitudes.com/2017/08/28/the-fermi-rule-guesstimation/
  • Sarhani, M., Voß, S., and Jovanovic, R. (2023). Initialization of metaheuristics: Comprehensive review, critical analysis, and research directions. International Transactions in Operational Research, 30(6), 3361-3397. https://doi.org/10.1111/itor.13237
  • Shaikh, F., Bhutto, A. A., Memon, M., Shah, S. F., and Shaikh, K. (2024). An attempt to revamp Vogel’s approximate method for optimality of transportation problems. The Sciencetech, 5(3), 1-15. https://journals.qurtuba.edu.pk/ojs/index.php/tst/article/view/85936/395
  • Taha, H. A. (2017). Operations research: An introduction (10th ed.). Pearson.
  • Veeramani, C., Edalatpanah, S. A., and Sharanya, S. (2021). Solving the multiobjective fractional transportation problem through the neutrosophic goal programming approach. Discrete Dynamics in Nature and Society, 2021(1), 7308042. https://doi.org/10.1155/2021/7308042
  • Winston, W. L. (2004). Operations research: Applications and algorithms (4th ed.). Thomson Brooks/Cole.

Ulaştırma Problemi İçin Uygun Başlangıç Çözüm Yaklaşımı: Logaritmik Fermi Yaklaşımı

Year 2025, Volume: 10 Issue: 28, 695 - 711
https://doi.org/10.25204/iktisad.1578630

Abstract

Yöneylem araştırmasında ulaştırma problemleri temel bir konu olarak ele alınır. Büyük ölçekli ve karmaşık ağ yapılarında, başlangıç çözümleri algoritmaların kalitesini ve hızını etkileyerek maliyet etkinliği sağlar. Ulaştırma problemlerinde arz-talep dengesi ve maliyetlerin minimize edilmesi amaçlanır. Uygun başlangıç çözümleri optimal çözüme yakın sonuçlar üreterek zaman tasarrufu sağlar. Dengeli ve dengesiz ulaştırma problemleri için tek bir uygun başlangıç çözüm algoritması kullanmak daha verimli olabilir. Bu çalışmada önerilen yeni yaklaşıma Logaritmik Fermi Yaklaşımı adı verilmiştir. Yaklaşımın performansını analiz etmek için farklı maliyet aralıklarına sahip P1 ve P2 test problemleri üretilmiştir. Analizler, dengeli ve dengesiz problemlerde Logaritmik Fermi Yaklaşımı (LFM) ve Karagül-Şahin Yaklaşım Metodu (KSAM)'ın öne çıktığını, Kuzey-Batı Köşe Yöntemi (NCW)'nin ise düşük performans gösterdiğini ortaya koymuştur. Büyük ölçekli problemlerde Logaritmik Fermi Yaklaşımı (LFM) ve En Küçük Maliyetli Göze Metodu (LCM) algoritmaları, optimal çözüme yakın sonuçlar üretmiştir. Önerilen yöntemin analizlerde rekabetçi bir yapısının olduğu görülmüştür.

References

  • Adhikari, P., and Thapa, G. B. (2014). A note on feasibility and optimality of transportation problem. Journal of the Institute of Engineering, 10(1), 59–68. https://doi.org/10.3126/jie.v10i1.10879
  • Ahmed, M. M., Islam, M. A., Katun, M., Yesmin, S., and Uddin, M. S. (2015). New procedure of finding an initial basic feasible solution of the time minimizing transportation problems. Open Journal of Applied Sciences, 5(10), 634–640. https://doi.org/10.4236/ojapps.2015.510062
  • Amaliah, B., Fatichah, C., and Suryani, E. (2022). A new heuristic method of finding the initial basic feasible solution to solve the transportation problem. Journal of King Saud University – Computer and Information Sciences, 34(5), 2298–2307. https://doi.org/10.1016/j.jksuci.2020.07.007
  • Babu, M. A., Ahmmed, M. M., Salim, Z. R., Babu, M. S., and Hoque, M. A. (2020). A brief overview of the classical transportation problem. Journal of Xi'an University of Architecture & Technology, 12(4), 3425.
  • Baranidharan, B., and Mahapatra, G. S. (2024). A new solution technique for fuzzy transportation problem using novel ranking functions on heptagonal fuzzy numbers: A case study of regional shipment. Journal of Computational and Cognitive Engineering, 00(00), 1–16. https://doi.org/10.47852/bonviewJCCE42023253
  • Ekanayake, E. M. U. S. B., Daundasekara, W. B. and Perera, S. P. C. (2021). Solution of a transportation problem using bipartite graph. Global Journal of Science Frontier Research: F Mathematics and Decision Sciences, 10(1), 59-68.
  • Fermi, E. (1962). Nuclear physics: A course given by Enrico Fermi at the University of Chicago. University of Chicago Press.
  • Garg, H., Rizk-Allah, R.M. (2021). A novel approach for solving rough multi-objective transportation problem: Development and prospects. Computational and Applied Mathematics, 40, 149. https://doi.org/10.1007/s40314-021-01507-5
  • Gass, S. I. (1990). On solving the transportation problem. The Journal of the Operational Research Society, 41(4), 291-297. https://doi.org/10.2307/2583799
  • Hillier, F. S., and Lieberman, G. J. (2020). Introduction to operations research (11th ed.). McGraw-Hill Education. Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics, 20(1-4), 224–230. https://doi.org/10.1002/sapm1941201224
  • Hussein, H. A., Shiker, M. A. K., and Zabiba, M. S. M. (2020). A new revised efficient of VAM to find the initial solution for the transportation problem. Journal of Physics: Conference Series, 1591(1), 012032. https://doi.org/10.1088/1742-6596/1591/1/012032
  • Kalaivani, N., and Visalakshidevi, E. M. (2024). A generalized novel approach to transportation problem using multi-partite graph method. Measurement: Sensors, 33, 101060. https://doi.org/10.1016/j.measurementsensors.2024.101060
  • Karagül, K. and Şahin, Y (2020). A novel approximation method to obtain initial basic feasible solution of transportation problem. Journal of King Saud University - Engineering Sciences, 32(3): 211–218. https://doi.org/10.1016/j.jksues.2019.03.003
  • Mallia, B., Das, M., and Das, C. (2021). Fundamentals of transportation problem. International Journal of Engineering and Advanced Technology, 10(5), 90-103. https://doi.org/10.35940/ijeat.E2654.0610521
  • Mutlu, Ö., Karagül, K., and Şahin, Y. (2022). Avoid maximum cost method for determining the initial basic feasible solution of the transportation problem. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 569-576. https://doi.org/10.5505/pajes.2022.61426
  • Peter-Koop, A. (2009). Teaching and understanding mathematical modelling through Fermi-problems. In B. Clarke, B. Grevholm, & R. Millman (Eds.), Tasks in primary mathematics teacher education (pp. 131-146). Springer. https://doi.org/10.1007/978-0-387-09669-8_10
  • Pishvaee, M. S., Rabbani, M., and Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637-649. https://doi.org/10.1016/j.apm.2010.07.013
  • Rathod, A. J. and Pajgade, P. S. (2024). Transportation problems: Analysis and solutions. International Journal for Research in Applied Science & Engineering Technology, 12(3), 215-221. https://doi.org/10.22214/ijraset.2024.58740
  • ReVelle, C. S., and Swain, R. W. (1970). Central facilities location. Geographical Analysis, 2(1), 30-42. https://doi.org/10.1111/j.1538-4632.1970.tb00142.x
  • Right Attitudes. (2017, August 28). The Fermi rule of guesstimation. https://www.rightattitudes.com/2017/08/28/the-fermi-rule-guesstimation/
  • Sarhani, M., Voß, S., and Jovanovic, R. (2023). Initialization of metaheuristics: Comprehensive review, critical analysis, and research directions. International Transactions in Operational Research, 30(6), 3361-3397. https://doi.org/10.1111/itor.13237
  • Shaikh, F., Bhutto, A. A., Memon, M., Shah, S. F., and Shaikh, K. (2024). An attempt to revamp Vogel’s approximate method for optimality of transportation problems. The Sciencetech, 5(3), 1-15. https://journals.qurtuba.edu.pk/ojs/index.php/tst/article/view/85936/395
  • Taha, H. A. (2017). Operations research: An introduction (10th ed.). Pearson.
  • Veeramani, C., Edalatpanah, S. A., and Sharanya, S. (2021). Solving the multiobjective fractional transportation problem through the neutrosophic goal programming approach. Discrete Dynamics in Nature and Society, 2021(1), 7308042. https://doi.org/10.1155/2021/7308042
  • Winston, W. L. (2004). Operations research: Applications and algorithms (4th ed.). Thomson Brooks/Cole.
There are 25 citations in total.

Details

Primary Language English
Subjects Operation
Journal Section Research Papers
Authors

Kenan Karagül 0000-0001-5397-4464

Early Pub Date October 17, 2025
Publication Date October 20, 2025
Submission Date November 3, 2024
Acceptance Date July 27, 2025
Published in Issue Year 2025 Volume: 10 Issue: 28

Cite

APA Karagül, K. (2025). Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation. İktisadi İdari Ve Siyasal Araştırmalar Dergisi, 10(28), 695-711. https://doi.org/10.25204/iktisad.1578630
AMA Karagül K. Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation. JEBUPOR. October 2025;10(28):695-711. doi:10.25204/iktisad.1578630
Chicago Karagül, Kenan. “Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation”. İktisadi İdari Ve Siyasal Araştırmalar Dergisi 10, no. 28 (October 2025): 695-711. https://doi.org/10.25204/iktisad.1578630.
EndNote Karagül K (October 1, 2025) Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation. İktisadi İdari ve Siyasal Araştırmalar Dergisi 10 28 695–711.
IEEE K. Karagül, “Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation”, JEBUPOR, vol. 10, no. 28, pp. 695–711, 2025, doi: 10.25204/iktisad.1578630.
ISNAD Karagül, Kenan. “Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation”. İktisadi İdari ve Siyasal Araştırmalar Dergisi 10/28 (October2025), 695-711. https://doi.org/10.25204/iktisad.1578630.
JAMA Karagül K. Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation. JEBUPOR. 2025;10:695–711.
MLA Karagül, Kenan. “Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation”. İktisadi İdari Ve Siyasal Araştırmalar Dergisi, vol. 10, no. 28, 2025, pp. 695-11, doi:10.25204/iktisad.1578630.
Vancouver Karagül K. Initial Basic Feasible Solution Approach for Transportation Problem: Logarithmic Fermi Approximation. JEBUPOR. 2025;10(28):695-711.