Research Article
BibTex RIS Cite

INVESTIGATION OF SPECTRAL AND OPTICAL PROPERTIES OF SOME ORGANIC EYEGLASS LENSES

Year 2023, Volume: 11 Issue: 1, 1042 - 1053, 17.03.2023
https://doi.org/10.33715/inonusaglik.1197712

Abstract

In this study, the spectral and optical properties of organic spectacle lenses used as visual aids were analyzed using Jasco V-730 UV/VIS spectrophotometer device in the ultraviolet and visible light wavelength ranges. The results obtained showed that the light transmittance in the wavelength (550nm) range to which the human eye is most sensitive in the lens samples examined was over 80% and that Polycarbonate (A3) lenses had a maximum value of 97.87%. The largest cut-off edge wavelength value was found to be 390nm for the A3 lens. At 550 nm for all lenses, the absorption spectrum was below 0.07. In terms of visual quality, it is expected that the visible light transmittance is high and the ultraviolet light transmission is minimal. Our eyes are exposed to ultraviolet rays almost every day, and these rays cause damage to the ocular tissues. The degree of damage caused by the amount of ultraviolet light absorption increases. Among the organic lenses with ultraviolet protection coating, the protection of the A3 lens was relatively higher. Furthermore, optical band gap energies were found to range from 3.145 – 4.155 eV and 2.994 – 3.936 eV for direct and indirect transitions, respectively. The highest optical band gap values were found to be those of the B1 and C1 organic lenses, respectively.

Thanks

We would like to thank Şırnak University for enabling the use of the Technology and Research Central Laboratory in the spectral analysis of the organic lenses examined in this study with the UV/VIS Spectrophotometer.

References

  • Alonso, J., Gómez-Pedrero, J. A. & Quiroga, J. A. (2019). Modern ophthalmic optics, New York: Cambridge University.
  • Bilici, S., Bilici, A. & Külahcı, F. (2022). Comparison photon exposure and energy absorption buildup factors of CR-39 and trivex optical lenses. Turkish Journal of Science & Technology, 17(1), 23-35. https://doi.org/10.55525/tjst.1003130
  • Cooper, G. & Robson, J. (1969). The yellow color of the lens of man and other primates. The Journal of Physiology, 203(2), 411-417. https://doi.org/10.1113/jphysiol.1969.sp008871
  • Coroneo, M. (2011). Ultraviolet radiation and the anterior eye. Eye & Contact Lens: Science & Clinical Practice, 37(4),214-224. https://doi.org/10.1097/ICL.0b013e318223394e
  • Dhanaraj, A., Das, K. & Keller, J. M. (2020). A study of the optical band gap energy and Urbach energy of fullerene (C60) doped PMMA nanocomposites, AIP Conference Proceedings, 2270, 110040. https://doi.org/10.1063/5.0019420
  • Fishman, G. A. (1986). Ocular phototoxicity: guidelines for selecting sunglasses. Survey of Ophthalmology, 31(2), 119-24. https://doi.org/10.1016/0039-6257(86)90079-2
  • Fellipy, S. R., Anderson, J. G., Claure, N. L., Serge, K. & Gregory, S. P. (2018). Experimental Methods in Chemical Engineering: Ultraviolet Visible Spectroscopy UV-Vis, The Canadian Journal Of Chemical Engineering, 96(12), 2512-2517. https://doi.org/10.1002/cjce.23344
  • Grinter, H. C. & Threlfall, T. L. (1992). UV-VIS Spectroscopy and Its Applications. Germany: Springer Verlag Berlin Heidelberg
  • Hampel, U., Elflein, H. M., Kakkassery, V., Heindl, L. M. & Schuster, A. K. (2022). Alterations of the anterior segment of the eye caused by exposure to UV radiation. Ophthalmologe, 119(3), 234-239. https://doi.org/10.1007/s00347-021-01531-0
  • Hardy, J. L., Frederick, C. M., Kay, P. & Werner, J. S. (2005). Color naming, lens aging, and grue: what the optics of the aging eye can teach us about color language. Psychological science, 16(4), 321-327. https://doi.org/10.1111/j.0956-7976.2005.0153
  • Hassan, M. J. A.-T. i. (2020). Investigating the optical characteristics of SSNTD-LR115 by using different UV radiation dose, Radiation Measurements, 132, 106262. https://doi.org/10.1016/j.radmeas.2020.106262
  • Hockwin, O., Kojima, M., Sakamoto, Y., Wegener, A., Shui, T. B. & Sasaki, K. (1999). UV damage to the eye lens: further results from animal model studies: a review. Journal of Epidemiology, 9(6), 39-47. https://doi.org/10.2188/jea.9.6sup_39
  • Jez, K., Nabialek, M., Gruszka, K., Deka, M., Letkiewicz, S. & Jez, B. (2019). Light Transmittance by Organic Eyeglass Lenses According to their Class. Materiale Plastice, 55(3), 438-441.
  • Jianjun, Z., Jiachen, L., Hao, H., Bo, H., Yue, Z., Changxing, Z. & Sude, M. (2020). Preparation and property study on high 248 nm light transmittance optical fiber coating, Optical Fiber Technology, 57, 102151. https://doi.org/10.1016/j.yofte.2020.102151
  • Kilic, G., Ilika, E., Issa, S. A. M. & Tekind, H. O. (2021). Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2–B2O3–(20-x)Li2O-xGd2O3 glass system, Journal of Alloys and Compounds, 877, 160302. https://doi.org/10.1016/j.jallcom.2021.160302
  • Kim, S. T & Koh, J. W. (2011). Mechanisms of apoptosis on human lens epithelium after ultraviolet light exposure. Korean journal of ophthalmology, 25(3), 196- 201. https://doi.org/10.3341/kjo.2011.25.3.196
  • Kinsey, V. E., (1948). Spectral transmission of the eye to ultraviolet radiations. Archives of Ophthalmology, 39(4), 508-513. https://doi.org/doi:10.1001/archopht.1948.00900020516005
  • Lerman, S. (1987). Chemical and physical properties of the normal and aging lens: Spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses. Optometry and Vision Science, 64(1), 11-22.
  • McCarty, C. A, Lee, S. E., Livingston, P. M., et al. (1996). Ocular exposure to UV-B in sunlight: the Melbourne visual impairment project model. Bulletin of the World Health Organization, 74(4), 353-60.
  • McKenzie R., Bjorn L., Bais A., et al. (2003). Changes in biologically active ultraviolet radiation reaching the earth’s surface. Photochemical & Photobiological Sciences, 2,5-15. https://doi.org/ 10.1039/B211155C
  • Mergen, Ö. B., Arda, E. & Evingür, G. A. (2020). Electrical, optical and mechanical properties of chitosan biocomposites. Journal of Composite Materials, 54(11), 1497–1510. https://doi.org/10.1177/0021998319883916
  • Ministry of Health of Türkiye. (2020). Health statistics yearbook 2022. Republic of Türkiye Ministry of Health General Directorate of Health Information Systems, 2022. 1241 Ankara: Ministry of Health of T. C.
  • Oliva, M. S. & Taylor, H. (2005). Ultraviolet radiation and the eye. International Ophthalmology Clinics, 45(1), 1-17. https://doi.org/10.1097/01.iio.0000148389.44889.3b
  • Pop, A. E., Popescu, V., Danila, M. & Batin, M. N. (2011). Optical properties of cuxs nano-powders, Chalcogenide Letters, 8(6), 363 – 370.
  • Ralph, Chou B., Dain, S. J. & Cheng, B. B. (2015). Effect of ultraviolet exposure on impact resistance of ophthalmic lenses. Optometry and Vision Science, 92(2), 1154–1160. https://doi.org/10.1097/OPX.0000000000000730
  • Roberts, J. E. (2011). Ultraviolet radiation as a risk factor for cataract and macular degeneration. Eye & Contact Lens: Science & Clinical Practice, 37(4), 246-249. https://doi.org/10.1097/ICL.0b013e31821cbcc9
  • Rosen, E. S. (1986). Filtration of non-ionizing radiation by the ocular media. In: Hazardsof Light: Myths and Realitiesof Eye and Skin. England: Pergamon Press, 145-52.
  • Sasaki, H., Sakamoto, Y., Schnider, C., et al. (2011). UV-B exposure to the eye depending on solar altitude. Eye & Contact Lens: Science & Clinical Practice, 37(4),191-5. https://doi.org/10.1097/ICL.0b013e31821fbf29
  • Shahmoradi, Y. & Souri, D. (2019). Growth of silver nanoparticles within the tellurovanadate amorphous matrix: Optical band gap and band tailing properties, beside the Williamson-Hall estimation of crystallite size and lattice strain, Ceramics International, 45(6), 7857-7864. https://doi.org/10.1016/j.ceramint.2019.01.094
  • Tauc, J. (2012). Amorphous and Liquid Semiconductors. New York: Springer Science & Business.
  • Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorbtion of solids. Physics Review, 92(5), 1318-1324. https://doi.org/10.1103/PhysRev.92.1324
  • Weale, R. A. (1988). Age and the transmittance of the human crystalline lens. Journal of Physiology, 395(1), 577-587. https://doi.org/10.1113/jphysiol.1988.sp016935
  • Werner, J. S. (1982). Development of scotopic sensitivity and the absorption spectrum of the human ocular media. Journal of the Optical Society of America, 72(2), 247-258. https://doi.org/10.1364/JOSA.72.000247
  • Werner, J. S. (1991). Children’s sunglasses: caveat emptor. Optometry and Vision Science, 68(4), 318-320.
  • Yam, J. C. & Ak, Kwok. (2014). Ultraviolet light and ocular diseases. International Ophthalmology, 34, 383-400. https://doi.org/10.1007/s10792-013-9791-x
  • Zhong-Zhang, J. (2009). Optical properties and spectroscopy of nanomaterials. Singapur: World Scientific. .

Bazı Organik Gözlük Camlarının Spektral ve Optik Özelliklerinin İncelenmesi

Year 2023, Volume: 11 Issue: 1, 1042 - 1053, 17.03.2023
https://doi.org/10.33715/inonusaglik.1197712

Abstract

Bu araştırmada, görme gereci olarak kullanılan organik gözlük lenslerinin spektral ve optik özellikleri ultraviyole ve görünür ışık dalga boyu aralıklarında Jasco V-730 UV/VIS spektrofotometre cihazı kullanılarak analiz edildi. Elde edilen sonuçlar incelenen lens örneklerinde insan gözünün en duyarlı olduğu dalga boyu (550nm) aralığında ışık geçirgenliğinin %80’nin üzerinde olduğunu ve maksimum değere %97.87 olarak Polikarbonat (A3) lenslerinin sahip olduğunu gösterdi. En büyük kesme kenarı dalga boyu değeri A3 lensi için 390 nm olarak elde edildi. 550 nm’de soğurma spektrumlarının ise 0.07’nin altında olduğu bulundu. Görme kalitesi açısından görünür ışık geçirgenliğinin yüksek olması, ultraviyole ışık geçirgenliğinin minimum olması beklenir. Gözlerimiz neredeyse her gün ultraviyole ışınlarına maruz kalmakta ve bu ışınlar oküler dokularda hasarlara neden olmaktadır. Ultraviyole ışık emilim miktarı ile oluşan hasarların derecesi artmaktadır. İncelenen ultraviyole koruma kaplamalı organik lensler içerisinde A3 lensinin koruyuculuğunun nispeten daha fazla olduğu görüldü. Ayrıca, optik bant aralığı enerjilerinin doğrudan ve dolaylı geçişler için sırasıyla 3.145-4.155 eV ve 2.994-3.936 eV aralıklarında değiştiği bulunmuştur. En yüksek optik bant aralığı değerlerine sırasıyla B1 ve C1 organik lenslerinin sahip olduğu görüldü.

References

  • Alonso, J., Gómez-Pedrero, J. A. & Quiroga, J. A. (2019). Modern ophthalmic optics, New York: Cambridge University.
  • Bilici, S., Bilici, A. & Külahcı, F. (2022). Comparison photon exposure and energy absorption buildup factors of CR-39 and trivex optical lenses. Turkish Journal of Science & Technology, 17(1), 23-35. https://doi.org/10.55525/tjst.1003130
  • Cooper, G. & Robson, J. (1969). The yellow color of the lens of man and other primates. The Journal of Physiology, 203(2), 411-417. https://doi.org/10.1113/jphysiol.1969.sp008871
  • Coroneo, M. (2011). Ultraviolet radiation and the anterior eye. Eye & Contact Lens: Science & Clinical Practice, 37(4),214-224. https://doi.org/10.1097/ICL.0b013e318223394e
  • Dhanaraj, A., Das, K. & Keller, J. M. (2020). A study of the optical band gap energy and Urbach energy of fullerene (C60) doped PMMA nanocomposites, AIP Conference Proceedings, 2270, 110040. https://doi.org/10.1063/5.0019420
  • Fishman, G. A. (1986). Ocular phototoxicity: guidelines for selecting sunglasses. Survey of Ophthalmology, 31(2), 119-24. https://doi.org/10.1016/0039-6257(86)90079-2
  • Fellipy, S. R., Anderson, J. G., Claure, N. L., Serge, K. & Gregory, S. P. (2018). Experimental Methods in Chemical Engineering: Ultraviolet Visible Spectroscopy UV-Vis, The Canadian Journal Of Chemical Engineering, 96(12), 2512-2517. https://doi.org/10.1002/cjce.23344
  • Grinter, H. C. & Threlfall, T. L. (1992). UV-VIS Spectroscopy and Its Applications. Germany: Springer Verlag Berlin Heidelberg
  • Hampel, U., Elflein, H. M., Kakkassery, V., Heindl, L. M. & Schuster, A. K. (2022). Alterations of the anterior segment of the eye caused by exposure to UV radiation. Ophthalmologe, 119(3), 234-239. https://doi.org/10.1007/s00347-021-01531-0
  • Hardy, J. L., Frederick, C. M., Kay, P. & Werner, J. S. (2005). Color naming, lens aging, and grue: what the optics of the aging eye can teach us about color language. Psychological science, 16(4), 321-327. https://doi.org/10.1111/j.0956-7976.2005.0153
  • Hassan, M. J. A.-T. i. (2020). Investigating the optical characteristics of SSNTD-LR115 by using different UV radiation dose, Radiation Measurements, 132, 106262. https://doi.org/10.1016/j.radmeas.2020.106262
  • Hockwin, O., Kojima, M., Sakamoto, Y., Wegener, A., Shui, T. B. & Sasaki, K. (1999). UV damage to the eye lens: further results from animal model studies: a review. Journal of Epidemiology, 9(6), 39-47. https://doi.org/10.2188/jea.9.6sup_39
  • Jez, K., Nabialek, M., Gruszka, K., Deka, M., Letkiewicz, S. & Jez, B. (2019). Light Transmittance by Organic Eyeglass Lenses According to their Class. Materiale Plastice, 55(3), 438-441.
  • Jianjun, Z., Jiachen, L., Hao, H., Bo, H., Yue, Z., Changxing, Z. & Sude, M. (2020). Preparation and property study on high 248 nm light transmittance optical fiber coating, Optical Fiber Technology, 57, 102151. https://doi.org/10.1016/j.yofte.2020.102151
  • Kilic, G., Ilika, E., Issa, S. A. M. & Tekind, H. O. (2021). Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2–B2O3–(20-x)Li2O-xGd2O3 glass system, Journal of Alloys and Compounds, 877, 160302. https://doi.org/10.1016/j.jallcom.2021.160302
  • Kim, S. T & Koh, J. W. (2011). Mechanisms of apoptosis on human lens epithelium after ultraviolet light exposure. Korean journal of ophthalmology, 25(3), 196- 201. https://doi.org/10.3341/kjo.2011.25.3.196
  • Kinsey, V. E., (1948). Spectral transmission of the eye to ultraviolet radiations. Archives of Ophthalmology, 39(4), 508-513. https://doi.org/doi:10.1001/archopht.1948.00900020516005
  • Lerman, S. (1987). Chemical and physical properties of the normal and aging lens: Spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses. Optometry and Vision Science, 64(1), 11-22.
  • McCarty, C. A, Lee, S. E., Livingston, P. M., et al. (1996). Ocular exposure to UV-B in sunlight: the Melbourne visual impairment project model. Bulletin of the World Health Organization, 74(4), 353-60.
  • McKenzie R., Bjorn L., Bais A., et al. (2003). Changes in biologically active ultraviolet radiation reaching the earth’s surface. Photochemical & Photobiological Sciences, 2,5-15. https://doi.org/ 10.1039/B211155C
  • Mergen, Ö. B., Arda, E. & Evingür, G. A. (2020). Electrical, optical and mechanical properties of chitosan biocomposites. Journal of Composite Materials, 54(11), 1497–1510. https://doi.org/10.1177/0021998319883916
  • Ministry of Health of Türkiye. (2020). Health statistics yearbook 2022. Republic of Türkiye Ministry of Health General Directorate of Health Information Systems, 2022. 1241 Ankara: Ministry of Health of T. C.
  • Oliva, M. S. & Taylor, H. (2005). Ultraviolet radiation and the eye. International Ophthalmology Clinics, 45(1), 1-17. https://doi.org/10.1097/01.iio.0000148389.44889.3b
  • Pop, A. E., Popescu, V., Danila, M. & Batin, M. N. (2011). Optical properties of cuxs nano-powders, Chalcogenide Letters, 8(6), 363 – 370.
  • Ralph, Chou B., Dain, S. J. & Cheng, B. B. (2015). Effect of ultraviolet exposure on impact resistance of ophthalmic lenses. Optometry and Vision Science, 92(2), 1154–1160. https://doi.org/10.1097/OPX.0000000000000730
  • Roberts, J. E. (2011). Ultraviolet radiation as a risk factor for cataract and macular degeneration. Eye & Contact Lens: Science & Clinical Practice, 37(4), 246-249. https://doi.org/10.1097/ICL.0b013e31821cbcc9
  • Rosen, E. S. (1986). Filtration of non-ionizing radiation by the ocular media. In: Hazardsof Light: Myths and Realitiesof Eye and Skin. England: Pergamon Press, 145-52.
  • Sasaki, H., Sakamoto, Y., Schnider, C., et al. (2011). UV-B exposure to the eye depending on solar altitude. Eye & Contact Lens: Science & Clinical Practice, 37(4),191-5. https://doi.org/10.1097/ICL.0b013e31821fbf29
  • Shahmoradi, Y. & Souri, D. (2019). Growth of silver nanoparticles within the tellurovanadate amorphous matrix: Optical band gap and band tailing properties, beside the Williamson-Hall estimation of crystallite size and lattice strain, Ceramics International, 45(6), 7857-7864. https://doi.org/10.1016/j.ceramint.2019.01.094
  • Tauc, J. (2012). Amorphous and Liquid Semiconductors. New York: Springer Science & Business.
  • Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorbtion of solids. Physics Review, 92(5), 1318-1324. https://doi.org/10.1103/PhysRev.92.1324
  • Weale, R. A. (1988). Age and the transmittance of the human crystalline lens. Journal of Physiology, 395(1), 577-587. https://doi.org/10.1113/jphysiol.1988.sp016935
  • Werner, J. S. (1982). Development of scotopic sensitivity and the absorption spectrum of the human ocular media. Journal of the Optical Society of America, 72(2), 247-258. https://doi.org/10.1364/JOSA.72.000247
  • Werner, J. S. (1991). Children’s sunglasses: caveat emptor. Optometry and Vision Science, 68(4), 318-320.
  • Yam, J. C. & Ak, Kwok. (2014). Ultraviolet light and ocular diseases. International Ophthalmology, 34, 383-400. https://doi.org/10.1007/s10792-013-9791-x
  • Zhong-Zhang, J. (2009). Optical properties and spectroscopy of nanomaterials. Singapur: World Scientific. .
There are 36 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Araştırma Makalesi
Authors

Gonca Ateş 0000-0002-9416-342X

Sevim Bilici 0000-0002-7694-5081

Publication Date March 17, 2023
Submission Date November 1, 2022
Acceptance Date December 24, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Ateş, G., & Bilici, S. (2023). INVESTIGATION OF SPECTRAL AND OPTICAL PROPERTIES OF SOME ORGANIC EYEGLASS LENSES. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 11(1), 1042-1053. https://doi.org/10.33715/inonusaglik.1197712