Research Article
BibTex RIS Cite

Development of Science-Specific Spatial Thinking Ability Test for Gifted Students

Year 2018, , 391 - 405, 30.12.2018
https://doi.org/10.17679/inuefd.379218

Abstract

The main purpose of this study
is to develop an instrument for measuring spatial thinking ability of gifted
students in science. In the study, validity and reliability of the scores from
the instrument are examined. The research has been carried out in four steps as
preparation, pilot, revision and preparation of the guide. The instrument was
applied to 85 fifth, sixth, seventh and eighth grade gifted students in BİLSEM
located at the east of Turkey. Final form of the instrument involved items
which had item difficulty between 0.39 and 0.84. Item discrimination values of
the items varied between 0.28 and 0.65 while their item-total correlations were
between 0.26 and 0.64. Final form of the instrument involved 18 items and their
KR-20 value was 0.7 while split-half reliability was 0.69. Mean item difficulty
was 0.59 while mean item discrimination was 0.51.

References

  • Al-Balushi, S.M., & Coll, R.K. (2013). Exploring Verbal, Visual and Schematic learners’ static and dynamic mental images of scientific species and processes in relation to their spatial ability. International Journal of Science Education. 35 (3), 460-489.
  • Andersen, L. (2014) Visual-spatial ability: Important in STEM, ignored in gifted education, Roeper Review, 36(2), 114-121.
  • Bretones, P.S., & Neto, J.M. (2011). An analysis of papers on astronomy education in proceedings of IUA meetings from 1988 to 2006. Astronomy Education Review, 10, 1-9.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş. & Demirel, F. (2008). Scientific research methods, Ankara: Pegem Akademi Yayıncılık.
  • Diederich, P. A. (1973). Short-cut statistics for teacher-made tests. Princeton, New Jersey: Educational Testing Service.
  • Delialioğlu, Ö. (1996). Contribution of students’ logical thinking ability, mathematical skills and spatial ability on achievement in secondary school physics, Unpublished Masters thesis, METU. Ankara, Turkey.
  • Delialioglu, Ö., & Askar, P. (1999). Contribution of Students’ Mathematical Skills and Spatial Ability in Secondary School Physics, Journal of Hacettepe University Education Faculty,16-17, 34-39
  • Downing, S. M., & Haladyna, T. M. (2006). Handbook of test development. Mahwah, NJ: Erlbaum.
  • Ebel, R.L., & Frisbie, D.A. (1991). Essentials of educational measurement (5th ed). Englewood Cliffs, NJ: Prentice Hall.
  • Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to mathematics achievement in middle childhood. Journal of experimental child psychology, 163, 107-125.
  • Gronlund, N. E. (1977). Constructing achievement test (2nd ed.). New Jersey: Prentice Hall, Inc.
  • Frankel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8. baskı). New York: McGraw-Hill.
  • Haladyna, T. M. (1997). Writing Test Item to Evaluate Higher Order Thinking. USA: Allyn & Bacon.
  • Hegarty,M. (2014) Spatial Thinking in Undergraduate Science Education, Spatial Cognition & Computation, 14(2), 142-167.
  • Heyer, I. (2012). Establishing the empirical relationship between non-science majoring undergraduate learners’ spatial thinking skills and their conceptual astronomy knowledge. (Yayınlanmamış doktora tezi). University of Wyoming, Wyoming.
  • Hingorjo, R. M., & Jaleel, F. (2012). Analysis of one-best MCQs: The difficulty, discrimination and distractor efficiency, JPMA-Journal of the Pakistan Medical Association, 62(2), 142–147.
  • Kayhan, B. (2005). Investigation of High School Students’ Spatial Ability, Unpublished Master Thesis, Middle East Technical University. Ankara, Turkey.
  • Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 24, 1831–1836.
  • Kozhevnikov, M., Motes, M.A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549-579.
  • Liu, X. (2009). Beyond science literacy: Science and the public. International Journal of Environmental and Science Education, 4(3), 301-311.
  • Lohman, D. F. (1994). Spatially gifted, verbally, inconvenienced. In N. Colangelo, S. G.Assouline, & D. L Ambroson (Eds.), Talent development: Vol. 2. Proceedings from the 1993 Henry B. and Jocelyn Wallace National Research Symposium on Talent Development (pp. 251- 264). Dayton, OH: Ohio Psychology Press.
  • Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49, 344-351. doi:10.1016/j.paid.2010.03.022
  • Mann, R. L. (2006). Effective teaching strategies for gifted/learning-disabled studentwith spatial strengths. Journal of Secondary Gifted Education, XVII, 112-121.doi: 10.4219/jsge-2006-68.
  • Marland, S. P., Jr. (1972). Education of the gifted and talented: Report to the Congress of the United States by the U.S. Commissioner of Education and background papers submitted to the U.S. Office of Education, 2 vols. Washington, DC: U.S. Government Printing Office. (Government Documents Y4.L 11/2:G36)
  • Newcombe, N. S. (2016). Thinking spatially in the science classroom. Current Opinion in Behavioral Sciences, 10, 1-6.
  • Rudner, L. M., & Shafer, W. D. (2002). What teachers need to know about assessment. Washington, DC: National Education Association.
  • Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604– 614.
  • Smutny, J. & Von Fremd, S. E. (2004). Differentiating for the young child. Thousand Oaks: Corwin Press.
  • Stull, A. T., Hegarty, M., Dixon, B., & Stieff, M. (2012). Representational translation with concrete models in organic chemistry. Cognition and Instruction, 30, 404–434.
  • Tracy D. M. (1987). Toys, spatial ability and science and mathematics achievement: are they related? Sex Roles 17 115–138.
  • Trickett, S. B., & Trafton, J. G. (2007). “What if…”: The use of conceptual simulations in scientific reasoning. Cognitive Science, 31, 843-75.doi:10.1080/03640210701530771.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.
  • Webb, N.L. (1997). Determining Alignment of Expectations and Assessments in Mathematics and Science Education. NISE Brief 1(2). Madison, WI: University of Wisconsin-Madison, National Institute for Science Education.
  • Webb, N.L. (1999). Alignment of Science and Mathematics Standards and Assessments in Four States. Madison, WI: University of Wisconsin-Madison, National Institute for Science Education.
  • Webb, R. M., Lubinski, D., & Benbow, C. P. (2007). Spatial ability: A neglected dimension in talent searches for intellectually precocious youth. Journal of Educational Psychology, 99(2), 397–420.
  • Wells, C. S., & Wollack, J. A. (2003). An instructor’s guide to understanding test reliability. Testing & evaluation services. University of Wisconsin. Retrieved from http://testing.wisc.edu/Reliability.pdf.

Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi

Year 2018, , 391 - 405, 30.12.2018
https://doi.org/10.17679/inuefd.379218

Abstract

Bu araştırmanın amacı özel yetenekli öğrencilerin tanılanmasına yönelik yönelik fen bilimlerine özgü uzamsal akıl yürütme becerisi testini geliştirmektir. Bu amaçla araştırmada fen bilimleri alanında özel yetenekli öğrencilere yönelik fen bilimlerine özgü uzamsal akıl yürütme becerisi testi geliştirilerek geçerlik ve güvenilirlik çalışmaları yapılmıştır. Araştırma; hazırlık, pilot uygulama, revizyon ve uygulama kılavuzunun hazırlanması olmak üzere dört basamakta yürütülmüştür. Doğu Anadolu Bölgesi’nde bir ilde yer alan Bilim ve Sanat Merkezi (BİLSEM) öğrencilerinden 5., 6., 7., ve 8. sınıfta öğrenim gören 85 öğrenci çalışmaya dahil edilmiştir. Bu çalışmada geliştirilen testte yer alan maddelerin güçlük katsayıları 0.39 ile 0.84 arasında değişmektedir. Maddelerin ayırt edicilik indeksleri ise 0.28 ile 0.65 arasında değişmektedir. Testin genel güçlük katsayısı 0.59 iken ayırt edicilik katsayısı 0.51 olarak hesaplanmıştır. Testin güvenirlik analizleri sonucunda ise KR-20 güvenirlik katsayısının 0.70 ve split-half güvenirliğinin ise 0.69 olduğu belirlenmiştir. Elde edilen bulgular doğrultusunda, geliştirilen testin geçerli ve güvenilir olduğu sonucuna ulaşılmıştır.

References

  • Al-Balushi, S.M., & Coll, R.K. (2013). Exploring Verbal, Visual and Schematic learners’ static and dynamic mental images of scientific species and processes in relation to their spatial ability. International Journal of Science Education. 35 (3), 460-489.
  • Andersen, L. (2014) Visual-spatial ability: Important in STEM, ignored in gifted education, Roeper Review, 36(2), 114-121.
  • Bretones, P.S., & Neto, J.M. (2011). An analysis of papers on astronomy education in proceedings of IUA meetings from 1988 to 2006. Astronomy Education Review, 10, 1-9.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş. & Demirel, F. (2008). Scientific research methods, Ankara: Pegem Akademi Yayıncılık.
  • Diederich, P. A. (1973). Short-cut statistics for teacher-made tests. Princeton, New Jersey: Educational Testing Service.
  • Delialioğlu, Ö. (1996). Contribution of students’ logical thinking ability, mathematical skills and spatial ability on achievement in secondary school physics, Unpublished Masters thesis, METU. Ankara, Turkey.
  • Delialioglu, Ö., & Askar, P. (1999). Contribution of Students’ Mathematical Skills and Spatial Ability in Secondary School Physics, Journal of Hacettepe University Education Faculty,16-17, 34-39
  • Downing, S. M., & Haladyna, T. M. (2006). Handbook of test development. Mahwah, NJ: Erlbaum.
  • Ebel, R.L., & Frisbie, D.A. (1991). Essentials of educational measurement (5th ed). Englewood Cliffs, NJ: Prentice Hall.
  • Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to mathematics achievement in middle childhood. Journal of experimental child psychology, 163, 107-125.
  • Gronlund, N. E. (1977). Constructing achievement test (2nd ed.). New Jersey: Prentice Hall, Inc.
  • Frankel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8. baskı). New York: McGraw-Hill.
  • Haladyna, T. M. (1997). Writing Test Item to Evaluate Higher Order Thinking. USA: Allyn & Bacon.
  • Hegarty,M. (2014) Spatial Thinking in Undergraduate Science Education, Spatial Cognition & Computation, 14(2), 142-167.
  • Heyer, I. (2012). Establishing the empirical relationship between non-science majoring undergraduate learners’ spatial thinking skills and their conceptual astronomy knowledge. (Yayınlanmamış doktora tezi). University of Wyoming, Wyoming.
  • Hingorjo, R. M., & Jaleel, F. (2012). Analysis of one-best MCQs: The difficulty, discrimination and distractor efficiency, JPMA-Journal of the Pakistan Medical Association, 62(2), 142–147.
  • Kayhan, B. (2005). Investigation of High School Students’ Spatial Ability, Unpublished Master Thesis, Middle East Technical University. Ankara, Turkey.
  • Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 24, 1831–1836.
  • Kozhevnikov, M., Motes, M.A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549-579.
  • Liu, X. (2009). Beyond science literacy: Science and the public. International Journal of Environmental and Science Education, 4(3), 301-311.
  • Lohman, D. F. (1994). Spatially gifted, verbally, inconvenienced. In N. Colangelo, S. G.Assouline, & D. L Ambroson (Eds.), Talent development: Vol. 2. Proceedings from the 1993 Henry B. and Jocelyn Wallace National Research Symposium on Talent Development (pp. 251- 264). Dayton, OH: Ohio Psychology Press.
  • Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49, 344-351. doi:10.1016/j.paid.2010.03.022
  • Mann, R. L. (2006). Effective teaching strategies for gifted/learning-disabled studentwith spatial strengths. Journal of Secondary Gifted Education, XVII, 112-121.doi: 10.4219/jsge-2006-68.
  • Marland, S. P., Jr. (1972). Education of the gifted and talented: Report to the Congress of the United States by the U.S. Commissioner of Education and background papers submitted to the U.S. Office of Education, 2 vols. Washington, DC: U.S. Government Printing Office. (Government Documents Y4.L 11/2:G36)
  • Newcombe, N. S. (2016). Thinking spatially in the science classroom. Current Opinion in Behavioral Sciences, 10, 1-6.
  • Rudner, L. M., & Shafer, W. D. (2002). What teachers need to know about assessment. Washington, DC: National Education Association.
  • Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604– 614.
  • Smutny, J. & Von Fremd, S. E. (2004). Differentiating for the young child. Thousand Oaks: Corwin Press.
  • Stull, A. T., Hegarty, M., Dixon, B., & Stieff, M. (2012). Representational translation with concrete models in organic chemistry. Cognition and Instruction, 30, 404–434.
  • Tracy D. M. (1987). Toys, spatial ability and science and mathematics achievement: are they related? Sex Roles 17 115–138.
  • Trickett, S. B., & Trafton, J. G. (2007). “What if…”: The use of conceptual simulations in scientific reasoning. Cognitive Science, 31, 843-75.doi:10.1080/03640210701530771.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.
  • Webb, N.L. (1997). Determining Alignment of Expectations and Assessments in Mathematics and Science Education. NISE Brief 1(2). Madison, WI: University of Wisconsin-Madison, National Institute for Science Education.
  • Webb, N.L. (1999). Alignment of Science and Mathematics Standards and Assessments in Four States. Madison, WI: University of Wisconsin-Madison, National Institute for Science Education.
  • Webb, R. M., Lubinski, D., & Benbow, C. P. (2007). Spatial ability: A neglected dimension in talent searches for intellectually precocious youth. Journal of Educational Psychology, 99(2), 397–420.
  • Wells, C. S., & Wollack, J. A. (2003). An instructor’s guide to understanding test reliability. Testing & evaluation services. University of Wisconsin. Retrieved from http://testing.wisc.edu/Reliability.pdf.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Esra Açıkgül Fırat

Mustafa Serdar Köksal

Publication Date December 30, 2018
Published in Issue Year 2018

Cite

APA Açıkgül Fırat, E., & Köksal, M. S. (2018). Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 19(3), 391-405. https://doi.org/10.17679/inuefd.379218
AMA Açıkgül Fırat E, Köksal MS. Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi. INUEFD. December 2018;19(3):391-405. doi:10.17679/inuefd.379218
Chicago Açıkgül Fırat, Esra, and Mustafa Serdar Köksal. “Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi”. İnönü Üniversitesi Eğitim Fakültesi Dergisi 19, no. 3 (December 2018): 391-405. https://doi.org/10.17679/inuefd.379218.
EndNote Açıkgül Fırat E, Köksal MS (December 1, 2018) Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi. İnönü Üniversitesi Eğitim Fakültesi Dergisi 19 3 391–405.
IEEE E. Açıkgül Fırat and M. S. Köksal, “Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi”, INUEFD, vol. 19, no. 3, pp. 391–405, 2018, doi: 10.17679/inuefd.379218.
ISNAD Açıkgül Fırat, Esra - Köksal, Mustafa Serdar. “Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi”. İnönü Üniversitesi Eğitim Fakültesi Dergisi 19/3 (December 2018), 391-405. https://doi.org/10.17679/inuefd.379218.
JAMA Açıkgül Fırat E, Köksal MS. Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi. INUEFD. 2018;19:391–405.
MLA Açıkgül Fırat, Esra and Mustafa Serdar Köksal. “Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi”. İnönü Üniversitesi Eğitim Fakültesi Dergisi, vol. 19, no. 3, 2018, pp. 391-05, doi:10.17679/inuefd.379218.
Vancouver Açıkgül Fırat E, Köksal MS. Özel Yetenekli Öğrencilere Yönelik Fen Bilimlerine Özgü Uzamsal Akıl Yürütme Becerisi Testinin Geliştirilmesi. INUEFD. 2018;19(3):391-405.

Cited By


Developing The Mathematical Problem Types Test
International Journal of Educational Studies in Mathematics
Halil ÇOBAN
https://doi.org/10.17278/ijesim.715104

2002 INUEFD  Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.