Research Article
BibTex RIS Cite

Multidimensional Analysis of Mathematics Field Skills in Horizontal and Vertical Context Based on TYMM

Year 2025, Volume: 26 Issue: 2, 1061 - 1109, 02.09.2025
https://doi.org/10.17679/inuefd.1637696

Abstract

This study aims to conduct a multidimensional analysis of mathematical domain skills based on TYMM in terms of interdisciplinary relationships, learning outcomes, themes, and educational levels in both horizontal and vertical contexts. In line with this objective, the study examines the distribution of mathematical domain skills across educational levels and grade levels concerning their relationships, learning outcomes, and thematic structures. A case study design, one of the qualitative research methods, was adopted. As the data source, the study utilized the 2024 Mathematics Curriculum for Primary, Middle, and High School, published by the Ministry of National Education. Descriptive analysis was employed to analyze the collected data. The findings reveal significant variations in the distribution of mathematical domain skills across educational levels. At the primary school level, the Mathematical Tools and Technology Usage skill exhibits a more consistent development compared to other skills. However, Mathematical Reasoning, Problem-Solving, and Data Analysis skills are addressed in a more limited scope. At the middle school level, the Mathematical Problem-Solving skill shows a notable increase in 7th grade but fails to maintain this momentum in 8th grade. In high school, the Mathematical Tools and Technology Usage skill becomes prominent again, while Mathematical Reasoning and Data Analysis remain relatively underemphasized. Regarding learning outcomes, Mathematical Representation and Mathematical Tools and Technology Usage are among the most frequently addressed skills. However, while the Problem-Solving skill starts strong in primary school, it lacks continuity at the middle and high school levels.

References

  • Alifa, K. R., Araiku, J., Yusup, M., & Pratiwi, W. D. (2022). Students mathematical representation ability in solving numeracy problem through problem based learning. Journal of Medives: Journal of Mathematics Education IKIP Veteran Semarang, 6(1), 121-134. https://doi.org/10.31331/medivesveteran.v6i1.1936
  • Apriatni, S., Nindiasari, H., & Khaeroni, K. (2022). Student's mathematic reflective thinking ability through the ımprove learning model. Prima Jurnal Pendidikan Matematika, 6(2), 159-176. https://doi.org/10.31000/prima.v6i2.5456
  • Awaludin, A. A. R., Selvia, N., & Andrari, F. R. (2021). Mathematical representation of students in solving mathematic problems reviewed from extrovert-introvert personality. International Journal of Elementary Education, 5(2), 323-329. https://doi.org/10.23887/ijee.v5i2.33206
  • Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi. Harf Eğitim. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
  • Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027
  • Cai, J. (2003). What research tells us about teaching mathematics through problem solving. In F. Lester (Ed.), Research and ıssues in teaching mathematics through problem solving. National Council of Teachers of Mathematics
  • Cai, J., & Jiang, C. (2017). An analysis of problem-posing tasks in Chinese and US elementary mathematics textbooks. International Journal of Science and Mathematics Education, 15(8), 1521-1540.
  • Drewniak, D., Krones, T., & Wild, V. (2017). Do attitudes and behavior of health care professionals exacerbate health care disparities among immigrant and ethnic minority groups? an integrative literature review. International Journal of Nursing Studies, 70, 89-98. https://doi.org/10.1016/j.ijnurstu.2017.02.015
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1-8. https://doi.org/10.1186/s40594-016-0036-1
  • Guerra-López, I., & Blake, A.M. (2011). Leadership decision making and the use of data. Performance Improvement Quarterly, 24(2), 89-104. https://doi.org/10.1002/piq.20113
  • Gurat, M. G. (2018). Mathematical problem-solving heuristics among student teachers. Journal on Efficiency and Responsibility in Education and Science, 11(3), 53-64. https://doi.org/10.7160/eriesj.2018.110302
  • Hoyles, C., & Lagrange, J. B. (2010). Mathematics education and technology-rethinking the terrain: The 17th ICMI study. Springer.
  • Jensen, E. (2023). Enhancing mathematical reasoning in primary school with the strategic board game othello. European Conference on Games Based Learning, 17(1), 289-295. https://doi.org/10.34190/ecgbl.17.1.1524
  • Jensen, E., & Skott, C. (2022). How can the use of digital games in mathematics education promote students’ mathematical reasoning? A qualitative systematic review. Digital Experiences in Mathematics Education, 8(2), 183-212. https://doi.org/10.1007/s40751-022-00100-7
  • Karakuş Aktan, E. N, Aslan, C. & Yalçın, A. (2021). Okuma stratejisi eğitiminin matematik dersi problem çözme becerisine etkisi. Ana Dili Eğitimi Dergisi, 9(2), 381-394. https://doi.org/10.16916/aded.851966
  • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. National Academy.
  • Kutluca, T., Tum, A., & Mut, A. İ. (2020). Evaluation of enriched learning environment in the context of mathematical reasoning from the perspective of the students and their teacher. Discourse and Communication for Sustainable Education, 11(2), 85-105. https://doi.org/10.2478/dcse-2020-0020
  • Kuzu, O., Göçer, V. ve Akçay, A. O. (2024). Türkiye yüzyılı maarif modeli kapsamında ilkokul matematik dersi öğretim programı’nın incelenmesi. RumeliDE Dil ve Edebiyat Araştırmaları Dergisi, 41, 640-667. https://10.5281/zenodo.13337757
  • Kuzu, O., Toptaş, V. & Göçer, V. (2024). Türkiye Yüzyılı Maarif Modeli perspektifinde 2018 ve 2024 ilkokul matematik dersi öğretim programlarının karşılaştırılması. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 26(1), 114-140.
  • Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283-317. https://doi.org/10.1023/A:1013309728825
  • Lāma, G., & Andersone, R. (2021). Transversal skills in mathematics curriculums of latvian secondary education: 1940-2020. In The Proceedings of the International Scientific Conference Rural Environment. Education. Personality (REEP), 14, 120-129. https://doi.org/10.22616/reep.2021.14.013
  • Lesh, R., & Zawojewski, J. S. (2012). Problem solving and modeling. In Handbook of research on mathematics teaching and learning (pp. 725-753). NCTM.
  • Li, H., & Zulnaidi, H. (2019). Effects of the geometer’s sketchpad on algebraic reasoning among junior private high school students. Journal of Research on Mathematics Instruction, 1(1), 1-10. https://doi.org/10.33578/jrmi.v1i1.10
  • Lithner, J. (2008). A research framework for creative and ımitative reasoning. Educational Studies in Mathematics, 67(3), 255-276.
  • Luo, Z., Lo, W., Bian, R., Wong, S., & Li, L. (2019). Advanced quantitative estimation methods for spasticity: a literature review. Journal of International Medical Research, 48(3), 1-13. https://doi.org/10.1177/0300060519888425
  • Mahmud, M. S., & Drus, N. F. M. (2023). The use of oral questioning to improve students’ reasoning skills in primary school mathematics learning. Frontiers in Education, 8, 1-12. https://doi.org/10.3389/feduc.2023.1126816
  • Marsitin, R., & Sesanti, N. (2023). Developing an electronic module based on mathematical literacy to enhance students’ mathematical reasoning. Jurnal Elemen, 9(1), 197-210. https://doi.org/10.29408/jel.v9i1.6915
  • Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. Jossey-Bass.
  • Miles, M. B., & Huberman, A. M. (2016). Nitel veri analizi. (S. A. Altun, & A. Ersoy, Çev.) Pegem Akademi.
  • Millî Eğitim Bakanlığı (2024). Türkiye yüzyılı maarif modeli ortaöğretim matematik dersi öğretim programı (Hazırlık, 9, 10, 11 ve 12. Sınıflar). https://tymm.meb.gov.tr/upload/program/2024programmath9101112Onayli.pdf, 01.01.2025
  • Millî Eğitim Bakanlığı. (2024). Türkiye yüzyılı maarif modeli öğretim programları ortak metni. https://tymm.meb.gov.tr/upload/brosur/2024programortakmetinOnayli.pdf, 20.09.2024
  • Muktamar, A., & Nurnaningsih, A. (2024). The ıntegration of HR analytics and decision making. Management Studies and Business Journal, 1(1), 182-189. https://doi.org/10.62207/aj4nj061
  • NCTM. (2000). Principles and standards for school mathematics. NCTM.
  • NCTM. (2014). Principles to actions: Ensuring mathematical success for all. Author.
  • Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education, 21(5), 509-523. https://doi.org/10.1016/j.tate.2005.03.006
  • Noer, S. H., & Gunowibowo, P. (2018). Efektivitas problem based learning ditinjau dari kemampuan berpikir kritis dan representasi matematis. Jurnal Penelitian Dan Pembelajaran Matematika, 11(2), 17-32. https://doi.org/10.30870/jppm.v11i2.3751
  • Novotná, J., Eisenmann, P., Přibyl, J., Ondrušová, J., & Břehovský, J. (2014). Problem solving in school mathematics based on heuristic strategies. Journal on Efficiency and Responsibility in Education and Science, 7(1), 1-6. https://doi.org/10.7160/eriesj.2014.070101
  • OECD. (2018). The future of education and skills: Education 2030. OECD Publishing. https://www.oecd.org/education/2030/
  • Özeren, E. & Göçer, V. (2024). Öğretmenlerin matematik öğretimine karşı tutumlarının öğretim programı okuryazarlıkları ve teknolojik pedagojik alan bilgileriyle ilişkisinin incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi, 21(3), 1141-1163. https://doi.org/10.33437/ksusbd.1505446
  • Pagiling, S. L., Natsir, I., Palobo, M., & Mayasari, D. (2022). Prospective mathematics teachers’ beliefs and representations. Formatif: Jurnal Ilmiah Pendidikan MIPA, 12(1), 35-46. https://doi.org/10.30998/formatif.v12i1.10067
  • Pierce, R., & Stacey, K. (2010). Mapping pedagogical opportunities provided by mathematics analysis software. International Journal of Computers for Mathematical Learning, 15(1), 1-20.
  • Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.
  • Popham, M., Adams, S., & Hodge, J. (2019). Self-regulated strategy development to teach mathematics problem solving. Intervention in School and Clinic, 55(3), 154-161. https://doi.org/10.1177/1053451219842197
  • Pradana, L. N. (2024). Problem-solving strategy: mathematical problem-solving model within the polya' framework. 6 th International Conference on Education and Social Science Research, KnE Social Sciences, pages 728-740. https://doi.org/10.18502/kss.v9i6.15327
  • Prayitno, S., Lu’luilmaknunn, U., Sridana, N., & Subarinah, S. (2021, May). Analyzing the ability of mathematics students as prospective mathematics teachers on multiple mathematical representation. In 2nd Annual Conference on Education and Social Science (ACCESS 2020) (pp. 309-313). Atlantis. https://doi.org/10.2991/assehr.k.210525.096
  • Prior, L. (2003). Using documents in social research. Sage.
  • Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51-59. https://doi.org/10.1089/big.2013.1508
  • Rofiki, I., & Santia, I. (2018). Describing the phenomena of students’ representation in solving ill-posed and well-posed problems. International Journal on Teaching and Learning Mathematics, 1(1), 39-50. https://doi.org/10.18860/ijtlm.v1i1.5713
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Academic.
  • Schoenfeld, A. H. (2013). Reflections on problem solving theory and practice. The Mathematics Enthusiast, 10(1-2), 9-34.
  • Setiana, D. S., Wijayanto, Z., & Arcana, I. N. (2019, April). Development of Mathematical Test Instrument to Measure Critical Thinking Ability. In Proceedings of the 1st International Conference on Science and Technology for an Internet of Things, 20 October 2018, Yogyakarta, Indonesia. https://doi.org/10.4108/eai.19-10-2018.2282614
  • Shorfuzzaman, M. (2017). Leveraging cloud based big data analytics in knowledge management for enhanced decision making in organizations. International Journal of Distributed and Parallel Systems, 8(1), 1-13. https://doi.org/10.5121/ijdps.2017.8101
  • Supriadi, N., Putra, F. G., Cahyaningtyas, E., & Imama, K. (2024). Optimizing Mathematical Representation Skills: Unveiling the Synergy between Quantum Teaching and Self-Esteem. Journal of Philology and Educational Sciences, 3(1), 34-42. https://doi.org/10.53898/jpes2024313
  • Syukri, A., Marzal, J., & Muhaimin, M. (2020). Constructivism-based mathematics learning multimedia to improve students’ mathematical communication skills. Indonesian Journal of Science and Mathematics Education, 3(2), 117-132. https://doi.org/10.24042/ijsme.v3i2.6201
  • Tambunan, H. (2019). The effectiveness of the problem solving strategy and the scientific approach to students’ mathematical capabilities in high order thinking skills. International Electronic Journal of Mathematics Education, 14(2), 293-302. https://doi.org/10.29333/iejme/5715
  • Tang, Y., & Han, L. (2022, December). A review of domestic and overseas research on data literacy education. In 2022 3rd International Conference on Modern Education and Information Management (ICMEIM 2022) (pp. 774-780). Atlantis. https://doi.org/10.2991/978-94-6463-044-2_97
  • Truong, Q. D., & Manh, N. T. (2021). The Importance of Decision Making in Public Organizations. Journal of Asian Multicultural Research for Social Sciences Study, 2(1), 16-20. https://doi.org/10.47616/jamrsss.v2i1.87
  • Voigt, M. (2015). Collaborative problem solving in mathematics: A review of empirical research. Educational Studies in Mathematics, 90(2), 143-162.
  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477.
  • Yıldırım, A. & Şimşek, H. (2021). Sosyal bilimlerde nitel araştırma yöntemleri (12. Baskı). Seçkin.

Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay ve Dikey Bağlamda Çok Yönlü Analizi

Year 2025, Volume: 26 Issue: 2, 1061 - 1109, 02.09.2025
https://doi.org/10.17679/inuefd.1637696

Abstract

Yapılan araştırmada matematik alan becerilerinin TYMM temelinde yatay ve dikey bağlamda becerilerarası ilişkiler, öğrenme çıktıları, temalar ve eğitim kademelerine göre çok yönlü analiz etmek amaçlanmıştır. Bu amaç doğrultusunda beceriler arası ilişkiler, öğrenme çıktıları ve temalar bağlamında matematik alan becerilerinin eğitim kademeleri ve sınıflara göre dağılımının nasıl olduğu belirlenmiştir. Nitel araştırma desenlerinden durum çalışması deseninin tercih edildiği araştırmada veri kaynağı olarak 2024 yılında MEB tarafından yayımlanan İlkokul, Ortaokul ve Ortaöğretim Matematik Dersi Öğretim Programları kullanılmıştır. Verilerin analizi sürecinde betimsel analiz tekniğinden yararlanılmıştır. Araştırma, eğitim kademelerine göre matematik alan becerilerinin dağılımında belirgin farklılıklar olduğunu ortaya koymaktadır. İlkokul düzeyinde, Matematiksel Araç ve Teknoloji ile Çalışma becerisinin diğer becerilere kıyasla daha tutarlı bir gelişim gösterdiği, ancak Matematiksel Muhakeme, Problem Çözme ve Veri ile Çalışma becerilerinin daha sınırlı ele alındığı görülmektedir. Ortaokulda, Matematiksel Problem Çözme becerisinin özellikle 7. sınıfta yükselişe geçtiği ancak 8. sınıfta bu artışın sürdürülemediği belirlenmiştir. Lise düzeyinde ise Matematiksel Araç ve Teknoloji ile Çalışma becerisi tekrar ön plana çıkarken, Matematiksel Muhakeme ve Veri ile Çalışma becerileri sınırlı kalmıştır. Matematiksel Temsil ve Matematiksel Araç ve Teknoloji ile Çalışma becerileri, öğrenme çıktıları bağlamında en çok ele alınan beceriler arasında yer almaktadır. Ancak, Problem Çözme becerisi ilkokulda güçlü başlasa da ortaokul ve lise düzeyinde süreklilik gösterememiştir.

Ethical Statement

Bu araştırma için etik kurul onayı gerekmemektedir.

References

  • Alifa, K. R., Araiku, J., Yusup, M., & Pratiwi, W. D. (2022). Students mathematical representation ability in solving numeracy problem through problem based learning. Journal of Medives: Journal of Mathematics Education IKIP Veteran Semarang, 6(1), 121-134. https://doi.org/10.31331/medivesveteran.v6i1.1936
  • Apriatni, S., Nindiasari, H., & Khaeroni, K. (2022). Student's mathematic reflective thinking ability through the ımprove learning model. Prima Jurnal Pendidikan Matematika, 6(2), 159-176. https://doi.org/10.31000/prima.v6i2.5456
  • Awaludin, A. A. R., Selvia, N., & Andrari, F. R. (2021). Mathematical representation of students in solving mathematic problems reviewed from extrovert-introvert personality. International Journal of Elementary Education, 5(2), 323-329. https://doi.org/10.23887/ijee.v5i2.33206
  • Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi. Harf Eğitim. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
  • Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027
  • Cai, J. (2003). What research tells us about teaching mathematics through problem solving. In F. Lester (Ed.), Research and ıssues in teaching mathematics through problem solving. National Council of Teachers of Mathematics
  • Cai, J., & Jiang, C. (2017). An analysis of problem-posing tasks in Chinese and US elementary mathematics textbooks. International Journal of Science and Mathematics Education, 15(8), 1521-1540.
  • Drewniak, D., Krones, T., & Wild, V. (2017). Do attitudes and behavior of health care professionals exacerbate health care disparities among immigrant and ethnic minority groups? an integrative literature review. International Journal of Nursing Studies, 70, 89-98. https://doi.org/10.1016/j.ijnurstu.2017.02.015
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1-8. https://doi.org/10.1186/s40594-016-0036-1
  • Guerra-López, I., & Blake, A.M. (2011). Leadership decision making and the use of data. Performance Improvement Quarterly, 24(2), 89-104. https://doi.org/10.1002/piq.20113
  • Gurat, M. G. (2018). Mathematical problem-solving heuristics among student teachers. Journal on Efficiency and Responsibility in Education and Science, 11(3), 53-64. https://doi.org/10.7160/eriesj.2018.110302
  • Hoyles, C., & Lagrange, J. B. (2010). Mathematics education and technology-rethinking the terrain: The 17th ICMI study. Springer.
  • Jensen, E. (2023). Enhancing mathematical reasoning in primary school with the strategic board game othello. European Conference on Games Based Learning, 17(1), 289-295. https://doi.org/10.34190/ecgbl.17.1.1524
  • Jensen, E., & Skott, C. (2022). How can the use of digital games in mathematics education promote students’ mathematical reasoning? A qualitative systematic review. Digital Experiences in Mathematics Education, 8(2), 183-212. https://doi.org/10.1007/s40751-022-00100-7
  • Karakuş Aktan, E. N, Aslan, C. & Yalçın, A. (2021). Okuma stratejisi eğitiminin matematik dersi problem çözme becerisine etkisi. Ana Dili Eğitimi Dergisi, 9(2), 381-394. https://doi.org/10.16916/aded.851966
  • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. National Academy.
  • Kutluca, T., Tum, A., & Mut, A. İ. (2020). Evaluation of enriched learning environment in the context of mathematical reasoning from the perspective of the students and their teacher. Discourse and Communication for Sustainable Education, 11(2), 85-105. https://doi.org/10.2478/dcse-2020-0020
  • Kuzu, O., Göçer, V. ve Akçay, A. O. (2024). Türkiye yüzyılı maarif modeli kapsamında ilkokul matematik dersi öğretim programı’nın incelenmesi. RumeliDE Dil ve Edebiyat Araştırmaları Dergisi, 41, 640-667. https://10.5281/zenodo.13337757
  • Kuzu, O., Toptaş, V. & Göçer, V. (2024). Türkiye Yüzyılı Maarif Modeli perspektifinde 2018 ve 2024 ilkokul matematik dersi öğretim programlarının karşılaştırılması. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 26(1), 114-140.
  • Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283-317. https://doi.org/10.1023/A:1013309728825
  • Lāma, G., & Andersone, R. (2021). Transversal skills in mathematics curriculums of latvian secondary education: 1940-2020. In The Proceedings of the International Scientific Conference Rural Environment. Education. Personality (REEP), 14, 120-129. https://doi.org/10.22616/reep.2021.14.013
  • Lesh, R., & Zawojewski, J. S. (2012). Problem solving and modeling. In Handbook of research on mathematics teaching and learning (pp. 725-753). NCTM.
  • Li, H., & Zulnaidi, H. (2019). Effects of the geometer’s sketchpad on algebraic reasoning among junior private high school students. Journal of Research on Mathematics Instruction, 1(1), 1-10. https://doi.org/10.33578/jrmi.v1i1.10
  • Lithner, J. (2008). A research framework for creative and ımitative reasoning. Educational Studies in Mathematics, 67(3), 255-276.
  • Luo, Z., Lo, W., Bian, R., Wong, S., & Li, L. (2019). Advanced quantitative estimation methods for spasticity: a literature review. Journal of International Medical Research, 48(3), 1-13. https://doi.org/10.1177/0300060519888425
  • Mahmud, M. S., & Drus, N. F. M. (2023). The use of oral questioning to improve students’ reasoning skills in primary school mathematics learning. Frontiers in Education, 8, 1-12. https://doi.org/10.3389/feduc.2023.1126816
  • Marsitin, R., & Sesanti, N. (2023). Developing an electronic module based on mathematical literacy to enhance students’ mathematical reasoning. Jurnal Elemen, 9(1), 197-210. https://doi.org/10.29408/jel.v9i1.6915
  • Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. Jossey-Bass.
  • Miles, M. B., & Huberman, A. M. (2016). Nitel veri analizi. (S. A. Altun, & A. Ersoy, Çev.) Pegem Akademi.
  • Millî Eğitim Bakanlığı (2024). Türkiye yüzyılı maarif modeli ortaöğretim matematik dersi öğretim programı (Hazırlık, 9, 10, 11 ve 12. Sınıflar). https://tymm.meb.gov.tr/upload/program/2024programmath9101112Onayli.pdf, 01.01.2025
  • Millî Eğitim Bakanlığı. (2024). Türkiye yüzyılı maarif modeli öğretim programları ortak metni. https://tymm.meb.gov.tr/upload/brosur/2024programortakmetinOnayli.pdf, 20.09.2024
  • Muktamar, A., & Nurnaningsih, A. (2024). The ıntegration of HR analytics and decision making. Management Studies and Business Journal, 1(1), 182-189. https://doi.org/10.62207/aj4nj061
  • NCTM. (2000). Principles and standards for school mathematics. NCTM.
  • NCTM. (2014). Principles to actions: Ensuring mathematical success for all. Author.
  • Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education, 21(5), 509-523. https://doi.org/10.1016/j.tate.2005.03.006
  • Noer, S. H., & Gunowibowo, P. (2018). Efektivitas problem based learning ditinjau dari kemampuan berpikir kritis dan representasi matematis. Jurnal Penelitian Dan Pembelajaran Matematika, 11(2), 17-32. https://doi.org/10.30870/jppm.v11i2.3751
  • Novotná, J., Eisenmann, P., Přibyl, J., Ondrušová, J., & Břehovský, J. (2014). Problem solving in school mathematics based on heuristic strategies. Journal on Efficiency and Responsibility in Education and Science, 7(1), 1-6. https://doi.org/10.7160/eriesj.2014.070101
  • OECD. (2018). The future of education and skills: Education 2030. OECD Publishing. https://www.oecd.org/education/2030/
  • Özeren, E. & Göçer, V. (2024). Öğretmenlerin matematik öğretimine karşı tutumlarının öğretim programı okuryazarlıkları ve teknolojik pedagojik alan bilgileriyle ilişkisinin incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi, 21(3), 1141-1163. https://doi.org/10.33437/ksusbd.1505446
  • Pagiling, S. L., Natsir, I., Palobo, M., & Mayasari, D. (2022). Prospective mathematics teachers’ beliefs and representations. Formatif: Jurnal Ilmiah Pendidikan MIPA, 12(1), 35-46. https://doi.org/10.30998/formatif.v12i1.10067
  • Pierce, R., & Stacey, K. (2010). Mapping pedagogical opportunities provided by mathematics analysis software. International Journal of Computers for Mathematical Learning, 15(1), 1-20.
  • Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.
  • Popham, M., Adams, S., & Hodge, J. (2019). Self-regulated strategy development to teach mathematics problem solving. Intervention in School and Clinic, 55(3), 154-161. https://doi.org/10.1177/1053451219842197
  • Pradana, L. N. (2024). Problem-solving strategy: mathematical problem-solving model within the polya' framework. 6 th International Conference on Education and Social Science Research, KnE Social Sciences, pages 728-740. https://doi.org/10.18502/kss.v9i6.15327
  • Prayitno, S., Lu’luilmaknunn, U., Sridana, N., & Subarinah, S. (2021, May). Analyzing the ability of mathematics students as prospective mathematics teachers on multiple mathematical representation. In 2nd Annual Conference on Education and Social Science (ACCESS 2020) (pp. 309-313). Atlantis. https://doi.org/10.2991/assehr.k.210525.096
  • Prior, L. (2003). Using documents in social research. Sage.
  • Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51-59. https://doi.org/10.1089/big.2013.1508
  • Rofiki, I., & Santia, I. (2018). Describing the phenomena of students’ representation in solving ill-posed and well-posed problems. International Journal on Teaching and Learning Mathematics, 1(1), 39-50. https://doi.org/10.18860/ijtlm.v1i1.5713
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Academic.
  • Schoenfeld, A. H. (2013). Reflections on problem solving theory and practice. The Mathematics Enthusiast, 10(1-2), 9-34.
  • Setiana, D. S., Wijayanto, Z., & Arcana, I. N. (2019, April). Development of Mathematical Test Instrument to Measure Critical Thinking Ability. In Proceedings of the 1st International Conference on Science and Technology for an Internet of Things, 20 October 2018, Yogyakarta, Indonesia. https://doi.org/10.4108/eai.19-10-2018.2282614
  • Shorfuzzaman, M. (2017). Leveraging cloud based big data analytics in knowledge management for enhanced decision making in organizations. International Journal of Distributed and Parallel Systems, 8(1), 1-13. https://doi.org/10.5121/ijdps.2017.8101
  • Supriadi, N., Putra, F. G., Cahyaningtyas, E., & Imama, K. (2024). Optimizing Mathematical Representation Skills: Unveiling the Synergy between Quantum Teaching and Self-Esteem. Journal of Philology and Educational Sciences, 3(1), 34-42. https://doi.org/10.53898/jpes2024313
  • Syukri, A., Marzal, J., & Muhaimin, M. (2020). Constructivism-based mathematics learning multimedia to improve students’ mathematical communication skills. Indonesian Journal of Science and Mathematics Education, 3(2), 117-132. https://doi.org/10.24042/ijsme.v3i2.6201
  • Tambunan, H. (2019). The effectiveness of the problem solving strategy and the scientific approach to students’ mathematical capabilities in high order thinking skills. International Electronic Journal of Mathematics Education, 14(2), 293-302. https://doi.org/10.29333/iejme/5715
  • Tang, Y., & Han, L. (2022, December). A review of domestic and overseas research on data literacy education. In 2022 3rd International Conference on Modern Education and Information Management (ICMEIM 2022) (pp. 774-780). Atlantis. https://doi.org/10.2991/978-94-6463-044-2_97
  • Truong, Q. D., & Manh, N. T. (2021). The Importance of Decision Making in Public Organizations. Journal of Asian Multicultural Research for Social Sciences Study, 2(1), 16-20. https://doi.org/10.47616/jamrsss.v2i1.87
  • Voigt, M. (2015). Collaborative problem solving in mathematics: A review of empirical research. Educational Studies in Mathematics, 90(2), 143-162.
  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477.
  • Yıldırım, A. & Şimşek, H. (2021). Sosyal bilimlerde nitel araştırma yöntemleri (12. Baskı). Seçkin.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Curriculum and Instration (Other), Mathematics Education
Journal Section Articles
Authors

Veysel Göçer 0000-0002-9242-6863

Okan Kuzu 0000-0003-2466-4701

Publication Date September 2, 2025
Submission Date February 11, 2025
Acceptance Date August 5, 2025
Published in Issue Year 2025 Volume: 26 Issue: 2

Cite

APA Göçer, V., & Kuzu, O. (2025). Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay ve Dikey Bağlamda Çok Yönlü Analizi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 26(2), 1061-1109. https://doi.org/10.17679/inuefd.1637696
AMA Göçer V, Kuzu O. Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay ve Dikey Bağlamda Çok Yönlü Analizi. INUJFE. September 2025;26(2):1061-1109. doi:10.17679/inuefd.1637696
Chicago Göçer, Veysel, and Okan Kuzu. “Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay Ve Dikey Bağlamda Çok Yönlü Analizi”. İnönü Üniversitesi Eğitim Fakültesi Dergisi 26, no. 2 (September 2025): 1061-1109. https://doi.org/10.17679/inuefd.1637696.
EndNote Göçer V, Kuzu O (September 1, 2025) Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay ve Dikey Bağlamda Çok Yönlü Analizi. İnönü Üniversitesi Eğitim Fakültesi Dergisi 26 2 1061–1109.
IEEE V. Göçer and O. Kuzu, “Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay ve Dikey Bağlamda Çok Yönlü Analizi”, INUJFE, vol. 26, no. 2, pp. 1061–1109, 2025, doi: 10.17679/inuefd.1637696.
ISNAD Göçer, Veysel - Kuzu, Okan. “Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay Ve Dikey Bağlamda Çok Yönlü Analizi”. İnönü Üniversitesi Eğitim Fakültesi Dergisi 26/2 (September2025), 1061-1109. https://doi.org/10.17679/inuefd.1637696.
JAMA Göçer V, Kuzu O. Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay ve Dikey Bağlamda Çok Yönlü Analizi. INUJFE. 2025;26:1061–1109.
MLA Göçer, Veysel and Okan Kuzu. “Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay Ve Dikey Bağlamda Çok Yönlü Analizi”. İnönü Üniversitesi Eğitim Fakültesi Dergisi, vol. 26, no. 2, 2025, pp. 1061-09, doi:10.17679/inuefd.1637696.
Vancouver Göçer V, Kuzu O. Türkiye Yüzyılı Maarif Modeli Temelinde Matematik Alan Becerilerinin Yatay ve Dikey Bağlamda Çok Yönlü Analizi. INUJFE. 2025;26(2):1061-109.