Araştırma Makalesi
BibTex RIS Kaynak Göster

ÜNİVERSİTE ÖĞRENCİLERİNİN COVİD-19 SÜRECİNDE ÇEVRİMİÇİ EĞİTİME İLİŞKİN TUTUM VE NİYETLERİNİN TESPİTİ: TEKNOLOJİ KABUL MODELİ ÇERÇEVESİNDE BİR ARAŞTIRMA

Yıl 2021, Cilt: 9 Sayı: 2, 250 - 271, 26.12.2021
https://doi.org/10.18825/iremjournal.1028130

Öz

Çalışmanın temel amacı, covid-19 sürecinde çevrimiçi eğitim alan üniversite öğrencilerinin kullandıkları programa ilişkin sistem kalitesinin, teknoloji kabul düzeyi üzerindeki etkisini ortaya koymaktır. Bu amaca ulaşmak için ölçüm aracı olarak, bilgi teknolojilerinin son kullanıcı tarafından kabulünü incelemekte yaygın olarak kullanılan teknoloji kabul modeli kullanılmıştır. Çalışmanın amacına uygun olarak literatür taranmış, araştırma değişkenlerine ilişkin ölçekler çalışmaya uyarlanarak Google Forms üzerinde anket formu oluşturulmuştur. Araştırmada, kartopu örnekleme yöntemi ile seçilen ve Covid-19 sürecinde çevrimiçi eğitim aldığını belirten 402 üniversite öğrencisine çevrimiçi anket uygulanarak veriler toplanılmıştır. Verilerin analizinde SPSS 20 ve AMOS 24 paket programları kullanılmıştır. Yapılan analizler sonucunda, sistem kalitesinin teknoloji kabul modeli değişkenlerinden algılanan fayda, algılanan kullanım kolaylığı ve tutum üzerinde pozitif yönlü ve anlamlı etkisi tespit edilmiştir. Ayrıca, teknoloji kabul modeli değişkenlerinin birbirleri arasındaki ilişkiler sınanmış; literatürle uyumlu etkilerin var olduğu görülmüştür. Elde edilen sonuçlardan yola çıkarak araştırmacılara ve gelecekte çevrimiçi eğitimi temel veya alternatif eğitim modeli olarak kullanmayı planlayan üniversitelere öneriler sunulmuştur.

Kaynakça

  • Abdullah, D., Jayaraman, K., Shariff, D. N., Bahari, K. A., & Nor, N. M. (2017). The effects of perceived interactivity, perceived ease of use and perceived usefulness on online hotel booking intention: A conceptual framework. International Academic Research Journal of Social Science, 3(1), 16-23.
  • Ajzen, I. (1991). The theory of planned behavior. Organization Behavior and Human Decision Processes, 50 (2), 179–211.
  • Allen, I. E. and Seaman, J. (2008). Staying the course: Online education in the United States, 2008. Sloan Consortium. PO Box 1238, Newburyport, MA 01950.
  • Al-Adwan, A., Al-Adwan, A. and Smedley, J. (2013). Exploring students acceptance of e-learning using technology acceptance model in jordanian universities. International Journal of Education and Development using Information and Communication Technology, 9 (2), 4-18.
  • Artuğer, S., Çetinsöz, B. C., & Kılıç, İ. (2013). The effect of destination image on destination loyalty: An application in alanya. European Journal of Business and Management, 5(13), 124-136.
  • Bayram, N. (2010). Yapısal eşitlik modellemesine giriş: Amos uygulamaları. (1). Bursa: Ezgi Kitabevi.
  • Bozkurt, A. (2017). Türkiye’de uzaktan eğitimin dünü, bugünü ve yarını. Açıköğretim Uygulamaları ve Araştırmaları Dergisi, 3 (2) , 85-124 .
  • Carter, L. and Bélanger, F. (2005). The utilization of e-government services: Citizen trust, ınnovation and acceptance factors. Information Systems Journal, 15(1), 5– 25.
  • Chang, C. C. (2013). Exploring the determinants of e-learning systems continuance intention in academic libraries. Library Management, 34(1), 40-55.
  • Çukadar, S. ve Çelik, S. (2003). İnternete dayalı uzaktan öğretim ve üniversite kütüphaneleri. Doğuş Üniversitesi Dergisi, 4(1), 31-42.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of technology. MIS Quarterly, 13(3), 319-340.
  • Davis, F. D. , Bagozzi. R. P. and Warshaw. P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35 (8), 982-1003.
  • Davis, F. D. (1993). User acceptance of ınformation technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475-487.
  • DeLone, W. H. and McLean, E. R. (2003). The deLone and mcLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.
  • Doğan, M., Şen, R. ve Yılmaz, V. (2015). İnternet bankacılığına ilişkin davranışların planlanmış davranış teorisi ve teknoloji kabul modeli kullanılarak önerilen bir yapısal eşitlik modeliyle incelenmesi. Uşak Üniversitesi Sosyal Bilimler Dergisi, 8(2), 1-22.
  • Fang, Y., Chiu, C. and Wang, E. T. G. (2011). Understanding customers’ satisfaction and repurchase intentions. Internet Research, 21 (4), 479–503.
  • Farahat, T. (2012). Applying the technology acceptance model to online learning in the egyptian universities. Procedia-Social and Behavioral Sciences, 64, 95-104.
  • Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
  • Guritno, S., & Siringoringo, H. (2013). Perceived usefulness, ease of use, and attitude towards online shopping usefulness towards online airlines ticket purchase. Procedia-Social and Behavioral Sciences, 81, 212-216.
  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E. and Tatham, R. L. (2014). Pearson new international edition: Multivariate data analysis, seventh edition. Pearson Education Limited Harlow, Essex.
  • Hussein, Z. (2017). Leading to intention: The role of attitude in relation to technology acceptance model in e-learning. Procedia Computer Science, 105, 159-164.
  • İslamoğlu, A. H. ve Alnıaçık, Ü. (2016). Sosyal bilimlerde araştırma yöntemleri (Spss uygulamalı). (5). İstanbul: Beta Yayınları.
  • İşman A. (2011). Uzaktan eğitim (4. Baskı). Ankara: Pegem Akademi Yayıncılık.
  • Juhary, J. (2014). Perceived usefulness and ease of use of the learning management system as a learning tool. International Education Studies, 7 (8), 23-34.
  • Kalyoncuoğlu, S. (2018). Tüketicilerin online alışverişlerindeki sanal kart kullanımlarının teknoloji kabul modeli ile incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20 (2), 193-213.
  • Koc, F., Açıksözlü, Ö., Varol, İ., ve Güleç, E. (2015). Web sitesi kalitesinin kullanma niyeti üzerindeki etkisi: online rezervasyon sitelerine yönelik bir araştırma. I. Eurasia International Tourism Congress: Current Issues, Trends, and Indicators, 1 (2), 445-455.
  • Kuan, H. H., Bock, G. W. and Vathanophas, V. (2008). Comparing the effects of website quality on customer initial purchase and continued purchase at e-commerce websites. Behaviour and Information Technology, 27(1), 3-16.
  • Külter, B. (2009). Mağaza özellikleri ve tutumun, perakendeci markasına yönelik tutum ve tercih üzerindeki etkisi. Yayımlanmamış Doktora Tezi. Niğde: Niğde Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Lee, M. K., Cheung, C. M. and Chen, Z. (2005). Acceptance of internet-based learning medium: The role of extrinsic and intrinsic motivation. Information and management, 42 (8), 1095-1104.
  • Lee, Y., Kozar, K. A. and Larsen, K. R. (2003). The technology acceptance model: Past, present and future. Communications of the Association for Information Systems, 12 (1), 752-780.
  • Midkiff, S. F. and DaSilva, L. A. (2000, August). Leveraging the web for synchronous versus asynchronous distance learning. In International Conference on Engineering Education Vol. 2000, 14-18.
  • Moore, M. G. and Kearsley, G. (2011). Distance education: A systems view of online learning. Cengage Learning.
  • Nagy, J. T. (2018). Evaluation of online video usage and learning satisfaction: An extension of the technology acceptance model. International Review of Research in Open and Distributed Learning, 19 (1).
  • Nakip, M. (2006). Pazarlama araştırmaları teknikler ve spss destekli uygulamalar. Ankara: Seçkin Yayıncılık.
  • Oliver, R.L. (2010). Satisfaction: A behavioral perspective on the consumer: A behavioral perspective on the consumer (2nd ed.). Routledge.
  • Özer, G., Özcan, M. ve Aktaş, S. (2010). Muhasebecilerin bilgi teknolojisi kullanımının teknoloji kabul modeli (tkm) ile incelenmesi. Journal of Yasar University, 5 (19).
  • Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Journal of Educational Technology and Society, 12 (3), 150-162.
  • Ramayah, T. and Ignatius, J. (2005). Impact of perceived usefulness, perceived ease of use and perceived enjoyment on intention to shop online. ICFAI Journal of Systems Management (IJSM), 3(3), 36-51.
  • Reisinger, Y., and Turner, L. (1999). Structural equation modeling with lisrel: Application in tourism. Tourism Management, 20 (1), 71-88.
  • Rogers E.(2003). The diffusion of ınnovations. Fifth Edition. The Free Press, New York.
  • Saadé, R. and Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information and management, 42 (2), 317-327.
  • Turan, A. H. ve Özgen, F. B. (2009). Türkiye’de e-beyanname sisteminin benimsenmesi: Geliştirilmiş teknoloji kabul modeli ile ampirik bir çalışma. Doğuş Üniversitesi Dergisi, 10 (1), 134-147.
  • Venkatesh, V. and Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision sciences, 27 (3), 451-481.
  • Venkatesh, V., and Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46 (2), 186-204.
  • Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model. Information and management, 41 (6), 747-762.
  • Wang, W. T. and Wang, C. C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers and Education, 53 (3), 761-774.
  • Yang, Z., Cai, S., Zhou, Z. and Zhou, N. (2005). Development and validation of an instrument to measure user perceived service quality of information presenting web portals. Information and management, 42 (4), 575-589.
  • Yaşlıoğlu, M. M. (2017). Sosyal bilimlerde faktör analizi ve geçerlilik: Keşfedici ve doğrulayıcı faktör analizlerinin kullanılması. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 46, 74-85.

DETERMINATION OF UNIVERSITY STUDENTS' ATTITUDES AND INTENTIONS TOWARDS ONLINE EDUCATION IN THE COVID-19 PROCESS: A STUDY WITHIN THE FRAMEWORK OF TECHNOLOGY ACCEPTANCE MODEL

Yıl 2021, Cilt: 9 Sayı: 2, 250 - 271, 26.12.2021
https://doi.org/10.18825/iremjournal.1028130

Öz

The main purpose of the study is to reveal the effect of the system quality of the program used by university students who receive online education during the covid-19 process on the level of technology acceptance. In order to achieve this aim, the technology acceptance model, which is widely used in examining the acceptance of information technologies by the end user, was used as a measurement tool. In accordance with the purpose of the study, the literature was searched, the scales related to the research variables were adapted to the study and a questionnaire form was created on Google Forms. In the study, data were collected by applying an online questionnaire to 402 university students who were selected by the snowball sampling method and stated that they received online education during the Covid-19 process. SPSS 20 and AMOS 24 package programs were used in the analysis of the data. As a result of the analysis, it was determined that the system quality had a positive and significant effect on the perceived usefulness, perceived ease of use and attitude from the technology acceptance model variables. In addition, the relationships between technology acceptance model variables were tested; It has been observed that there are effects consistent with the literature. Based on the results obtained, suggestions were presented to researchers and universities that plan to use online education as a basic or alternative education model in the future.

Kaynakça

  • Abdullah, D., Jayaraman, K., Shariff, D. N., Bahari, K. A., & Nor, N. M. (2017). The effects of perceived interactivity, perceived ease of use and perceived usefulness on online hotel booking intention: A conceptual framework. International Academic Research Journal of Social Science, 3(1), 16-23.
  • Ajzen, I. (1991). The theory of planned behavior. Organization Behavior and Human Decision Processes, 50 (2), 179–211.
  • Allen, I. E. and Seaman, J. (2008). Staying the course: Online education in the United States, 2008. Sloan Consortium. PO Box 1238, Newburyport, MA 01950.
  • Al-Adwan, A., Al-Adwan, A. and Smedley, J. (2013). Exploring students acceptance of e-learning using technology acceptance model in jordanian universities. International Journal of Education and Development using Information and Communication Technology, 9 (2), 4-18.
  • Artuğer, S., Çetinsöz, B. C., & Kılıç, İ. (2013). The effect of destination image on destination loyalty: An application in alanya. European Journal of Business and Management, 5(13), 124-136.
  • Bayram, N. (2010). Yapısal eşitlik modellemesine giriş: Amos uygulamaları. (1). Bursa: Ezgi Kitabevi.
  • Bozkurt, A. (2017). Türkiye’de uzaktan eğitimin dünü, bugünü ve yarını. Açıköğretim Uygulamaları ve Araştırmaları Dergisi, 3 (2) , 85-124 .
  • Carter, L. and Bélanger, F. (2005). The utilization of e-government services: Citizen trust, ınnovation and acceptance factors. Information Systems Journal, 15(1), 5– 25.
  • Chang, C. C. (2013). Exploring the determinants of e-learning systems continuance intention in academic libraries. Library Management, 34(1), 40-55.
  • Çukadar, S. ve Çelik, S. (2003). İnternete dayalı uzaktan öğretim ve üniversite kütüphaneleri. Doğuş Üniversitesi Dergisi, 4(1), 31-42.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of technology. MIS Quarterly, 13(3), 319-340.
  • Davis, F. D. , Bagozzi. R. P. and Warshaw. P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35 (8), 982-1003.
  • Davis, F. D. (1993). User acceptance of ınformation technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475-487.
  • DeLone, W. H. and McLean, E. R. (2003). The deLone and mcLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.
  • Doğan, M., Şen, R. ve Yılmaz, V. (2015). İnternet bankacılığına ilişkin davranışların planlanmış davranış teorisi ve teknoloji kabul modeli kullanılarak önerilen bir yapısal eşitlik modeliyle incelenmesi. Uşak Üniversitesi Sosyal Bilimler Dergisi, 8(2), 1-22.
  • Fang, Y., Chiu, C. and Wang, E. T. G. (2011). Understanding customers’ satisfaction and repurchase intentions. Internet Research, 21 (4), 479–503.
  • Farahat, T. (2012). Applying the technology acceptance model to online learning in the egyptian universities. Procedia-Social and Behavioral Sciences, 64, 95-104.
  • Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
  • Guritno, S., & Siringoringo, H. (2013). Perceived usefulness, ease of use, and attitude towards online shopping usefulness towards online airlines ticket purchase. Procedia-Social and Behavioral Sciences, 81, 212-216.
  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E. and Tatham, R. L. (2014). Pearson new international edition: Multivariate data analysis, seventh edition. Pearson Education Limited Harlow, Essex.
  • Hussein, Z. (2017). Leading to intention: The role of attitude in relation to technology acceptance model in e-learning. Procedia Computer Science, 105, 159-164.
  • İslamoğlu, A. H. ve Alnıaçık, Ü. (2016). Sosyal bilimlerde araştırma yöntemleri (Spss uygulamalı). (5). İstanbul: Beta Yayınları.
  • İşman A. (2011). Uzaktan eğitim (4. Baskı). Ankara: Pegem Akademi Yayıncılık.
  • Juhary, J. (2014). Perceived usefulness and ease of use of the learning management system as a learning tool. International Education Studies, 7 (8), 23-34.
  • Kalyoncuoğlu, S. (2018). Tüketicilerin online alışverişlerindeki sanal kart kullanımlarının teknoloji kabul modeli ile incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20 (2), 193-213.
  • Koc, F., Açıksözlü, Ö., Varol, İ., ve Güleç, E. (2015). Web sitesi kalitesinin kullanma niyeti üzerindeki etkisi: online rezervasyon sitelerine yönelik bir araştırma. I. Eurasia International Tourism Congress: Current Issues, Trends, and Indicators, 1 (2), 445-455.
  • Kuan, H. H., Bock, G. W. and Vathanophas, V. (2008). Comparing the effects of website quality on customer initial purchase and continued purchase at e-commerce websites. Behaviour and Information Technology, 27(1), 3-16.
  • Külter, B. (2009). Mağaza özellikleri ve tutumun, perakendeci markasına yönelik tutum ve tercih üzerindeki etkisi. Yayımlanmamış Doktora Tezi. Niğde: Niğde Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Lee, M. K., Cheung, C. M. and Chen, Z. (2005). Acceptance of internet-based learning medium: The role of extrinsic and intrinsic motivation. Information and management, 42 (8), 1095-1104.
  • Lee, Y., Kozar, K. A. and Larsen, K. R. (2003). The technology acceptance model: Past, present and future. Communications of the Association for Information Systems, 12 (1), 752-780.
  • Midkiff, S. F. and DaSilva, L. A. (2000, August). Leveraging the web for synchronous versus asynchronous distance learning. In International Conference on Engineering Education Vol. 2000, 14-18.
  • Moore, M. G. and Kearsley, G. (2011). Distance education: A systems view of online learning. Cengage Learning.
  • Nagy, J. T. (2018). Evaluation of online video usage and learning satisfaction: An extension of the technology acceptance model. International Review of Research in Open and Distributed Learning, 19 (1).
  • Nakip, M. (2006). Pazarlama araştırmaları teknikler ve spss destekli uygulamalar. Ankara: Seçkin Yayıncılık.
  • Oliver, R.L. (2010). Satisfaction: A behavioral perspective on the consumer: A behavioral perspective on the consumer (2nd ed.). Routledge.
  • Özer, G., Özcan, M. ve Aktaş, S. (2010). Muhasebecilerin bilgi teknolojisi kullanımının teknoloji kabul modeli (tkm) ile incelenmesi. Journal of Yasar University, 5 (19).
  • Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Journal of Educational Technology and Society, 12 (3), 150-162.
  • Ramayah, T. and Ignatius, J. (2005). Impact of perceived usefulness, perceived ease of use and perceived enjoyment on intention to shop online. ICFAI Journal of Systems Management (IJSM), 3(3), 36-51.
  • Reisinger, Y., and Turner, L. (1999). Structural equation modeling with lisrel: Application in tourism. Tourism Management, 20 (1), 71-88.
  • Rogers E.(2003). The diffusion of ınnovations. Fifth Edition. The Free Press, New York.
  • Saadé, R. and Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information and management, 42 (2), 317-327.
  • Turan, A. H. ve Özgen, F. B. (2009). Türkiye’de e-beyanname sisteminin benimsenmesi: Geliştirilmiş teknoloji kabul modeli ile ampirik bir çalışma. Doğuş Üniversitesi Dergisi, 10 (1), 134-147.
  • Venkatesh, V. and Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision sciences, 27 (3), 451-481.
  • Venkatesh, V., and Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46 (2), 186-204.
  • Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model. Information and management, 41 (6), 747-762.
  • Wang, W. T. and Wang, C. C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers and Education, 53 (3), 761-774.
  • Yang, Z., Cai, S., Zhou, Z. and Zhou, N. (2005). Development and validation of an instrument to measure user perceived service quality of information presenting web portals. Information and management, 42 (4), 575-589.
  • Yaşlıoğlu, M. M. (2017). Sosyal bilimlerde faktör analizi ve geçerlilik: Keşfedici ve doğrulayıcı faktör analizlerinin kullanılması. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 46, 74-85.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MAKALELER
Yazarlar

Mert Sabri Yavuz 0000-0002-0957-5949

M.emin Akkılıç 0000-0002-3888-6025

Erken Görünüm Tarihi 26 Aralık 2021
Yayımlanma Tarihi 26 Aralık 2021
Gönderilme Tarihi 25 Kasım 2021
Kabul Tarihi 19 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Yavuz, M. S., & Akkılıç, M. (2021). ÜNİVERSİTE ÖĞRENCİLERİNİN COVİD-19 SÜRECİNDE ÇEVRİMİÇİ EĞİTİME İLİŞKİN TUTUM VE NİYETLERİNİN TESPİTİ: TEKNOLOJİ KABUL MODELİ ÇERÇEVESİNDE BİR ARAŞTIRMA. International Review of Economics and Management, 9(2), 250-271. https://doi.org/10.18825/iremjournal.1028130