Research Article
BibTex RIS Cite

Biber (Capsicum annum L.) Bitkisinde Bakteriyel Leke Hastalık (Xanthomonas axonopodis pv. vesicatoria)’ının Antagonistik Bakterilerle Biyolojik Kontrolü

Year 2025, Volume: 8 Issue: 2, 122 - 144, 29.12.2025
https://doi.org/10.46876/ja.1818894

Abstract

Bu çalışmada. biber üretim alanlarında önemli verim kayıplara neden olan bakteriyel leke hastalığı etmeni Xanthomonas axonopodis pv. vesicatoria’ya karşı biyolojik mücadele potansiyeli taşıyan antagonistik bakteri strainlerinin belirlenmesi amaçlanmıştır. Hastalıklı biber bitkilerinden 26 patojen straini elde edilmiştir. Ayrıca sağlıklı biber bitkilerinden ve biber yetiştiriciliği yapılan alanlarda yaygın olarak görülen yabancı ot türlerinin kök ve yapraklarından toplam 53 aday antagonist bakteri straini izole edilmiştir. Patojen ve aday antagonist bakteri strainleri yağ asit metil ester analizi ile tanılanmıştır. Patojenite testi sonucunda en yüksek virülensliğe sahip olduğu belirlenen AK-17 ile yürütülen in vitro antagonizm testleri sonucunda, dokuz strainin Xanthomonas axonopodis pv. vesicatoria gelişimini 10.3–20.3 mm arasında değişen inhibisyon zonları oluşturarak baskıladığı belirlenmiştir. Bu strainlerin Bacillus, Pseudomonas ve Paenibacillus cinslerine ait olduğu tespit edilmiş olup, en yüksek antibakteriyel etki 20.3 mm zon değeri ile Paenibacillus validus DYS-20 straini tarafından sergilenmiştir. Ayrıca patojene karşı antagonistik etki gösteren bakterilerin azot fiksasyonu, fosfor ve potasyum çözünürlüğü ile ACC deaminaz aktivitesi gibi bitki büyümesini destekleyici özelliklere sahip oldukları saptanmıştır. Aynı zamanda strainlerin in vitro biyokontrol mekanizmaları (kitinaz, proteaz, selülaz, siderofor ve HCN) araştırılmıştır. Elde edilen bulgular, antagonistik bakteri strainlerinin hem patojen gelişimini engelleme hem de bitki gelişimini teşvik etme yoluyla biber bakteriyel leke hastalığının biyolojik mücadelesinde kullanılabilecek potansiyel biyokontrol ajanları olduğunu göstermektedir.

References

  • Abbasi, P. A., & Weselowski, B. (2015). Efficacy of Bacillus subtilis QST 713 formulations, copper hydroxide, and their tank mixes on bacterial spot of tomato. Crop Protection, 74, 70-76. https://doi.org/10.1016/j.cropro.2015.04.009
  • Abd El-Rahman, A. F., Shaheen, H. A., Abd El-Aziz, R. M., El-Deeb, B., & Khalil, M. S. (2019). Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egyptian Journal of Biological Pest Control, 29, 41. https://doi.org/10.1186/s41938-019-0143-7
  • Abo-Elyousr, K. A., Bagy, H. M. K., Hashem, M., Alamri, S. A., & Mostafa, Y. S. (2019). Biological control of the tomato wilt caused by Clavibacter michiganensis subsp. michiganensis using formulated plant growth-promoting bacteria. Egyptian Journal of Biological Pest Control, 29(1), 1-8. https://doi.org/10.1186/s41938-019-0152-6
  • Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  • Akat, S., & Özaktan, H. (2011). Domates bakteriyel kanser ve solgunluk hastalığıyla [Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al.] biyolojik mücadelede bakteriyel antagonistlerin etkinliğinin araştırılması. Türkiye Biyolojik Mücadele Dergisi, 2(1), 3-18.
  • Akbaba, M. (2014). Bitki gelişimini artıran bakteriyel endofitlerin hıyar bakteriyel köşeli yaprak leke hastalığının (Pseudomonas syringae pv. lachrymans) önlenmesinde kullanılma olanakları. Yüksek Lisans Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, 139 s.
  • Al-Dahmani, J. H., Abbasi, P. A., Miller, S. A., & Hoitink, H. A. (2003). Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease, 87(8), 913-919. https://doi.org/10.1094/PDIS.2003.87.8.913
  • Almast, E. (2023). Domates bakteriyel yaprak lekesi hastalığının (Xanthomonas axonopodis pv. vesicatoria) antagonist bakteri strainleri ile biyolojik mücadelesi. Yüksek Lisans Tezi, Iğdır Üniversitesi, Lisansüstü Eğitim Enstitüsü, Iğdır, 56 s.
  • Alpago, Ö., Dönmez, M. F., Sunyar, B., & Çoruh, İ. (2023). Bitki gelişimini uyaran bakterilerin kıvırcık marul (Lactuca sativa var. crispa) gelişimine etkisinin belirlenmesi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 9(3), 300-310. https://doi.org/10.24180/ijaws.1297251
  • Ameziane, N., Boubaker, H., Boudyach, H., Msanda, F., Jilal, A., & Benaoumar, A. A. (2007). Antifungal activity of Moroccan plants against citrus fruit pathogens. Agronomy for Sustainable Development, 27(3), 273-277. https://doi.org/10.1051/agro:2007022
  • Amkraz, N., Boudyach, E. H., Boubaker, H., Bouizgarne, B., & Aoumar, A. A. B. (2010). Screening for fluorescent pseudomonades isolated from the rhizosphere of tomato for antagonistic activity toward Clavibacter michiganensis subsp. michiganensis. World Journal of Microbiology and Biotechnology, 26(6), 1059-1065. https://doi.org/10.1007/s11274-009-0270-5
  • Anak, H. (2025). Endofit bakterilerin fasulye solgunluk hastalığının (Curtobacterium flaccumfaciens pv. flaccumfaciens) biyolojik mücadelesinde etkinliğinin araştırılması. Doktora Tezi, Iğdır Üniversitesi, Lisansüstü Eğitim Enstitüsü, Iğdır, 138 s.
  • Anand, A., Chinchilla, D., Tan, C., Mène-Saffrané, L., L’Haridon, F., & Weisskopf, L. (2020). Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms, 8(8), 1144. https://doi.org/10.3390/microorganisms8081144
  • Areas, M. S., Gonçalves, R. M., Soman, J. M., Sakate, R. K., Gioria, R., da Silva Júnior, T. A., & Maringoni, A. C. (2015). Prevalence of Xanthomonas euvesicatoria on pepper in Brazil. Journal of Phytopathology, 163(11-12), 1050-1054. https://doi.org/10.1111/jph.12349
  • Arya, N., Rana, A., Rajwar, A., & Kumar, S. (2018). Biocontrol efficacy of siderophore producing indigenous Pseudomonas strains against Fusarium wilt in tomato. National Academy Science Letters, 41(2), 133-136. https://doi.org/10.1007/s40009-018-0630-5
  • Aysan, Y., & Sahin, F. (2003). Occurrence of bacterial spot disease caused by Xanthomonas axonopodis pv. vesicatoria on pepper in the eastern Mediterranean region of Turkey. Plant Pathology, 52(6), 781. https://doi.org/10.1111/j.1365-3059.2003.00890.x
  • Bae, J. Y., Wu, J., Lee, H. J., Jo, E. J., Murugaiyan, S., Chung, E., & Lee, S. W. (2012). Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. Journal Microbiol. Biotechnol, 22(12), 1613-1620. http://dx.doi.org/10.4014/jmb.1208.08072
  • Bakker, A. W., & Schippers, B. (1987). Patates verim azalması ve Pseudomonas spp. aracılı bitki büyüme uyarımı ile ilişkili olarak rizosferde mikrobiyal siyanür üretimi. Toprak Biyolojisi ve Biyokimyası, 19, 451-457. https://doi.org/10.1016/0038-0717(87)90037-X
  • Berg, G., Roskot, N., Steidle, A., Eberl, L., Zock, A., & Smalla, K. (2002). Farklı Verticillium konak bitkilerinden izole edilen antagonistik rizobakterilerin bitkiye bağlı genotip ve fenotip çeşitliliği. Applied and Environmental Microbiology, 68, 3328-3338. https://doi.org/10.1128/aem.68.7.3328-3338.2002
  • Black, R., Seal, S., Abubakar, Z., Nono-Womdim, R., & Swai, I. (2001). Bacterial spot (Xanthomonas campestris pv. vesicatoria) of tomato and sweet pepper in Tanzania. Plant Pathology, 50, 810. https://doi.org/10.1046/j.1365-3059.2001.00633.x
  • Blake, C., Christensen, M. N., & Kovács, Á. T. (2021). Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions, 34(1), 15-25. https://doi.org/10.1094/mpmi-08-20-0225-cr
  • Bloemberg, G. V., & Lugtenberg, B. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4(4), 343-350. https://doi.org/10.1016/s1369-5266(00)00183-7
  • Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170-177. http://doi.org/10.1007/s002039900127
  • Boch, J., & Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annual Review of Phytopathology, 48, 419-436. https://doi.org/10.1146/annurev-phyto-080508-081936
  • Bonas, U., Van den Ackerveken, G., Büttner, D., Hahn, K., Marois, E., Nennstiel, D., Noel, L., Rossier, O., & Szurek, B. (2000). How the bacterial plant pathogen Xanthomonas campestris pv. vesicatoria conquers the host. Molecular Plant Pathology, 1, 73-76. https://doi.org/10.1046/j.1364-3703.2000.00010.x
  • Boudyach, E. H., Fatmi, M., Akhayat, O., Benizri, E., & Aoumar, A. A. B. (2001). Selection of antagonistic bacteria of Clavibacter michiganensis subsp. michiganensis and evaluation of their efficiency against bacterial canker of tomato. Biocontrol Science and Technology, 11(1), 141-149. https://doi.org/10.1080/09583150020029817
  • Butcher, R. A., Schroeder, F. C., Fischbach, M. A., Straight, P. D., Kolter, R., Walsh, C. T., & Clardy, J. (2007). The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proceedings of the National Academy of Sciences, 104(5), 1506-1509. https://doi.org/10.1073/pnas.0610503104
  • Büttner, D., & Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34(2), 107-133. https://doi.org/10.1111/j.1574-6976.2009.00192.x
  • Byrne, J. M., Dianese, A. C., Ji, P., Campbell, H. L., Cuppels, D. A., Louws, F. J., Miller, S. A., Jones, J. B., & Wilson, M. (2005). Biological control of bacterial spot of tomato under field conditions at several locations in North America. Biological Control, 32(3), 408-418. https://doi.org/10.1016/j.biocontrol.2004.12.001
  • Cattelan, A. J., Hartel, P. G., & Fuhrmann, J. J. (1999). Bitki büyümesinin taranması – erken soya fasulyesi büyümesini desteklemek için rizobakterilerin teşvik edilmesi. Toprak Bilimi Derneği Amerikan Dergisi, 63, 1670-1680. https://doi.org/10.2136/sssaj1999.6361670x
  • Chen, X., Wang, G., Xu, M., Jin, J., & Liu, X. (2010). Soya fasulyesi köksapından izole edilen Paenibacillus polymyxa BRF-1 tarafından üretilen antifungal peptit. African Journal of Microbiology Research, 4, 2692-2698.
  • Chen, J., Wu, Q., Hua, Y., Chen, J., Zhang, H., & Wang, H. (2017). Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Applied Microbiology and Biotechnology, 101(23-24), 8309-8319. https://doi.org/10.1007/s00253-017-8554-4
  • Cronin, D., Moënne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., & O'Gara, F. (1997). Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiology Ecology, 23(2), 95-106. https://doi.org/10.1111/j.1574-6941.1997.tb00394.x
  • Çakmakçı, R., Erdoğan, Ü., Kotan, R., Oral, B., & Dönmez, F. (2008). Diversity of heterotrophic nitrogen-fixing bacteria in wild raspberry rhizosphere soils in the Çoruh Valley. 4th National Plant Nutrition and Fertilizer Congress, 8-10. https://doi.org/10.1007/s11104-010-0295-4
  • Dadaşoğlu, F., Joy, J. F. M., Özyurt, G., & Kotan, R. (2020). In vitro effect of bacterial biocontrol organisms against Pectobacterium carotovorum on potato. Journal of Agricultural Production, 1(1), 8-11. https://doi.org/10.29329/agripro.2020.341.3
  • Döbereiner, J. (1989). Isolation and identification of root associated diazotrophs. İçinde: Nitrogen Fixation with Non-Legumes (Ed. F. A. Skinner), Klawer, Dordrecht, 103-108. https://doi.org/10.1007/978-94-009-0889-5_13
  • Dönmez, M. F., & Aliyeva, Z. (2023). Biological control of bean halo blight disease (Pseudomonas savastanoi pv. phaseolicola) with antagonist bacterial strains. Gesunde Pflanzen, 75(4), 815-824. https://doi.org/10.1007/s10343-022-00746-8
  • Duman, A. D., Zorlugenç, B., & Evliya, B. (2002). Kahramanmaraş’ta kırmızı biberin önemi ve sorunları. KSÜ Fen ve Mühendislik Dergisi, 5(1), 111-117.
  • Elhalag, K. M., Messiha, N. A. S., Emara, H. M., & Abdallah, S. A. (2016). Evaluation of antibacterial activity of Stenotrophomonas maltophilia against Ralstonia solanacearum under different application conditions. Journal of Applied Microbiology, 120(6), 1629-1645. http://doi.org/10.1111/jam.13097
  • EPPO. (2013). European and Mediterranean Plant Protection Organization (EPPO). Plant Quarantine, Xanthomonas campestris pv. vesicatoria. EPPO Bulletin, 18, 521-526.
  • Ertekin, Ç. (2016). Orta Karadeniz bölgesinde hale yanıklığı (Pseudomonas savastanoi pv. phaseolicola) ile adi yaprak yanıklığı (Xanthomonas axonopodis pv. phaseoli) etmenlerinin belirlenmesi ve fasulye hatlarının bu hastalıklara karşı reaksiyonları. Doktora Tezi, Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Tokat.
  • Estrada-De Los Santos, P., Bustillos-Cristales, R., & Caballero-Mellado, J. (2001). Burkholderia, geniş çevresel ve coğrafi dağılıma sahip bitki ilişkili azot sabitleyiciler açısından zengin bir cinstir. Applied and Environmental Microbiology, 67, 2790-2798. https://doi.org/10.1128/aem.67.6.2790-2798.2001
  • Etesami, H., Jeong, B. R., & Glick, B. R. (2023). Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 102048. https://doi.org/10.1016/j.pmpp.2023.102048
  • Fernandez, M., Godino, A., Prìncipe, A., Morales, G. M., & Fischer, S. (2017). Effect of a Pseudomonas fluorescens tailocin against phytopathogenic Xanthomonas observed by atomic force microscopy. Journal of Biotechnology, 256, 13-20. https://doi.org/10.1016/j.jbiotec.2017.07.002
  • Ferraz, H. G. M., Resende, R. S., Silveira, P. R., Andrade, C. C. L., Milagres, E. A., Oliveira, J. R., & Rodrigues, F. D. Á. (2014). Rhizobacteria induces resistance against Fusarium wilt of tomato by increasing the activity of defense enzymes. Bragantia, 73, 274-283. https://doi.org/10.1590/1678-4499.0124
  • Ferreira, C. M., López-Rayo, S., Lucena, J. J., Soares, E. V., & Soares, H. M. (2019). Evaluation of the efficacy of two new biotechnological-based freeze-dried fertilizers for sustainable Fe deficiency correction of soybean plants grown in calcareous soils. Frontiers in Plant Science, 10, 1335. https://doi.org/10.3389/fpls.2019.01335
  • Fira, D., Dimkić, I., Berić, T., Lozo, J., & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285, 44-55. https://doi.org/10.1016/j.jbiotec.2018.07.044
  • Fischer, S., Godino, A., Quesada, J. M., Cordero, P., Jofre, E., Mori, G., & Espinosa-Urgel, M. (2012). Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology, 158(6), 1493-1503. https://doi.org/10.1099/mic.0.056002-0
  • Gautam, S., Chauhan, A., Sharma, R., Sehgal, R., & Shirkot, C. K. (2019). Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Microbial Pathogenesis, 130, 196-203. https://doi.org/10.1016/j.micpath.2019.03.006
  • Godino, A., Prìncipe, A., & Fischer, S. (2016). A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere. Research in Microbiology, 167(3), 178-189. https://doi.org/10.1016/j.resmic.2015.12.003
  • Gürbüz, R., Alma, M. H., Alptekin, H., & Tülek, C. (2024). Performance of some organic mulch materials for weed suppression, soil conditions and yield in Capsicum annuum L. cultivation. Journal of the Institute of Science and Technology, 14(1), 18-38. https://doi.org/10.21597/jist.1326729
  • Hammami, I., Rhouma, A., Jaouadi, B., Rebai, A., & Nesme, X. (2009). Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Letters in Applied Microbiology, 48(2), 253-260. https://doi.org/10.1111/j.1472-765X.2008.02524.x
  • Harrison, R. L., & Bonning, B. C. (2010). Proteases as insecticidal agents. Toxins, 2(5), 935-953. https://doi.org/10.3390/toxins2050935
  • Hert, A. P., Marutani, M., Momol, M. T., Roberts, P. D., Olson, S. M., & Jones, J. B. (2009). Suppression of the bacterial spot pathogen Xanthomonas euvesicatoria on tomato leaves by an attenuated mutant of Xanthomonas perforans. Applied and Environmental Microbiology, 75(10), 3323-3330. https://doi.org/10.1128/AEM.02399-08
  • Hong, C. E., Kwon, S. Y., & Park, J. M. (2016). Paenibacillus polymyxa AC-1'in Pseudomonas syringae'ye karşı biyokontrol aktivitesi ve Arabidopsis thaliana ile etkileşimi. Microbiological Research, 185, 13-21. https://doi.org/10.1016/j.micres.2016.01.004
  • Im, S. M., Yu, N. H., Joen, H. W., Kim, S. O., Park, H. W., Park, A. R., & Kim, J. C. (2020). Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08. Pesticide Biochemistry and Physiology, 163, 130-137. https://doi.org/10.1016/j.pestbp.2019.11.007
  • Jamiołkowska, A. (2020). Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy, 10(2), 173. https://doi.org/10.3390/agronomy10020173
  • Jones, J. B., Bouzar, H., Stall, R. E., Almira, E. C., Roberts, P. D., Bowen, B. W., Sudberry, J., Strickler, P. M., & Chun, J. (2000). Systematic analysis of Xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. International Journal of Systematic and Evolutionary Microbiology, 50(3), 1211-1219. https://doi.org/10.1099/00207713-50-3-1211
  • Joseph, B., Patra, R. R., & Lawrence, R. (2007). Characterization of plant growth-promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production, 1(2), 141-152.
  • Junker, R. R., Loewel, C., Gross, R., Dötterl, S., Keller, A., & Blüthgen, N. (2011). Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biology, 13(6), 918-924. https://doi.org/10.1111/j.1438-8677.2011.00454.x
  • Kavitha, S., Senthilkumar, S., Gnanamanickam, S., Inayathullah, M., & Jayakumar, R. (2005). Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochemistry, 40(10), 3236-3243. https://doi.org/10.1016/j.procbio.2005.03.060
  • Khalid, M., Hassani, D., Bilal, M., Asad, F., & Huang, D. (2017). Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L. Botanical Studies, 58(1), 35. https://doi.org/10.1186/s40529-017-0189-3
  • Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi – current perspective. Archives of Agronomy and Soil Science, 56(1), 73-78. https://doi.org/10.1080/03650340902806469
  • Kim, S. G., Khan, Z., Jeon, Y. H., & Kim, Y. H. (2009). Inhibitory effect of Paenibacillus polymyxa GBR-462 on Phytophthora capsici, the causal agent of phytophthora blight in hot pepper. Journal of Phytopathology, 157, 229-237. https://doi.org/10.1111/j.1439-0434.2008.01490.x
  • Klement, Z., Farkas, G. L., & Lovrekovich, L. (1964). Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology, 54, 474-479.
  • Koçak, R., & Salman, Ö. (2023). Bazı endofitik ve rizosferik bakterilerin fasulyede Macrophomina phaseolina’ya karşı etkinliklerinin in vitro koşullarda belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 27(1), 42-51. https://doi.org/10.29050/harranziraat.1195672
  • Kuklinsky-Sobral, J., Araújo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A., & Azevedo, J. L. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 6, 1244-1251. https://doi.org/10.1111/j.1462-2920.2004.00658.x
  • Kundan, R., Pant, G., Jadon, N., & Agrawal, P. K. (2015). Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Fertilizers & Pesticides, 6(2), 9. http://doi.org/10.4172/2471-2728.1000155
  • Kuzu, S. B., Güvenmez, H. K., & Denizci, A. A. (2012). Production of a thermostable and alkaline chitinase by Bacillus thuringiensis subsp. kurstaki strain HBK-51. Biotechnology Research International, 2012(1), 135498. https://doi.org/10.1155/2012/135498
  • Laird, M., Piccoli, D., Weselowski, B., McDowell, T., Renaud, J., MacDonald, J., & Yuan, Z. C. (2020). Surfactin-producing Bacillus velezensis 1B-23 & Bacillus sp. 1D-12 protect tomato against bacterial canker caused by Clavibacter michiganensis subsp. michiganensis. Journal of Plant Pathology, 102(2), 451-458. https://doi.org/10.1007/s42161-019-00461-w
  • Lamichhane, J. R., Balestra, G. M., & Varvaro, L. (2010). First report of bacterial spot caused by Xanthomonas campestris pv. vesicatoria race 2 on tomato in Nepal. New Disease Reports, 22(25). https://doi.org/10.5197/j.2044-0588.2010.022.025
  • Lanna Filho, R., Romeiro, R. S., & Alves, E. (2010). Bacterial spot & early blight biocontrol by epiphytic bacteria in tomato plants. Pesquisa Agropecuária Brasileira, 45, 1381-1387. https://doi.org/10.1590/S0100-204X2010001200007
  • Lanna Filho, R., Souza, R. M., Magalhães, M. M., Villela, L., Zanotto, E., Ribeiro-Júnior, P. M., & Resende, M. L. (2013). Induced defense responses in tomato against bacterial spot by proteins synthesized by endophytic bacteria. Tropical Plant Pathology, 38, 295-302. https://doi.org/10.1590/S1982-56762013005000011
  • López-Reyes, L., Carcaño-Montiel, M. G., Lilia, T. L., Medina-de la Rosa, G., & Armando, T. H. R. (2017). Antifungal & growth-promoting activity of Azospirillum brasilense in Zea mays L. ssp. mexicana. Archives of Phytopathology and Plant Protection, 50(13-14), 727-743. https://doi.org/10.1080/03235408.2017.1372247
  • Louden, B. C., Haarmann, D., & Lynne, A. M. (2011). Siderofor tespiti için mavi agar CAS testinin kullanımı. Mikrobiyoloji ve Biyoloji Eğitimi Dergisi, 12, 51-53. https://doi.org/10.1128/jmbe.v12i1.249
  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  • Masalha, J., Kosegarten, H., Elmaci, Ö., & Mengel, K. (2000). The central role of microbial activity for iron acquisition in maize & sunflower. Biology and Fertility of Soils, 30(5-6), 433-439. https://doi.org/10.1007/s003740050021
  • Meena, K. R., & Kanwar, S. S. (2015). Lipopeptides as antifungal & antibacterial agents: applications in food safety & therapeutics. BioMed Research International, 2015, 1-9. https://doi.org/10.1155/2015/473050
  • Mehta, S., & Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43, 51-56. https://doi.org/10.1007/s002840010259
  • Michelsen, C. F., & Stougaard, P. (2012). Hydrogen cyanide synthesis & antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium. Canadian Journal of Microbiology, 58(4), 381-390. https://doi.org/10.1139/w2012-004
  • Mirik, M., Aysan, Y., & Cinar, O. (2008). Biological control of bacterial spot disease of pepper with Bacillus strains. Turkish Journal of Agriculture and Forestry, 32(5), 381-390.
  • Mokrani, S., Rai, A., Belabid, L., Cherif, A., Cherif, H., Mahjoubi, M., & Nabti, E. (2019). Pseudomonas diversity in Western Algeria: role in stimulation of bean germination & biocontrol of common bean blight. European Journal of Plant Pathology, 153(2), 397-415. https://doi.org/10.1007/s10658-018-1566-9
  • Moss, W. P., Byrne, J. M., Campbell, H. L., Ji, P., Bonas, U., Jones, J. B., & Wilson, M. (2007). Biological control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biological Control, 41(2), 199-206. https://doi.org/10.1016/j.biocontrol.2007.01.008
  • Munhoz, L. D., Fonteque, J. P., Santos, I. M. O., Navarro, M. O. P., Simionato, A. S., Goya, E. T., Rezende, M. I., Balbi-Peña, M. M., Isabel de Oliveira, A. G., & Andrade, G. (2017). Control of bacterial stem rot on tomato by extracellular bioactive compounds produced by Pseudomonas aeruginosa LV strain. Cogent Food & Agriculture, 3(1), 1282592. https://doi.org/10.1080/23311932.2017.1282592
  • Nandi, M., Selin, C., Brassinga, A. K. C., Belmonte, M. F., Fernando, W. D., Loewen, P. C., & De Kievit, T. R. (2015). Pyrrolnitrin & hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal & repellent activity against Caenorhabditis elegans. PLOS ONE, 10(4), e0123184. https://doi.org/10.1371/journal.pone.0123184
  • Parmar, P., & Sindhu, S. S. (2013). Potassium solubilisation by rhizosphere bacteria: Influence of nutritional & environmental conditions. Journal of Microbiology Research, 3(1), 25-31.
  • Penrose, D. M., & Glick, B. R. (2003). Methods for isolating & characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10-15. http://doi.org/10.1034/j.1399-3054.2003.00086.x
  • Pichard, B., Larue, J. P., & Thouvenot, D. (1995). Gavaserin & saltavalin, Bacillus polymyxa tarafından üretilen yeni peptit antibiyotiklerdir. FEMS Microbiology Letters, 133, 215-218. https://doi.org/10.1111/j.1574-6968.1995.tb07887.x
  • Pohronezny, K., Moss, M. A., Dankers, W. W., & Schenk, J. (1990). Dispersal & management of Xanthomonas campestris pv. vesicatoria during thinning of direct-seeded tomato. Plant Disease, 74, 800-805. https://doi.org/10.1094/pd-74-0800
  • Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., Vallad, G. E., & Jones, J. B. (2015). Bacterial spot of tomato & pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16(9), 907-920. https://doi.org/10.1111/mpp.12244
  • Prashar, P., Kapoor, N., & Sachdeva, S. (2014). Rhizosphere: its structure, bacterial diversity & significance. Reviews in Environmental Science and Bio/Technology, 13, 63-77. https://doi.org/10.1007/s11157-013-9317-z
  • Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A., & Antonius, S. (2023). IAA & ACC deaminase-producing bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic & biotic stresses. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16306
  • Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B., & Cammue, B. P. (2020). Screening for novel biocontrol agents applicable in plant disease management. Biological Control, 144, 104240. https://doi.org/10.1016/j.biocontrol.2020.104240
  • Rosenblueth, M., & Martínez-Romero, E. (2006). Bakteriyel endofitler & konaklarla etkileşimleri. Molecular Plant-Microbe Interactions, 19, 827-837. https://doi.org/10.1094/mpmi-19-0827
  • Saha, S., Roy, R. N., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapia & grass carp. Aquaculture Research, 37(4), 380-388. https://doi.org/10.1111/j.1365-2109.2006.01442.x
  • Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note #101, Newark, DE, USA.
  • Sheng, M. M., Jia, H. K., Zhang, G. Y., Zeng, L. N., Zhang, T. T., Long, Y. H., Lan, J., Hu, Z. Q., Zeng, Z., Wang, B., & Liu, H. M. (2020). Siderophore production by rhizosphere biological control bacteria Brevibacillus brevis GZDF3 of Pinellia ternata & its antifungal effects on Candida albicans. Journal of Microbiology and Biotechnology, 30(5), 689-699. https://doi.org/10.4014/jmb.1910.10066
  • Subramanian, S., & Smith, D. L. (2015). Bacteriocins from the rhizosphere microbiome from an agricultural perspective. Frontiers in Plant Science, 6, 909. https://doi.org/10.3389/fpls.2015.00909
  • Sunyar, B., Dönmez, M. F., & Çoruh, İ. (2021). Iğdır’da domates (Solanum lycopersicon L.)’te hastalığa neden olan bakterilerin izolasyonu & tanısı. Journal of Agriculture, 4(2), 108-129. https://doi.org/10.46876/ja.1015781
  • Sunyar, B., Yeşildağ, M. F., & Alma, M. H. (2024). Effectiveness of Bacillus & Pseudomonas strains in biological control of common bacterial blight disease in common bean (Phaseolus vulgaris L.). Journal of Crop Health, 76(6), 1357-1372. https://doi.org/10.1007/s10343-024-01064-x
  • Şahin, F. (1997). Detection, identification and characterization of strains of Xanthomonas campestris pv. vesicatoria by traditional and molecular methods, and resistance in Capsicum species to Xanthomonas campestris pv. vesicatoria pepper race 6. PhD Thesis, The Ohio State University, 181 s.
  • Şahin, F. (2001). Pepper races 7, 8 and 10 of Xanthomonas axonopodis pv. vesicatoria isolated from diseased pepper plants in Turkey. Plant Pathology, 50(6), 809. https://doi.org/10.1046/j.1365-3059.2001.00632.x
  • Şahin, F., Dursun, A., & Aysan, Y. (2004). Characterization of Xanthomonas axonopodis pv. vesicatoria strains isolated from pepper during 1998-2002 in Turkey. Plant Protection Towards the 21st Century, Proceedings of the 15th International Plant Protection Congress, Pekin, Çin, s. 530.
  • Timmusk, S., van West, P., Gow, N. A. R., & Huffstutler, R. P. (2009). Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora & Pythium aphanidermatum. Journal of Applied Microbiology, 106, 1473-1481. https://doi.org/10.1111/j.1365-2672.2009.04123.x
  • Townsend, G. R., & Heuberger, J. W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter, 27, 340-343.
  • Tsolakidou, M. D., Pantelides, L. S., Tzima, A. K., Kang, S., Paplomatas, E. J., & Tsaltas, D. (2019). Disruption and overexpression of the gene encoding ACC deaminase in Verticillium dahliae reveals role of ACC in virulence & plant defense. Molecular Plant-Microbe Interactions, 32(6), 639-653. https://doi.org/10.1094/mpmi-07-18-0203-r
  • Ullah, A., Mushtaq, H., Fahad, S., Hakima, Shah, A., & Chaudhary, H. J. (2017). Plant growth-promoting potential of bacterial endophytes in association with Olea ferruginea & Withania coagulans. Microbiology, 86, 119-127. https://doi.org/10.1134/s0026261717010155
  • Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. The European Journal of Plant Pathology, 119, 243-254. http://doi.org/10.1007/978-1-4020-6776-1_2
  • Villacieros, M., Power, B., Sánchez-Contreras, M., Lloret, J., Oruezabal, R. I., Martín, M., & Rivilla, R. (2003). Colonization behaviour of Pseudomonas fluorescens & Sinorhizobium meliloti in the alfalfa rhizosphere. Plant and Soil, 251(1), 47-54. https://doi.org/10.1023/a:1022943708794
  • Wang, X., Li, Q., Sui, J., Zhang, J., Liu, Z., Du, J., & Liu, X. (2019). Isolation & characterization of antagonistic bacteria Paenibacillus jamilae HS-26 and their effects on plant growth. BioMed Research International, 2019, 5-10. https://doi.org/10.1155/2019/3638926
  • Wang, X., Wang, L., Wang, J., Jin, P., Liu, H., & Zheng, Y. (2014). Bacillus cereus AR156-induced resistance to Colletotrichum acutatum in loquat fruit. PLoS ONE, 9(11), e112494. https://doi.org/10.1371/journal.pone.0112494
  • Watanabe, M., Suzuki, A., Komori, S., & Bessho, H. (2004). Comparison of endogenous IAA and cytokinins in shoots of columnar & normal type apple trees. Journal of the Japanese Society for Horticultural Science, 73(1), 19-24. https://doi.org/10.2503/jjshs.73.19
  • Widnyana, I. K. (2018). PGPR benefits in germination, growth & yield of tomato plants. Recent Advances in Tomato Breeding and Production, 17-25. http://dx.doi.org/10.5772/intechopen.78776
  • Yıldırım, B., Dönmez, M. F., Sunyar, B., & Çoruh, İ. (2022). Bitki gelişimini teşvik eden bakteriler: bazı fasulye çeşitlerinin tarımsal karakterleri üzerine etkileri. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 28(3), 616-632. https://doi.org/10.37908/mkutbd.1307958
  • Yim, W. J., Kim, K. Y., Lee, Y. W., Sundaram, S. P., Lee, Y., & Sa, T. M. (2014). Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato challenged with Xanthomonas campestris pv. vesicatoria. Journal of Plant Physiology, 171(12), 1064-1075. https://doi.org/10.1016/j.jplph.2014.03.009

Biological Control of Bacterial Spot Disease (Xanthomonas axonopodis pv. vesicatoria) in Pepper (Capsicum annum L.) Using Antagonistic Bacteria

Year 2025, Volume: 8 Issue: 2, 122 - 144, 29.12.2025
https://doi.org/10.46876/ja.1818894

Abstract

In this study, it was aimed to determine antagonistic bacterial strains with biological control potential against Xanthomonas axonopodis pv. vesicatoria, the causal agent of bacterial spot disease that leads to significant yield losses in pepper cultivation areas. A total of 26 pathogenic strains were obtained from diseased pepper plants. In addition, 53 candidate antagonistic bacterial strains were isolated from the roots and leaves of healthy pepper plants and from common weed species found in pepper-growing areas. The pathogenic and candidate antagonistic bacterial strains were identified by fatty acid methyl ester (FAME) analysis. According to pathogenicity tests, strain AK-17 was determined to have the highest virulence and was used in in vitro antagonism assays. As a result of these tests, nine strains were found to inhibit the growth of Xanthomonas axonopodis pv. vesicatoria, forming inhibition zones ranging from 10.3 to 20.3 mm. These strains were identified as belonging to the genera Bacillus, Pseudomonas and Paenibacillus, with the highest antibacterial effect observed in Paenibacillus validus strain DYS-20, which produced an inhibition zone of 20.3 mm. Additionally, the bacteria exhibiting antagonistic activity against the pathogen were found to possess plant growth-promoting traits such as nitrogen fixation, phosphorus and potassium solubilization, and ACC deaminase activity. Moreover, the in vitro biocontrol mechanisms of the strains (chitinase, protease, cellulase, siderophore and HCN production) were also investigated. The findings indicate that the antagonistic bacterial strains have the potential to be used as biocontrol agents in the management of bacterial spot disease in pepper by both suppressing pathogen growth and promoting plant development.

References

  • Abbasi, P. A., & Weselowski, B. (2015). Efficacy of Bacillus subtilis QST 713 formulations, copper hydroxide, and their tank mixes on bacterial spot of tomato. Crop Protection, 74, 70-76. https://doi.org/10.1016/j.cropro.2015.04.009
  • Abd El-Rahman, A. F., Shaheen, H. A., Abd El-Aziz, R. M., El-Deeb, B., & Khalil, M. S. (2019). Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egyptian Journal of Biological Pest Control, 29, 41. https://doi.org/10.1186/s41938-019-0143-7
  • Abo-Elyousr, K. A., Bagy, H. M. K., Hashem, M., Alamri, S. A., & Mostafa, Y. S. (2019). Biological control of the tomato wilt caused by Clavibacter michiganensis subsp. michiganensis using formulated plant growth-promoting bacteria. Egyptian Journal of Biological Pest Control, 29(1), 1-8. https://doi.org/10.1186/s41938-019-0152-6
  • Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  • Akat, S., & Özaktan, H. (2011). Domates bakteriyel kanser ve solgunluk hastalığıyla [Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al.] biyolojik mücadelede bakteriyel antagonistlerin etkinliğinin araştırılması. Türkiye Biyolojik Mücadele Dergisi, 2(1), 3-18.
  • Akbaba, M. (2014). Bitki gelişimini artıran bakteriyel endofitlerin hıyar bakteriyel köşeli yaprak leke hastalığının (Pseudomonas syringae pv. lachrymans) önlenmesinde kullanılma olanakları. Yüksek Lisans Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, 139 s.
  • Al-Dahmani, J. H., Abbasi, P. A., Miller, S. A., & Hoitink, H. A. (2003). Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease, 87(8), 913-919. https://doi.org/10.1094/PDIS.2003.87.8.913
  • Almast, E. (2023). Domates bakteriyel yaprak lekesi hastalığının (Xanthomonas axonopodis pv. vesicatoria) antagonist bakteri strainleri ile biyolojik mücadelesi. Yüksek Lisans Tezi, Iğdır Üniversitesi, Lisansüstü Eğitim Enstitüsü, Iğdır, 56 s.
  • Alpago, Ö., Dönmez, M. F., Sunyar, B., & Çoruh, İ. (2023). Bitki gelişimini uyaran bakterilerin kıvırcık marul (Lactuca sativa var. crispa) gelişimine etkisinin belirlenmesi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 9(3), 300-310. https://doi.org/10.24180/ijaws.1297251
  • Ameziane, N., Boubaker, H., Boudyach, H., Msanda, F., Jilal, A., & Benaoumar, A. A. (2007). Antifungal activity of Moroccan plants against citrus fruit pathogens. Agronomy for Sustainable Development, 27(3), 273-277. https://doi.org/10.1051/agro:2007022
  • Amkraz, N., Boudyach, E. H., Boubaker, H., Bouizgarne, B., & Aoumar, A. A. B. (2010). Screening for fluorescent pseudomonades isolated from the rhizosphere of tomato for antagonistic activity toward Clavibacter michiganensis subsp. michiganensis. World Journal of Microbiology and Biotechnology, 26(6), 1059-1065. https://doi.org/10.1007/s11274-009-0270-5
  • Anak, H. (2025). Endofit bakterilerin fasulye solgunluk hastalığının (Curtobacterium flaccumfaciens pv. flaccumfaciens) biyolojik mücadelesinde etkinliğinin araştırılması. Doktora Tezi, Iğdır Üniversitesi, Lisansüstü Eğitim Enstitüsü, Iğdır, 138 s.
  • Anand, A., Chinchilla, D., Tan, C., Mène-Saffrané, L., L’Haridon, F., & Weisskopf, L. (2020). Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms, 8(8), 1144. https://doi.org/10.3390/microorganisms8081144
  • Areas, M. S., Gonçalves, R. M., Soman, J. M., Sakate, R. K., Gioria, R., da Silva Júnior, T. A., & Maringoni, A. C. (2015). Prevalence of Xanthomonas euvesicatoria on pepper in Brazil. Journal of Phytopathology, 163(11-12), 1050-1054. https://doi.org/10.1111/jph.12349
  • Arya, N., Rana, A., Rajwar, A., & Kumar, S. (2018). Biocontrol efficacy of siderophore producing indigenous Pseudomonas strains against Fusarium wilt in tomato. National Academy Science Letters, 41(2), 133-136. https://doi.org/10.1007/s40009-018-0630-5
  • Aysan, Y., & Sahin, F. (2003). Occurrence of bacterial spot disease caused by Xanthomonas axonopodis pv. vesicatoria on pepper in the eastern Mediterranean region of Turkey. Plant Pathology, 52(6), 781. https://doi.org/10.1111/j.1365-3059.2003.00890.x
  • Bae, J. Y., Wu, J., Lee, H. J., Jo, E. J., Murugaiyan, S., Chung, E., & Lee, S. W. (2012). Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. Journal Microbiol. Biotechnol, 22(12), 1613-1620. http://dx.doi.org/10.4014/jmb.1208.08072
  • Bakker, A. W., & Schippers, B. (1987). Patates verim azalması ve Pseudomonas spp. aracılı bitki büyüme uyarımı ile ilişkili olarak rizosferde mikrobiyal siyanür üretimi. Toprak Biyolojisi ve Biyokimyası, 19, 451-457. https://doi.org/10.1016/0038-0717(87)90037-X
  • Berg, G., Roskot, N., Steidle, A., Eberl, L., Zock, A., & Smalla, K. (2002). Farklı Verticillium konak bitkilerinden izole edilen antagonistik rizobakterilerin bitkiye bağlı genotip ve fenotip çeşitliliği. Applied and Environmental Microbiology, 68, 3328-3338. https://doi.org/10.1128/aem.68.7.3328-3338.2002
  • Black, R., Seal, S., Abubakar, Z., Nono-Womdim, R., & Swai, I. (2001). Bacterial spot (Xanthomonas campestris pv. vesicatoria) of tomato and sweet pepper in Tanzania. Plant Pathology, 50, 810. https://doi.org/10.1046/j.1365-3059.2001.00633.x
  • Blake, C., Christensen, M. N., & Kovács, Á. T. (2021). Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions, 34(1), 15-25. https://doi.org/10.1094/mpmi-08-20-0225-cr
  • Bloemberg, G. V., & Lugtenberg, B. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4(4), 343-350. https://doi.org/10.1016/s1369-5266(00)00183-7
  • Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170-177. http://doi.org/10.1007/s002039900127
  • Boch, J., & Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annual Review of Phytopathology, 48, 419-436. https://doi.org/10.1146/annurev-phyto-080508-081936
  • Bonas, U., Van den Ackerveken, G., Büttner, D., Hahn, K., Marois, E., Nennstiel, D., Noel, L., Rossier, O., & Szurek, B. (2000). How the bacterial plant pathogen Xanthomonas campestris pv. vesicatoria conquers the host. Molecular Plant Pathology, 1, 73-76. https://doi.org/10.1046/j.1364-3703.2000.00010.x
  • Boudyach, E. H., Fatmi, M., Akhayat, O., Benizri, E., & Aoumar, A. A. B. (2001). Selection of antagonistic bacteria of Clavibacter michiganensis subsp. michiganensis and evaluation of their efficiency against bacterial canker of tomato. Biocontrol Science and Technology, 11(1), 141-149. https://doi.org/10.1080/09583150020029817
  • Butcher, R. A., Schroeder, F. C., Fischbach, M. A., Straight, P. D., Kolter, R., Walsh, C. T., & Clardy, J. (2007). The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proceedings of the National Academy of Sciences, 104(5), 1506-1509. https://doi.org/10.1073/pnas.0610503104
  • Büttner, D., & Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34(2), 107-133. https://doi.org/10.1111/j.1574-6976.2009.00192.x
  • Byrne, J. M., Dianese, A. C., Ji, P., Campbell, H. L., Cuppels, D. A., Louws, F. J., Miller, S. A., Jones, J. B., & Wilson, M. (2005). Biological control of bacterial spot of tomato under field conditions at several locations in North America. Biological Control, 32(3), 408-418. https://doi.org/10.1016/j.biocontrol.2004.12.001
  • Cattelan, A. J., Hartel, P. G., & Fuhrmann, J. J. (1999). Bitki büyümesinin taranması – erken soya fasulyesi büyümesini desteklemek için rizobakterilerin teşvik edilmesi. Toprak Bilimi Derneği Amerikan Dergisi, 63, 1670-1680. https://doi.org/10.2136/sssaj1999.6361670x
  • Chen, X., Wang, G., Xu, M., Jin, J., & Liu, X. (2010). Soya fasulyesi köksapından izole edilen Paenibacillus polymyxa BRF-1 tarafından üretilen antifungal peptit. African Journal of Microbiology Research, 4, 2692-2698.
  • Chen, J., Wu, Q., Hua, Y., Chen, J., Zhang, H., & Wang, H. (2017). Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Applied Microbiology and Biotechnology, 101(23-24), 8309-8319. https://doi.org/10.1007/s00253-017-8554-4
  • Cronin, D., Moënne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., & O'Gara, F. (1997). Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiology Ecology, 23(2), 95-106. https://doi.org/10.1111/j.1574-6941.1997.tb00394.x
  • Çakmakçı, R., Erdoğan, Ü., Kotan, R., Oral, B., & Dönmez, F. (2008). Diversity of heterotrophic nitrogen-fixing bacteria in wild raspberry rhizosphere soils in the Çoruh Valley. 4th National Plant Nutrition and Fertilizer Congress, 8-10. https://doi.org/10.1007/s11104-010-0295-4
  • Dadaşoğlu, F., Joy, J. F. M., Özyurt, G., & Kotan, R. (2020). In vitro effect of bacterial biocontrol organisms against Pectobacterium carotovorum on potato. Journal of Agricultural Production, 1(1), 8-11. https://doi.org/10.29329/agripro.2020.341.3
  • Döbereiner, J. (1989). Isolation and identification of root associated diazotrophs. İçinde: Nitrogen Fixation with Non-Legumes (Ed. F. A. Skinner), Klawer, Dordrecht, 103-108. https://doi.org/10.1007/978-94-009-0889-5_13
  • Dönmez, M. F., & Aliyeva, Z. (2023). Biological control of bean halo blight disease (Pseudomonas savastanoi pv. phaseolicola) with antagonist bacterial strains. Gesunde Pflanzen, 75(4), 815-824. https://doi.org/10.1007/s10343-022-00746-8
  • Duman, A. D., Zorlugenç, B., & Evliya, B. (2002). Kahramanmaraş’ta kırmızı biberin önemi ve sorunları. KSÜ Fen ve Mühendislik Dergisi, 5(1), 111-117.
  • Elhalag, K. M., Messiha, N. A. S., Emara, H. M., & Abdallah, S. A. (2016). Evaluation of antibacterial activity of Stenotrophomonas maltophilia against Ralstonia solanacearum under different application conditions. Journal of Applied Microbiology, 120(6), 1629-1645. http://doi.org/10.1111/jam.13097
  • EPPO. (2013). European and Mediterranean Plant Protection Organization (EPPO). Plant Quarantine, Xanthomonas campestris pv. vesicatoria. EPPO Bulletin, 18, 521-526.
  • Ertekin, Ç. (2016). Orta Karadeniz bölgesinde hale yanıklığı (Pseudomonas savastanoi pv. phaseolicola) ile adi yaprak yanıklığı (Xanthomonas axonopodis pv. phaseoli) etmenlerinin belirlenmesi ve fasulye hatlarının bu hastalıklara karşı reaksiyonları. Doktora Tezi, Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Tokat.
  • Estrada-De Los Santos, P., Bustillos-Cristales, R., & Caballero-Mellado, J. (2001). Burkholderia, geniş çevresel ve coğrafi dağılıma sahip bitki ilişkili azot sabitleyiciler açısından zengin bir cinstir. Applied and Environmental Microbiology, 67, 2790-2798. https://doi.org/10.1128/aem.67.6.2790-2798.2001
  • Etesami, H., Jeong, B. R., & Glick, B. R. (2023). Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 102048. https://doi.org/10.1016/j.pmpp.2023.102048
  • Fernandez, M., Godino, A., Prìncipe, A., Morales, G. M., & Fischer, S. (2017). Effect of a Pseudomonas fluorescens tailocin against phytopathogenic Xanthomonas observed by atomic force microscopy. Journal of Biotechnology, 256, 13-20. https://doi.org/10.1016/j.jbiotec.2017.07.002
  • Ferraz, H. G. M., Resende, R. S., Silveira, P. R., Andrade, C. C. L., Milagres, E. A., Oliveira, J. R., & Rodrigues, F. D. Á. (2014). Rhizobacteria induces resistance against Fusarium wilt of tomato by increasing the activity of defense enzymes. Bragantia, 73, 274-283. https://doi.org/10.1590/1678-4499.0124
  • Ferreira, C. M., López-Rayo, S., Lucena, J. J., Soares, E. V., & Soares, H. M. (2019). Evaluation of the efficacy of two new biotechnological-based freeze-dried fertilizers for sustainable Fe deficiency correction of soybean plants grown in calcareous soils. Frontiers in Plant Science, 10, 1335. https://doi.org/10.3389/fpls.2019.01335
  • Fira, D., Dimkić, I., Berić, T., Lozo, J., & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285, 44-55. https://doi.org/10.1016/j.jbiotec.2018.07.044
  • Fischer, S., Godino, A., Quesada, J. M., Cordero, P., Jofre, E., Mori, G., & Espinosa-Urgel, M. (2012). Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology, 158(6), 1493-1503. https://doi.org/10.1099/mic.0.056002-0
  • Gautam, S., Chauhan, A., Sharma, R., Sehgal, R., & Shirkot, C. K. (2019). Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Microbial Pathogenesis, 130, 196-203. https://doi.org/10.1016/j.micpath.2019.03.006
  • Godino, A., Prìncipe, A., & Fischer, S. (2016). A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere. Research in Microbiology, 167(3), 178-189. https://doi.org/10.1016/j.resmic.2015.12.003
  • Gürbüz, R., Alma, M. H., Alptekin, H., & Tülek, C. (2024). Performance of some organic mulch materials for weed suppression, soil conditions and yield in Capsicum annuum L. cultivation. Journal of the Institute of Science and Technology, 14(1), 18-38. https://doi.org/10.21597/jist.1326729
  • Hammami, I., Rhouma, A., Jaouadi, B., Rebai, A., & Nesme, X. (2009). Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Letters in Applied Microbiology, 48(2), 253-260. https://doi.org/10.1111/j.1472-765X.2008.02524.x
  • Harrison, R. L., & Bonning, B. C. (2010). Proteases as insecticidal agents. Toxins, 2(5), 935-953. https://doi.org/10.3390/toxins2050935
  • Hert, A. P., Marutani, M., Momol, M. T., Roberts, P. D., Olson, S. M., & Jones, J. B. (2009). Suppression of the bacterial spot pathogen Xanthomonas euvesicatoria on tomato leaves by an attenuated mutant of Xanthomonas perforans. Applied and Environmental Microbiology, 75(10), 3323-3330. https://doi.org/10.1128/AEM.02399-08
  • Hong, C. E., Kwon, S. Y., & Park, J. M. (2016). Paenibacillus polymyxa AC-1'in Pseudomonas syringae'ye karşı biyokontrol aktivitesi ve Arabidopsis thaliana ile etkileşimi. Microbiological Research, 185, 13-21. https://doi.org/10.1016/j.micres.2016.01.004
  • Im, S. M., Yu, N. H., Joen, H. W., Kim, S. O., Park, H. W., Park, A. R., & Kim, J. C. (2020). Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08. Pesticide Biochemistry and Physiology, 163, 130-137. https://doi.org/10.1016/j.pestbp.2019.11.007
  • Jamiołkowska, A. (2020). Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy, 10(2), 173. https://doi.org/10.3390/agronomy10020173
  • Jones, J. B., Bouzar, H., Stall, R. E., Almira, E. C., Roberts, P. D., Bowen, B. W., Sudberry, J., Strickler, P. M., & Chun, J. (2000). Systematic analysis of Xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. International Journal of Systematic and Evolutionary Microbiology, 50(3), 1211-1219. https://doi.org/10.1099/00207713-50-3-1211
  • Joseph, B., Patra, R. R., & Lawrence, R. (2007). Characterization of plant growth-promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production, 1(2), 141-152.
  • Junker, R. R., Loewel, C., Gross, R., Dötterl, S., Keller, A., & Blüthgen, N. (2011). Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biology, 13(6), 918-924. https://doi.org/10.1111/j.1438-8677.2011.00454.x
  • Kavitha, S., Senthilkumar, S., Gnanamanickam, S., Inayathullah, M., & Jayakumar, R. (2005). Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochemistry, 40(10), 3236-3243. https://doi.org/10.1016/j.procbio.2005.03.060
  • Khalid, M., Hassani, D., Bilal, M., Asad, F., & Huang, D. (2017). Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L. Botanical Studies, 58(1), 35. https://doi.org/10.1186/s40529-017-0189-3
  • Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi – current perspective. Archives of Agronomy and Soil Science, 56(1), 73-78. https://doi.org/10.1080/03650340902806469
  • Kim, S. G., Khan, Z., Jeon, Y. H., & Kim, Y. H. (2009). Inhibitory effect of Paenibacillus polymyxa GBR-462 on Phytophthora capsici, the causal agent of phytophthora blight in hot pepper. Journal of Phytopathology, 157, 229-237. https://doi.org/10.1111/j.1439-0434.2008.01490.x
  • Klement, Z., Farkas, G. L., & Lovrekovich, L. (1964). Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology, 54, 474-479.
  • Koçak, R., & Salman, Ö. (2023). Bazı endofitik ve rizosferik bakterilerin fasulyede Macrophomina phaseolina’ya karşı etkinliklerinin in vitro koşullarda belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 27(1), 42-51. https://doi.org/10.29050/harranziraat.1195672
  • Kuklinsky-Sobral, J., Araújo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A., & Azevedo, J. L. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 6, 1244-1251. https://doi.org/10.1111/j.1462-2920.2004.00658.x
  • Kundan, R., Pant, G., Jadon, N., & Agrawal, P. K. (2015). Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Fertilizers & Pesticides, 6(2), 9. http://doi.org/10.4172/2471-2728.1000155
  • Kuzu, S. B., Güvenmez, H. K., & Denizci, A. A. (2012). Production of a thermostable and alkaline chitinase by Bacillus thuringiensis subsp. kurstaki strain HBK-51. Biotechnology Research International, 2012(1), 135498. https://doi.org/10.1155/2012/135498
  • Laird, M., Piccoli, D., Weselowski, B., McDowell, T., Renaud, J., MacDonald, J., & Yuan, Z. C. (2020). Surfactin-producing Bacillus velezensis 1B-23 & Bacillus sp. 1D-12 protect tomato against bacterial canker caused by Clavibacter michiganensis subsp. michiganensis. Journal of Plant Pathology, 102(2), 451-458. https://doi.org/10.1007/s42161-019-00461-w
  • Lamichhane, J. R., Balestra, G. M., & Varvaro, L. (2010). First report of bacterial spot caused by Xanthomonas campestris pv. vesicatoria race 2 on tomato in Nepal. New Disease Reports, 22(25). https://doi.org/10.5197/j.2044-0588.2010.022.025
  • Lanna Filho, R., Romeiro, R. S., & Alves, E. (2010). Bacterial spot & early blight biocontrol by epiphytic bacteria in tomato plants. Pesquisa Agropecuária Brasileira, 45, 1381-1387. https://doi.org/10.1590/S0100-204X2010001200007
  • Lanna Filho, R., Souza, R. M., Magalhães, M. M., Villela, L., Zanotto, E., Ribeiro-Júnior, P. M., & Resende, M. L. (2013). Induced defense responses in tomato against bacterial spot by proteins synthesized by endophytic bacteria. Tropical Plant Pathology, 38, 295-302. https://doi.org/10.1590/S1982-56762013005000011
  • López-Reyes, L., Carcaño-Montiel, M. G., Lilia, T. L., Medina-de la Rosa, G., & Armando, T. H. R. (2017). Antifungal & growth-promoting activity of Azospirillum brasilense in Zea mays L. ssp. mexicana. Archives of Phytopathology and Plant Protection, 50(13-14), 727-743. https://doi.org/10.1080/03235408.2017.1372247
  • Louden, B. C., Haarmann, D., & Lynne, A. M. (2011). Siderofor tespiti için mavi agar CAS testinin kullanımı. Mikrobiyoloji ve Biyoloji Eğitimi Dergisi, 12, 51-53. https://doi.org/10.1128/jmbe.v12i1.249
  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  • Masalha, J., Kosegarten, H., Elmaci, Ö., & Mengel, K. (2000). The central role of microbial activity for iron acquisition in maize & sunflower. Biology and Fertility of Soils, 30(5-6), 433-439. https://doi.org/10.1007/s003740050021
  • Meena, K. R., & Kanwar, S. S. (2015). Lipopeptides as antifungal & antibacterial agents: applications in food safety & therapeutics. BioMed Research International, 2015, 1-9. https://doi.org/10.1155/2015/473050
  • Mehta, S., & Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43, 51-56. https://doi.org/10.1007/s002840010259
  • Michelsen, C. F., & Stougaard, P. (2012). Hydrogen cyanide synthesis & antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium. Canadian Journal of Microbiology, 58(4), 381-390. https://doi.org/10.1139/w2012-004
  • Mirik, M., Aysan, Y., & Cinar, O. (2008). Biological control of bacterial spot disease of pepper with Bacillus strains. Turkish Journal of Agriculture and Forestry, 32(5), 381-390.
  • Mokrani, S., Rai, A., Belabid, L., Cherif, A., Cherif, H., Mahjoubi, M., & Nabti, E. (2019). Pseudomonas diversity in Western Algeria: role in stimulation of bean germination & biocontrol of common bean blight. European Journal of Plant Pathology, 153(2), 397-415. https://doi.org/10.1007/s10658-018-1566-9
  • Moss, W. P., Byrne, J. M., Campbell, H. L., Ji, P., Bonas, U., Jones, J. B., & Wilson, M. (2007). Biological control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biological Control, 41(2), 199-206. https://doi.org/10.1016/j.biocontrol.2007.01.008
  • Munhoz, L. D., Fonteque, J. P., Santos, I. M. O., Navarro, M. O. P., Simionato, A. S., Goya, E. T., Rezende, M. I., Balbi-Peña, M. M., Isabel de Oliveira, A. G., & Andrade, G. (2017). Control of bacterial stem rot on tomato by extracellular bioactive compounds produced by Pseudomonas aeruginosa LV strain. Cogent Food & Agriculture, 3(1), 1282592. https://doi.org/10.1080/23311932.2017.1282592
  • Nandi, M., Selin, C., Brassinga, A. K. C., Belmonte, M. F., Fernando, W. D., Loewen, P. C., & De Kievit, T. R. (2015). Pyrrolnitrin & hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal & repellent activity against Caenorhabditis elegans. PLOS ONE, 10(4), e0123184. https://doi.org/10.1371/journal.pone.0123184
  • Parmar, P., & Sindhu, S. S. (2013). Potassium solubilisation by rhizosphere bacteria: Influence of nutritional & environmental conditions. Journal of Microbiology Research, 3(1), 25-31.
  • Penrose, D. M., & Glick, B. R. (2003). Methods for isolating & characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10-15. http://doi.org/10.1034/j.1399-3054.2003.00086.x
  • Pichard, B., Larue, J. P., & Thouvenot, D. (1995). Gavaserin & saltavalin, Bacillus polymyxa tarafından üretilen yeni peptit antibiyotiklerdir. FEMS Microbiology Letters, 133, 215-218. https://doi.org/10.1111/j.1574-6968.1995.tb07887.x
  • Pohronezny, K., Moss, M. A., Dankers, W. W., & Schenk, J. (1990). Dispersal & management of Xanthomonas campestris pv. vesicatoria during thinning of direct-seeded tomato. Plant Disease, 74, 800-805. https://doi.org/10.1094/pd-74-0800
  • Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., Vallad, G. E., & Jones, J. B. (2015). Bacterial spot of tomato & pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16(9), 907-920. https://doi.org/10.1111/mpp.12244
  • Prashar, P., Kapoor, N., & Sachdeva, S. (2014). Rhizosphere: its structure, bacterial diversity & significance. Reviews in Environmental Science and Bio/Technology, 13, 63-77. https://doi.org/10.1007/s11157-013-9317-z
  • Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A., & Antonius, S. (2023). IAA & ACC deaminase-producing bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic & biotic stresses. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16306
  • Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B., & Cammue, B. P. (2020). Screening for novel biocontrol agents applicable in plant disease management. Biological Control, 144, 104240. https://doi.org/10.1016/j.biocontrol.2020.104240
  • Rosenblueth, M., & Martínez-Romero, E. (2006). Bakteriyel endofitler & konaklarla etkileşimleri. Molecular Plant-Microbe Interactions, 19, 827-837. https://doi.org/10.1094/mpmi-19-0827
  • Saha, S., Roy, R. N., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapia & grass carp. Aquaculture Research, 37(4), 380-388. https://doi.org/10.1111/j.1365-2109.2006.01442.x
  • Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note #101, Newark, DE, USA.
  • Sheng, M. M., Jia, H. K., Zhang, G. Y., Zeng, L. N., Zhang, T. T., Long, Y. H., Lan, J., Hu, Z. Q., Zeng, Z., Wang, B., & Liu, H. M. (2020). Siderophore production by rhizosphere biological control bacteria Brevibacillus brevis GZDF3 of Pinellia ternata & its antifungal effects on Candida albicans. Journal of Microbiology and Biotechnology, 30(5), 689-699. https://doi.org/10.4014/jmb.1910.10066
  • Subramanian, S., & Smith, D. L. (2015). Bacteriocins from the rhizosphere microbiome from an agricultural perspective. Frontiers in Plant Science, 6, 909. https://doi.org/10.3389/fpls.2015.00909
  • Sunyar, B., Dönmez, M. F., & Çoruh, İ. (2021). Iğdır’da domates (Solanum lycopersicon L.)’te hastalığa neden olan bakterilerin izolasyonu & tanısı. Journal of Agriculture, 4(2), 108-129. https://doi.org/10.46876/ja.1015781
  • Sunyar, B., Yeşildağ, M. F., & Alma, M. H. (2024). Effectiveness of Bacillus & Pseudomonas strains in biological control of common bacterial blight disease in common bean (Phaseolus vulgaris L.). Journal of Crop Health, 76(6), 1357-1372. https://doi.org/10.1007/s10343-024-01064-x
  • Şahin, F. (1997). Detection, identification and characterization of strains of Xanthomonas campestris pv. vesicatoria by traditional and molecular methods, and resistance in Capsicum species to Xanthomonas campestris pv. vesicatoria pepper race 6. PhD Thesis, The Ohio State University, 181 s.
  • Şahin, F. (2001). Pepper races 7, 8 and 10 of Xanthomonas axonopodis pv. vesicatoria isolated from diseased pepper plants in Turkey. Plant Pathology, 50(6), 809. https://doi.org/10.1046/j.1365-3059.2001.00632.x
  • Şahin, F., Dursun, A., & Aysan, Y. (2004). Characterization of Xanthomonas axonopodis pv. vesicatoria strains isolated from pepper during 1998-2002 in Turkey. Plant Protection Towards the 21st Century, Proceedings of the 15th International Plant Protection Congress, Pekin, Çin, s. 530.
  • Timmusk, S., van West, P., Gow, N. A. R., & Huffstutler, R. P. (2009). Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora & Pythium aphanidermatum. Journal of Applied Microbiology, 106, 1473-1481. https://doi.org/10.1111/j.1365-2672.2009.04123.x
  • Townsend, G. R., & Heuberger, J. W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter, 27, 340-343.
  • Tsolakidou, M. D., Pantelides, L. S., Tzima, A. K., Kang, S., Paplomatas, E. J., & Tsaltas, D. (2019). Disruption and overexpression of the gene encoding ACC deaminase in Verticillium dahliae reveals role of ACC in virulence & plant defense. Molecular Plant-Microbe Interactions, 32(6), 639-653. https://doi.org/10.1094/mpmi-07-18-0203-r
  • Ullah, A., Mushtaq, H., Fahad, S., Hakima, Shah, A., & Chaudhary, H. J. (2017). Plant growth-promoting potential of bacterial endophytes in association with Olea ferruginea & Withania coagulans. Microbiology, 86, 119-127. https://doi.org/10.1134/s0026261717010155
  • Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. The European Journal of Plant Pathology, 119, 243-254. http://doi.org/10.1007/978-1-4020-6776-1_2
  • Villacieros, M., Power, B., Sánchez-Contreras, M., Lloret, J., Oruezabal, R. I., Martín, M., & Rivilla, R. (2003). Colonization behaviour of Pseudomonas fluorescens & Sinorhizobium meliloti in the alfalfa rhizosphere. Plant and Soil, 251(1), 47-54. https://doi.org/10.1023/a:1022943708794
  • Wang, X., Li, Q., Sui, J., Zhang, J., Liu, Z., Du, J., & Liu, X. (2019). Isolation & characterization of antagonistic bacteria Paenibacillus jamilae HS-26 and their effects on plant growth. BioMed Research International, 2019, 5-10. https://doi.org/10.1155/2019/3638926
  • Wang, X., Wang, L., Wang, J., Jin, P., Liu, H., & Zheng, Y. (2014). Bacillus cereus AR156-induced resistance to Colletotrichum acutatum in loquat fruit. PLoS ONE, 9(11), e112494. https://doi.org/10.1371/journal.pone.0112494
  • Watanabe, M., Suzuki, A., Komori, S., & Bessho, H. (2004). Comparison of endogenous IAA and cytokinins in shoots of columnar & normal type apple trees. Journal of the Japanese Society for Horticultural Science, 73(1), 19-24. https://doi.org/10.2503/jjshs.73.19
  • Widnyana, I. K. (2018). PGPR benefits in germination, growth & yield of tomato plants. Recent Advances in Tomato Breeding and Production, 17-25. http://dx.doi.org/10.5772/intechopen.78776
  • Yıldırım, B., Dönmez, M. F., Sunyar, B., & Çoruh, İ. (2022). Bitki gelişimini teşvik eden bakteriler: bazı fasulye çeşitlerinin tarımsal karakterleri üzerine etkileri. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 28(3), 616-632. https://doi.org/10.37908/mkutbd.1307958
  • Yim, W. J., Kim, K. Y., Lee, Y. W., Sundaram, S. P., Lee, Y., & Sa, T. M. (2014). Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato challenged with Xanthomonas campestris pv. vesicatoria. Journal of Plant Physiology, 171(12), 1064-1075. https://doi.org/10.1016/j.jplph.2014.03.009
There are 115 citations in total.

Details

Primary Language Turkish
Subjects Phytopathology
Journal Section Research Article
Authors

Büşran Sunyar 0000-0001-8524-3308

Mesude Figen Dönmez 0000-0002-7992-8252

Submission Date November 7, 2025
Acceptance Date December 24, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Sunyar, B., & Dönmez, M. F. (2025). Biber (Capsicum annum L.) Bitkisinde Bakteriyel Leke Hastalık (Xanthomonas axonopodis pv. vesicatoria)’ının Antagonistik Bakterilerle Biyolojik Kontrolü. Journal of Agriculture, 8(2), 122-144. https://doi.org/10.46876/ja.1818894