Research Article
BibTex RIS Cite

Flood Prioritization Watersheds of the Aras River, Based on Geomorphometric Properties: Case Study Iğdır Province

Year 2021, Issue: 6, 21 - 40, 15.04.2021
https://doi.org/10.46453/jader.781152

Abstract

Drainage watershed morphometry plays a major role in terms of understanding flood dynamics. Flood potentials are explained considering the linear, areal, and relief morphometry features of the watersheds. In general, there are number of geomorphometric indices in the description of these features. The formal geometries, geomorphology, geology, and general climate characteristics, etc., which play a decisive role in the flood potential in the watershed, can be determined relatively with morphometric indices. In this study, 35 different river watersheds draining their waters to the Aras, located in the center of Iğdır Province, were examined. Geographic information systems (GIS) and statistical software were chosen to analyze and calculate indices for this research. Flood events occur in these 35 different river watersheds and this study evaluates river watersheds in terms of their flood potential using 14 different indices. In the evaluation of the results obtained, the values that have a high impact on the floods are ranked according to their priorities. These results were evaluated in terms of flood priorities using morphometric analysis and principal component analysis methods. Flood priorities of watersheds, obtained through two different methods, are classified as high, medium, or low priorities. The number of common watersheds, determined based on two different methods, is 8 in river watersheds with "high" priority, 11 in river watersheds with "medium" priority, and 7 in river watersheds with "low" priority. According to these results, it is seen that river watersheds with high priority flood potential correspond to the areas where flood events occurred.

References

  • Abdeta, G. C., Tesemma, A. B., Tura, A. L., Atlabachew, G.H. (2020) Morphometric analysis for prioritizing sub-watersheds and management planning and practices in Gidabo Basin, Southern Rift Valley of Ethiopia. Appl Water Sci. 10(7):1–15.
  • Ajibade, L., Ifabiyi, L., Iroye, K., Ogunteru, S. (2010) Morphometric Analysis of Ogunpa and Ogbere Drainage Basins, Ibadan, Nigeria. Ethiop. J. Environ. Stud. Manag. 3. https://doi.org/10.4314/ejesm.v3i1.54392
  • Amiri, M., Pourghasemi., H. R., Arabameri, A., Vazirzadeh, A., Yousefi, H., Kafaei, S. (2019) Prioritization of Flood Inundation of Maharloo Watershed in Iran Using Morphometric Parameters Analysis and TOPSIS MCDM Model. Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-815226-3.00016-8
  • Azzoni, R.S., Fugazza, D., Garzonio, C. A., Nicoll, K., Diolaiuti, G. A., Pelfini, M., Zerboni, A. (2019) Geomorphological effects of the 1840 Ahora Gorge catastrophe on Mount Ararat (Eastern Turkey). Geomorphology 332, 10–21. https://doi.org/10.1016/j.geomorph.2019.02.001
  • Azzoni, R. S., Zerboni, A., Pelfini, M., Garzonio, C. A., Cioni, R., Meraldi, E., Smiraglia, C., Diolaiuti, G. A. (2017) Geomorphology of mount Ararat/Ağri daği (Ağri daği milli parki, Eastern Anatolia, Turkey). J. Maps 13, 182–190. https://doi.org/10.1080/17445647.2017.1279084
  • Bhat, M. S., Alam, A., Ahmad, B., Kotlia, B. S., Farooq, H., Taloor, A. K., Ahmad, S. (2018) Flood frequency analysis of river Jhelum in Kashmir basin. Quat. Int. 0–1. https://doi.org/10.1016/j.quaint.2018.09.039.
  • Bhat, M. S., Alam, A., Ahmad, S., Farooq, H., Ahmad, B. (2019) Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environ. Earth Sci. 78, 1–17. https://doi.org/10.1007/s12665-019-8046-1
  • Brown, J. D., Spencer, T., Moeller, I. (2007) Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties : A case study of Canvey Island, United Kingdom. Water Resour Res. 43(6):1–22.
  • Choudhari, P. P., Nigam, G.K., Singh, S. K., Thakur, S. (2018) Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geol Ecol Landscapes. 2(4):256–267. http://doi.org/10.1080/24749508.2018.1452482
  • Clarke, J. I. (1966) Morphometry from Maps. In: Dury, G.H., Ed., Essays in Geomorphology, Elsevier Publ. Co., New York, 235-274.
  • Cürebal, İ., Erginal, A. E. (2007) Mıhlı çayı havzası’nın jeomorfolojik özelliklerinin jeomorfik indislerle analizi. Elektron. Sos. Bilim. Derg. 19, 126–135.
  • Çiner, A. (2003) Recent Glaciers and Late Quaternary Glacial Deposits of Turkey. Geol. Bull. Turkey 46.
  • De Silva, S., Lindsay, J. M. (2015) Chapter 15 – Primary volcanic landforms. In H. Sigurdsson (Ed.), The encyclopedia of volcanoes (2nd ed., pp. 273–297). Amsterdam: Academic.
  • Dhanusree, M., Bhaskaran, G. (2019) GIS-Based Approach in Drainage Morphometric Analysis of Bharathapuzha River Basin, India. J. Geogr. Environ. Earth Sci. Int. 20, 1–12. https://doi.org/10.9734/jgeesi/2019/v20i130097
  • El Tahan, A. H. M. H., Elhanafy, H. E. M. (2016) Statistical analysis of morphometric and hydrologic parameters in arid regions, case study of Wadi Hadramaut. Arab. J. Geosci. 9, 1–10. https://doi.org/10.1007/s12517-015-2195-7
  • Eludoyin, A. O., Adewole, A. O. (2020) A remote sensing-based evaluation of an ungauged drainage basin in Southwestern Nigeria. Int J River Basin Manag. 18(3):307–319. https://doi.org/10.1080/15715124.2019.1640226
  • Elsadek, W. M., Ibrahim, M. G., Mahmod, W. E. (2019a) Runoff hazard analysis of Wadi Qena Watershed, Egypt based on GIS and remote sensing approach. Alexandria Eng. J. 58, 377–385. https://doi.org/10.1016/j.aej.2019.02.001
  • Elsadek, W. M., Ibrahim, M. G., Mahmod, W. E., Kanae, S. (2019b) Developing an overall assessment map for flood hazard on large area watershed using multi-method approach: case study of Wadi Qena watershed, Egypt. Nat. Hazards 95, 739–767. https://doi.org/10.1007/s11069-018-3517-3
  • Ergünay, O. (2007) Türkiyenin Afet Profili. In: TMMOB Afet Sempozyumu. Ankara; p. 1–14.
  • Farhan, Y., Anbar, A., Al-Shaikh, N., Mousa, R. (2017) Prioritization of Semi-Arid Agricultural Watershed Using Morphometric and Principal Component Analysis, Remote Sensing, and GIS Techniques, the Zerqa River Watershed, Northern Jordan. Agricultural Sciences, 08(01), 113–
  • Fural, Ş., Poyraz, M. (2015) Değirmendere Havzası’nın (EDREMİT) Jeomorfolojik ve Hidrografik Özelliklerine Morfometrik Yaklaşım, New approaches in Geography, Dokuz Eylül Üniversitesi Yayinları, p. 495-508
  • Hadley, R. F., Schumm, S. A. (1961) Sediment Sources and Drainage Basin Characteristics in Upper Cheyenne River Basin. US Geological Survey Water-Supply Paper 1531-B, 198.
  • Hamdan, A., Khozyem, H. (2018) Morphometric, statistical, and hazard analyses using ASTER data and GIS technique of WADI El-Mathula watershed, Qena, Egypt. Arab. J. Geosci. 11. https://doi.org/10.1007/s12517-018-4068-3
  • Horton, R. E. (1932) Drainage-basin characteristics. Eos. Transactions American Geophysical Union 13 (1), 350e361.
  • Horton, R. E. (1945) Erosional development of streams and their drainage basins: hydro physical approach to quantitative morphology. Bull Geol Soc Am 56:275–370, 275e370.
  • Javed, A., Khanday, M. Y., Ahmed, R. (2009) Prioritization of sub-watersheds based on morphometric and land use analysis using Remote Sensing and GIS techniques. J Indian Soc Remote Sens. 37(2):261–274.
  • Karabulut, M.S., Özdemir, H. (2019) Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environ. Earth Sci. 78, 1–14. https://doi.org/10.1007/s12665-019-8585-5
  • Karaoğlu, M., Çelim, Ş. (2018) Doğu Anadolu Blgesi ve Iğdır’ın Jeolojisi ve Toprak Özellikleri. J. Agric. 1, 14–26. https://doi.org/10.3977/j.issn.1005-8478.2018.07.13
  • Ketin, İ. (1982) Türkiye Jeolojisine Genel Bir Bakış. İ.T.Ü Vakfı Yayınları, İstanbul. Kim, J., Kuwahara, Y., Kumar, M. (2011) A DEM-based evaluation of potential flood risk to enhance decision support system for safe evacuation. Nat. Hazards 59, 1561–1572. https://doi.org/10.1007/s11069-011-9852-2
  • Koç, G., Petrow, T., Thieken, A. H. (2020) Analysis of the most severe flood events in Turkey (1960-2014): Which triggering mechanisms and aggravating pathways can be identified? Water (Switzerland). 12(6):1–32.
  • Koç, G., Thieken, A. H. (2018) The relevance of flood hazards and impacts in Turkey: What can be learned from different disaster loss databases? Nat Hazards. 91(1):375–408.
  • Komolafe, A. A., Awe B.S., Olorunfemi, I. E., Oguntunde, P.G. (2020) Modelling flood-prone area and vulnerability using integration of multi-criteria analysis and HAND model in the Ogun River Basin, Nigeria. Hydrol Sci J. 65(10):1766–1783. https://doi.org/10.1080/02626667.2020.1764960
  • Kumar, R. P., Narayan, M. V., Mohan, K. (2017) A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sens. Appl. Soc. Environ. 7, 9–20. https://doi.org/10.1016/j.rsase.2017.05.001
  • Kumar, P., Joshi, V. (2019) A Geospatial- Statistical Approach To Alienate Priority Area of Upper Watershed of River Subarnarekha Using Morphometric Assessment Framework. Malaysian J Geosci. 3(1):21–31.
  • Kumar, R. (2016) Flood hazard assessment of 2014 floods in Sonawari sub-district of Bandipore district (Jammu & Kashmir): An application of geoinformatics. Remote Sens Appl Soc Environ. 4(November):188–203.
  • Krishnan, M. V. N., Prasanna, M. V., Vijith, H. (2017) Optimisation of morphometric parameters of Limbang river basin, Borneo in the equatorial tropics for terrain characterization. Model Earth Syst Environ. 3(4):1477–1490. http://dx.doi.org/10.1007/s40808-017-0394-9
  • Malik, A., Kumar, A., Kushwaha, D. P., Kisi, O., Salih, S. Q., Al-Ansari, N., Yaseen, Z. M. (2019) The implementation of a hybrid model for hilly sub-watershed prioritization using morphometric variables: Case study in India. Water. 11(6), 1138.
  • Martins, B., Nunes, A. (2020) Exploring flash flood risk perception using PCA analysis: The case of Mindelo, S. Vicente (Cape Verde). Geogr J.(July):1–15.
  • Mason, D. C., Horritt, M. S., Hunter., N. M., Bates, P. D. (2007) Use of fused airborne scanning laser altimetry and digital map data for urban flood modelling 1447, 1436–1447. https://doi.org/10.1002/hyp
  • Mayer, L. (1990) Introduction to quantitative geomorphology: an exercise manual. Prentice Hall, Englewood Cliffs
  • Melton, M. A. (1957). An analysis of the relations among elements of climate, surface properties and geomorphology (Project NR 389042, Tech. Rep. 11). New York, NY: Columbia University
  • Memon, N., Patel, D. P., Bhatt, N., Patel, S. B. (2020) Integrated framework for flood relief package (FRP) allocation in semiarid region: a case of Rel River flood, Gujarat, India. [place unknown]: Springer Netherlands. https://doi.org/10.1007/s11069-019-03812-z
  • Meshram, S. G., Sharma, S. K. (2017) Prioritization of watershed through morphometric parameters: a PCA-based approach. Appl Water Sci. 7(3):1505–1519.
  • Miller, V. C. (1953) A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area Virginia And Tennessee, , DTIC Document.
  • Morisawa, M. E. (1962) Quantitative geomorphology of some watersheds in the Appalachian Plateau. Geol Soc Am Bull 73(9):1025–1046
  • Mukherjee, F., Singh, D. (2019) Detecting flood prone areas in Harris County: a GIS based analysis. GeoJournal. 85(3):647–663. https://doi.org/10.1007/s10708-019-09984-2
  • Mundetia, N., Sharma, D., Dubey, S. K. (2018) Morphometric assessment and sub-watershed prioritization of Khari River basin in semi-arid region of Rajasthan, India. Arab J Geosci. 11(18).
  • Nag, S. K., Chakraborty, S. (2003) Influence of rock types and structures in the development of drainage network in hard rock area. J. Indian Soc. Remote Sens. 31, 25–35. https://doi.org/10.1007/bf03030749
  • Nicoll, K. (2010) Landscape development within a young collision zone: Implications for post-Tethyan evolution of the upper Tigris River system in southeastern Turkey. Int. Geol. Rev. 52, 404–422. https://doi.org/10.1080/00206810902951072
  • Nied, M., Pardowitz, T., Nissen, K., Ulbrich, U., Hundecha, Y., Merz, B. (2014) On the relationship between hydro-meteorological patterns and flood types. J Hydrol. 519:3249–3262. http://dx.doi.org/10.1016/j.jhydrol.2014.09.089
  • Nooka, R. K., Srivastava, Y. K., Venkateswara, R. V., Amminedu, E., Murthy, K. S. R. (2005) Check Dam positioning by prioritization micro-watersheds using SYI model and morphometric analysis - remote sensing and GIS perspective. J Indian Soc Remote Sens. 33(1):25–38.
  • Özdemir, H., Bird, D. (2009) Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ. Geol. 56, 1405–1415. https://doi.org/10.1007/s00254-008-1235-y
  • Öztürk, M.Z., Çetinkaya, G., Aydın, S. (2017) Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Derg. 17–27.
  • Patel, D. P., Dholakia, M. B., Naresh, N., Srivastava, P. K. (2012) Water Harvesting Structure Positioning by Using Geo-Visualization Concept and Prioritization of Mini-Watersheds Through Morphometric Analysis in the Lower Tapi Basin. J. Indian Soc. Remote Sens. 40, 299–312. https://doi.org/10.1007/s12524-011-0147-6
  • Patton, P. C. (1988) Drainage basin morphometry and floods. In: Baker VR, Kochel, RC, Patton, PC, editors. Flood geomorphology. New York: Wiley, p. 51-65.
  • Pike, R. J., Wilson S. E. (1971) Elevation-relief ratio, hypsometric integral and geomorphic area-altitude analysis. Bull Geol Soc Am 82(4):1079–1083
  • Poyraz, M, Taşkın, S., Keleş, K. (2011) Morphometric approach to geomorphologic characteristics of Zeytinli Stream basin. Elsevier, Procedia - Social and Behavioral Sciences 19, 2011, Pages 322-330. https://doi.org/10.1016/j.sbspro.2011.05.138
  • Rahmati, O., Samadi, M., Shahabi, H., Azareh, A., Rafiei-Sardooi, E., Alilou, H., Melesse, A. M., Pradhan, B., Chapi, K., Shirzadi, A. (2019) SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geosci Front. 10(6):2167–2175.
  • Rakesh, K., Lohani, A. K., Sanjay, C. C., Nema, R. K. (2000) GIS based morphometric analysis of Ajay river basin up to Sararath gauging site of south Bihar. J Appl Hydrol 14(4):45–54
  • Ritter, D. F., Kochel, R. C., Miller, J. R. (2002) Process geomorphology. McGraw Hill, Boston.
  • Sakthivel, R., Jawahar, R. N., Sivasankar, V., Akhila, P., Omine, K. (2019) Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India. Appl Water Sci. 9(1):1–18. https://doi.org/10.1007/s13201-019-0899-7
  • Sarangi, A., Bhattacharya, A.K., Singh A., Singh, A.K. (2001) Use of geographic information system (GIS) in assessing the erosion status of watersheds. Indian J Soil Conserv 29, 190-195.
  • Schumm, S.A. (1956) Evolution of drainage systems and slopes in Badlands at Perth Amboy New Jersey. Geological Society of America Bulletin, 67, 597–64.
  • Shadmehri Toosi, A., Calbimonte, G.H., Nouri, H., Alaghmand, S. (2019) River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: A case study. J. Hydrol. 574, 660–671. https://doi.org/10.1016/j.jhydrol.2019.04.072
  • Sharma, S.., Gajbhiye, S., Nema, R.., Tignath, S. (2015) Assessing the vulnerability to soil erosion of the Ukai Dam catchments using remote sensing and GIS Assessing the vulnerability to soil erosion sensing and GIS. Int. J. Sci. Innov. Eng. Technol. 1. https://doi.org/10.1080/02626660209492905.
  • Siddiqui, R., Said, S., Shakeel, M. (2020) Nagmati River Sub-watershed Prioritization Using PCA, Integrated PCWS, and AHP: A Case Study. Nat Resour Res. 29(4):2411–2430. https://doi.org/10.1007/s11053-020-09622-6
  • Singh, N., Singh, K. K. (2017) Geomorphological analysis and prioritization of sub-watersheds using Snyder’s synthetic unit hydrograph method. Appl Water Sci. 7(1):275–283.
  • Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., Pradhan, B. (2019) Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environ Earth Sci. 78(2):78–47. http://dx.doi.org/10.1007/s12665-018-8003-4
  • Smith, K. G. (1950) Standards for grading texture of erosional topography. American Jour. Science, v.248, pp.655-668.
  • Sreedevi, P. D., Owais, S., Khan, H. H., Ahmed, S. (2009) Morphometric analysis of a watershed of South India using SRTM data and GIS. J. Geol. Soc. India 73, 543–552. https://doi.org/10.1007/s12594-009-0038-4.
  • Sreedevi, P. D., Subrahmanyam, K., Ahmed, S. (2005) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ. Geol. 47, 412–420. https://doi.org/10.1007/s00254-004-1166-1
  • Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63, 923_938.
  • Strahler, A. N. (1957) Watershed geomorphology. Am Geophys Union Trans 38(6):913–920.
  • Strahler, A. N (1958) Dimensional analysis applied to fluvially eroded landforms. Geol Soc Am Bull 69:279–300.
  • Strahler, A. N. (1964) Quantitative geomorphology of drainage basin and channel network. Handbook of Applied Hydrology. pp. 39–76.
  • Şaroğlu, F., Y. Güner, (1979) The active Tutak fault, its characteristics and relations to the Çaldıran fault, Yeryuvarı ve İnsan 4, 11-14.
  • Thomas, J., Prasannakumar, V. (2015) Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India. Geocarto Int. 30, 346–364. https://doi.org/10.1080/10106049.2014.955063
  • Utlu, M., Özdemir, H. (2018) The Role of Basin Morphometric Features in Flood Output: A Case Study of the Biga River Basin. J. Geog. 36, 49–62. https://doi.org/10.26650/JGEOG408101
  • Vijith, H., Satheesh, R., (2006) GIS based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. J. Indian Soc. Remote Sens. 34, 181–185. https://doi.org/10.1007/BF02991823
  • Yulu, A. (2019) Friedrich Parrot’un Ağrı Dağı Araştırma Keşif Gezisi, Coğrafya Dergisi, 38:49-58. https://doi.org/10.26650/JGEOG2019-0003
  • Waiyasusri, K., Chotpantarat, S. (2020) Watershed prioritization of kaeng lawa sub-watershed, khon kaen Province using the morphometric and land-use analysis: A case study of heavy flooding caused by tropical storm podul. Water (Switzerland). 12(6).
  • Youssef, A. M., Pradhan, B., Hassan, A. M. (2011) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci. 62, 611–623. https://doi.org/10.1007/s12665-010-0551-1
  • URL-1 https://igdirhaberleri.wordpress.com/2012/07/15/sel-igdir-ve-agrida-hasara-yol-acti/
  • URL-2 https://www.haberler.com/igdir-da-koyu-sel-sulari-basti-4687557-haberi/
  • URL-3 http://haberciniz.biz/igdirda-koyu-sel-sulari-basti-2072184h.htm
  • URL-4 https://www.yenisafak.com/foto-galeri/gundem/igdir-da-sel-manzaralari-2011609?page=1

Jeomorfometrik Özelliklere Göre Aras Nehri Havzalarının Taşkın Önceliklendirilmesi: Iğdır İli Örneği

Year 2021, Issue: 6, 21 - 40, 15.04.2021
https://doi.org/10.46453/jader.781152

Abstract

Drenaj havza morfometrisi, taşkın dinamiklerinin anlaşılması bakımından büyük rol oynamaktadır. Temel olarak havzaların çizgisel, alansal ve relief morfometri özellikleri dikkate alınarak taşkın olasılıkları açıklanmaktadır. Genel olarak bu özelliklerin açıklanmasında bir takım indisler bulunmaktadır. Havzalardaki taşkın potansiyelinde belirleyici rol oynayan şekilsel geometrileri, jeomorfoloji, jeolojisi ve genel iklim özellikleri vb., durumları morfometrik indisler ile göreceli olarak tespit edilebilmektedir. Bu çalışmada Iğdır ili merkezinde yer alan Aras Havzası’na sularını drene eden 35 farklı akarsu havzası incelendi. Çalışmanın gerçekleştirilmesinde coğrafi bilgi sistemleri (GIS) yazılımlarından ArcGIS 10.x, istatistik hesaplamaların yapılmasında ise SPSS ve excel programları kullanılmıştır. Bu 35 farklı akarsu havzasında taşkın olayları meydana gelmektedir. Bu akarsu havzaları 14 farklı indis kullanılarak taşkın potansiyeli bakımından değerlendirilmiştir. Kullanılan bu indisler, çizgisel, alansal ve relief morfometrisini içermektedir. Elde edilen sonuçların değerlendirilmesinde taşkınlar üzerinde yüksek etkiye sahip değerler önceliklerine göre sıralandırılmıştır. Bu sonuçlar, morfometrik analiz ve principal component analysis yöntemleri kullanılarak taşkın öncelikleri bakımından değerlendirilmiştir. İki farklı yönteme bağlı olarak elde edilen taşkın öncelikli havzalar yüksek-orta-düşük önceliğe sahip olarak sınıflandırılmıştır. İki farklı yönteme bağlı olarak tespit edilen ortak havza sayısı “Yüksek” önceliğe sahip havzalarda 8, orta önceliğe sahip havzalarda 11, düşük havza önceliğine sahip akarsu havzalarında ise 7’dir. Bu sonuçlara bağlı olarak yüksek önceliğe sahip taşkın potansiyeline sahip akarsu havzaları taşkın olaylarının meydana geldiği alanlara karşılık geldiği görülmektedir

References

  • Abdeta, G. C., Tesemma, A. B., Tura, A. L., Atlabachew, G.H. (2020) Morphometric analysis for prioritizing sub-watersheds and management planning and practices in Gidabo Basin, Southern Rift Valley of Ethiopia. Appl Water Sci. 10(7):1–15.
  • Ajibade, L., Ifabiyi, L., Iroye, K., Ogunteru, S. (2010) Morphometric Analysis of Ogunpa and Ogbere Drainage Basins, Ibadan, Nigeria. Ethiop. J. Environ. Stud. Manag. 3. https://doi.org/10.4314/ejesm.v3i1.54392
  • Amiri, M., Pourghasemi., H. R., Arabameri, A., Vazirzadeh, A., Yousefi, H., Kafaei, S. (2019) Prioritization of Flood Inundation of Maharloo Watershed in Iran Using Morphometric Parameters Analysis and TOPSIS MCDM Model. Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-815226-3.00016-8
  • Azzoni, R.S., Fugazza, D., Garzonio, C. A., Nicoll, K., Diolaiuti, G. A., Pelfini, M., Zerboni, A. (2019) Geomorphological effects of the 1840 Ahora Gorge catastrophe on Mount Ararat (Eastern Turkey). Geomorphology 332, 10–21. https://doi.org/10.1016/j.geomorph.2019.02.001
  • Azzoni, R. S., Zerboni, A., Pelfini, M., Garzonio, C. A., Cioni, R., Meraldi, E., Smiraglia, C., Diolaiuti, G. A. (2017) Geomorphology of mount Ararat/Ağri daği (Ağri daği milli parki, Eastern Anatolia, Turkey). J. Maps 13, 182–190. https://doi.org/10.1080/17445647.2017.1279084
  • Bhat, M. S., Alam, A., Ahmad, B., Kotlia, B. S., Farooq, H., Taloor, A. K., Ahmad, S. (2018) Flood frequency analysis of river Jhelum in Kashmir basin. Quat. Int. 0–1. https://doi.org/10.1016/j.quaint.2018.09.039.
  • Bhat, M. S., Alam, A., Ahmad, S., Farooq, H., Ahmad, B. (2019) Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environ. Earth Sci. 78, 1–17. https://doi.org/10.1007/s12665-019-8046-1
  • Brown, J. D., Spencer, T., Moeller, I. (2007) Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties : A case study of Canvey Island, United Kingdom. Water Resour Res. 43(6):1–22.
  • Choudhari, P. P., Nigam, G.K., Singh, S. K., Thakur, S. (2018) Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geol Ecol Landscapes. 2(4):256–267. http://doi.org/10.1080/24749508.2018.1452482
  • Clarke, J. I. (1966) Morphometry from Maps. In: Dury, G.H., Ed., Essays in Geomorphology, Elsevier Publ. Co., New York, 235-274.
  • Cürebal, İ., Erginal, A. E. (2007) Mıhlı çayı havzası’nın jeomorfolojik özelliklerinin jeomorfik indislerle analizi. Elektron. Sos. Bilim. Derg. 19, 126–135.
  • Çiner, A. (2003) Recent Glaciers and Late Quaternary Glacial Deposits of Turkey. Geol. Bull. Turkey 46.
  • De Silva, S., Lindsay, J. M. (2015) Chapter 15 – Primary volcanic landforms. In H. Sigurdsson (Ed.), The encyclopedia of volcanoes (2nd ed., pp. 273–297). Amsterdam: Academic.
  • Dhanusree, M., Bhaskaran, G. (2019) GIS-Based Approach in Drainage Morphometric Analysis of Bharathapuzha River Basin, India. J. Geogr. Environ. Earth Sci. Int. 20, 1–12. https://doi.org/10.9734/jgeesi/2019/v20i130097
  • El Tahan, A. H. M. H., Elhanafy, H. E. M. (2016) Statistical analysis of morphometric and hydrologic parameters in arid regions, case study of Wadi Hadramaut. Arab. J. Geosci. 9, 1–10. https://doi.org/10.1007/s12517-015-2195-7
  • Eludoyin, A. O., Adewole, A. O. (2020) A remote sensing-based evaluation of an ungauged drainage basin in Southwestern Nigeria. Int J River Basin Manag. 18(3):307–319. https://doi.org/10.1080/15715124.2019.1640226
  • Elsadek, W. M., Ibrahim, M. G., Mahmod, W. E. (2019a) Runoff hazard analysis of Wadi Qena Watershed, Egypt based on GIS and remote sensing approach. Alexandria Eng. J. 58, 377–385. https://doi.org/10.1016/j.aej.2019.02.001
  • Elsadek, W. M., Ibrahim, M. G., Mahmod, W. E., Kanae, S. (2019b) Developing an overall assessment map for flood hazard on large area watershed using multi-method approach: case study of Wadi Qena watershed, Egypt. Nat. Hazards 95, 739–767. https://doi.org/10.1007/s11069-018-3517-3
  • Ergünay, O. (2007) Türkiyenin Afet Profili. In: TMMOB Afet Sempozyumu. Ankara; p. 1–14.
  • Farhan, Y., Anbar, A., Al-Shaikh, N., Mousa, R. (2017) Prioritization of Semi-Arid Agricultural Watershed Using Morphometric and Principal Component Analysis, Remote Sensing, and GIS Techniques, the Zerqa River Watershed, Northern Jordan. Agricultural Sciences, 08(01), 113–
  • Fural, Ş., Poyraz, M. (2015) Değirmendere Havzası’nın (EDREMİT) Jeomorfolojik ve Hidrografik Özelliklerine Morfometrik Yaklaşım, New approaches in Geography, Dokuz Eylül Üniversitesi Yayinları, p. 495-508
  • Hadley, R. F., Schumm, S. A. (1961) Sediment Sources and Drainage Basin Characteristics in Upper Cheyenne River Basin. US Geological Survey Water-Supply Paper 1531-B, 198.
  • Hamdan, A., Khozyem, H. (2018) Morphometric, statistical, and hazard analyses using ASTER data and GIS technique of WADI El-Mathula watershed, Qena, Egypt. Arab. J. Geosci. 11. https://doi.org/10.1007/s12517-018-4068-3
  • Horton, R. E. (1932) Drainage-basin characteristics. Eos. Transactions American Geophysical Union 13 (1), 350e361.
  • Horton, R. E. (1945) Erosional development of streams and their drainage basins: hydro physical approach to quantitative morphology. Bull Geol Soc Am 56:275–370, 275e370.
  • Javed, A., Khanday, M. Y., Ahmed, R. (2009) Prioritization of sub-watersheds based on morphometric and land use analysis using Remote Sensing and GIS techniques. J Indian Soc Remote Sens. 37(2):261–274.
  • Karabulut, M.S., Özdemir, H. (2019) Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environ. Earth Sci. 78, 1–14. https://doi.org/10.1007/s12665-019-8585-5
  • Karaoğlu, M., Çelim, Ş. (2018) Doğu Anadolu Blgesi ve Iğdır’ın Jeolojisi ve Toprak Özellikleri. J. Agric. 1, 14–26. https://doi.org/10.3977/j.issn.1005-8478.2018.07.13
  • Ketin, İ. (1982) Türkiye Jeolojisine Genel Bir Bakış. İ.T.Ü Vakfı Yayınları, İstanbul. Kim, J., Kuwahara, Y., Kumar, M. (2011) A DEM-based evaluation of potential flood risk to enhance decision support system for safe evacuation. Nat. Hazards 59, 1561–1572. https://doi.org/10.1007/s11069-011-9852-2
  • Koç, G., Petrow, T., Thieken, A. H. (2020) Analysis of the most severe flood events in Turkey (1960-2014): Which triggering mechanisms and aggravating pathways can be identified? Water (Switzerland). 12(6):1–32.
  • Koç, G., Thieken, A. H. (2018) The relevance of flood hazards and impacts in Turkey: What can be learned from different disaster loss databases? Nat Hazards. 91(1):375–408.
  • Komolafe, A. A., Awe B.S., Olorunfemi, I. E., Oguntunde, P.G. (2020) Modelling flood-prone area and vulnerability using integration of multi-criteria analysis and HAND model in the Ogun River Basin, Nigeria. Hydrol Sci J. 65(10):1766–1783. https://doi.org/10.1080/02626667.2020.1764960
  • Kumar, R. P., Narayan, M. V., Mohan, K. (2017) A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sens. Appl. Soc. Environ. 7, 9–20. https://doi.org/10.1016/j.rsase.2017.05.001
  • Kumar, P., Joshi, V. (2019) A Geospatial- Statistical Approach To Alienate Priority Area of Upper Watershed of River Subarnarekha Using Morphometric Assessment Framework. Malaysian J Geosci. 3(1):21–31.
  • Kumar, R. (2016) Flood hazard assessment of 2014 floods in Sonawari sub-district of Bandipore district (Jammu & Kashmir): An application of geoinformatics. Remote Sens Appl Soc Environ. 4(November):188–203.
  • Krishnan, M. V. N., Prasanna, M. V., Vijith, H. (2017) Optimisation of morphometric parameters of Limbang river basin, Borneo in the equatorial tropics for terrain characterization. Model Earth Syst Environ. 3(4):1477–1490. http://dx.doi.org/10.1007/s40808-017-0394-9
  • Malik, A., Kumar, A., Kushwaha, D. P., Kisi, O., Salih, S. Q., Al-Ansari, N., Yaseen, Z. M. (2019) The implementation of a hybrid model for hilly sub-watershed prioritization using morphometric variables: Case study in India. Water. 11(6), 1138.
  • Martins, B., Nunes, A. (2020) Exploring flash flood risk perception using PCA analysis: The case of Mindelo, S. Vicente (Cape Verde). Geogr J.(July):1–15.
  • Mason, D. C., Horritt, M. S., Hunter., N. M., Bates, P. D. (2007) Use of fused airborne scanning laser altimetry and digital map data for urban flood modelling 1447, 1436–1447. https://doi.org/10.1002/hyp
  • Mayer, L. (1990) Introduction to quantitative geomorphology: an exercise manual. Prentice Hall, Englewood Cliffs
  • Melton, M. A. (1957). An analysis of the relations among elements of climate, surface properties and geomorphology (Project NR 389042, Tech. Rep. 11). New York, NY: Columbia University
  • Memon, N., Patel, D. P., Bhatt, N., Patel, S. B. (2020) Integrated framework for flood relief package (FRP) allocation in semiarid region: a case of Rel River flood, Gujarat, India. [place unknown]: Springer Netherlands. https://doi.org/10.1007/s11069-019-03812-z
  • Meshram, S. G., Sharma, S. K. (2017) Prioritization of watershed through morphometric parameters: a PCA-based approach. Appl Water Sci. 7(3):1505–1519.
  • Miller, V. C. (1953) A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area Virginia And Tennessee, , DTIC Document.
  • Morisawa, M. E. (1962) Quantitative geomorphology of some watersheds in the Appalachian Plateau. Geol Soc Am Bull 73(9):1025–1046
  • Mukherjee, F., Singh, D. (2019) Detecting flood prone areas in Harris County: a GIS based analysis. GeoJournal. 85(3):647–663. https://doi.org/10.1007/s10708-019-09984-2
  • Mundetia, N., Sharma, D., Dubey, S. K. (2018) Morphometric assessment and sub-watershed prioritization of Khari River basin in semi-arid region of Rajasthan, India. Arab J Geosci. 11(18).
  • Nag, S. K., Chakraborty, S. (2003) Influence of rock types and structures in the development of drainage network in hard rock area. J. Indian Soc. Remote Sens. 31, 25–35. https://doi.org/10.1007/bf03030749
  • Nicoll, K. (2010) Landscape development within a young collision zone: Implications for post-Tethyan evolution of the upper Tigris River system in southeastern Turkey. Int. Geol. Rev. 52, 404–422. https://doi.org/10.1080/00206810902951072
  • Nied, M., Pardowitz, T., Nissen, K., Ulbrich, U., Hundecha, Y., Merz, B. (2014) On the relationship between hydro-meteorological patterns and flood types. J Hydrol. 519:3249–3262. http://dx.doi.org/10.1016/j.jhydrol.2014.09.089
  • Nooka, R. K., Srivastava, Y. K., Venkateswara, R. V., Amminedu, E., Murthy, K. S. R. (2005) Check Dam positioning by prioritization micro-watersheds using SYI model and morphometric analysis - remote sensing and GIS perspective. J Indian Soc Remote Sens. 33(1):25–38.
  • Özdemir, H., Bird, D. (2009) Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ. Geol. 56, 1405–1415. https://doi.org/10.1007/s00254-008-1235-y
  • Öztürk, M.Z., Çetinkaya, G., Aydın, S. (2017) Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Derg. 17–27.
  • Patel, D. P., Dholakia, M. B., Naresh, N., Srivastava, P. K. (2012) Water Harvesting Structure Positioning by Using Geo-Visualization Concept and Prioritization of Mini-Watersheds Through Morphometric Analysis in the Lower Tapi Basin. J. Indian Soc. Remote Sens. 40, 299–312. https://doi.org/10.1007/s12524-011-0147-6
  • Patton, P. C. (1988) Drainage basin morphometry and floods. In: Baker VR, Kochel, RC, Patton, PC, editors. Flood geomorphology. New York: Wiley, p. 51-65.
  • Pike, R. J., Wilson S. E. (1971) Elevation-relief ratio, hypsometric integral and geomorphic area-altitude analysis. Bull Geol Soc Am 82(4):1079–1083
  • Poyraz, M, Taşkın, S., Keleş, K. (2011) Morphometric approach to geomorphologic characteristics of Zeytinli Stream basin. Elsevier, Procedia - Social and Behavioral Sciences 19, 2011, Pages 322-330. https://doi.org/10.1016/j.sbspro.2011.05.138
  • Rahmati, O., Samadi, M., Shahabi, H., Azareh, A., Rafiei-Sardooi, E., Alilou, H., Melesse, A. M., Pradhan, B., Chapi, K., Shirzadi, A. (2019) SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geosci Front. 10(6):2167–2175.
  • Rakesh, K., Lohani, A. K., Sanjay, C. C., Nema, R. K. (2000) GIS based morphometric analysis of Ajay river basin up to Sararath gauging site of south Bihar. J Appl Hydrol 14(4):45–54
  • Ritter, D. F., Kochel, R. C., Miller, J. R. (2002) Process geomorphology. McGraw Hill, Boston.
  • Sakthivel, R., Jawahar, R. N., Sivasankar, V., Akhila, P., Omine, K. (2019) Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India. Appl Water Sci. 9(1):1–18. https://doi.org/10.1007/s13201-019-0899-7
  • Sarangi, A., Bhattacharya, A.K., Singh A., Singh, A.K. (2001) Use of geographic information system (GIS) in assessing the erosion status of watersheds. Indian J Soil Conserv 29, 190-195.
  • Schumm, S.A. (1956) Evolution of drainage systems and slopes in Badlands at Perth Amboy New Jersey. Geological Society of America Bulletin, 67, 597–64.
  • Shadmehri Toosi, A., Calbimonte, G.H., Nouri, H., Alaghmand, S. (2019) River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: A case study. J. Hydrol. 574, 660–671. https://doi.org/10.1016/j.jhydrol.2019.04.072
  • Sharma, S.., Gajbhiye, S., Nema, R.., Tignath, S. (2015) Assessing the vulnerability to soil erosion of the Ukai Dam catchments using remote sensing and GIS Assessing the vulnerability to soil erosion sensing and GIS. Int. J. Sci. Innov. Eng. Technol. 1. https://doi.org/10.1080/02626660209492905.
  • Siddiqui, R., Said, S., Shakeel, M. (2020) Nagmati River Sub-watershed Prioritization Using PCA, Integrated PCWS, and AHP: A Case Study. Nat Resour Res. 29(4):2411–2430. https://doi.org/10.1007/s11053-020-09622-6
  • Singh, N., Singh, K. K. (2017) Geomorphological analysis and prioritization of sub-watersheds using Snyder’s synthetic unit hydrograph method. Appl Water Sci. 7(1):275–283.
  • Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., Pradhan, B. (2019) Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environ Earth Sci. 78(2):78–47. http://dx.doi.org/10.1007/s12665-018-8003-4
  • Smith, K. G. (1950) Standards for grading texture of erosional topography. American Jour. Science, v.248, pp.655-668.
  • Sreedevi, P. D., Owais, S., Khan, H. H., Ahmed, S. (2009) Morphometric analysis of a watershed of South India using SRTM data and GIS. J. Geol. Soc. India 73, 543–552. https://doi.org/10.1007/s12594-009-0038-4.
  • Sreedevi, P. D., Subrahmanyam, K., Ahmed, S. (2005) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ. Geol. 47, 412–420. https://doi.org/10.1007/s00254-004-1166-1
  • Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63, 923_938.
  • Strahler, A. N. (1957) Watershed geomorphology. Am Geophys Union Trans 38(6):913–920.
  • Strahler, A. N (1958) Dimensional analysis applied to fluvially eroded landforms. Geol Soc Am Bull 69:279–300.
  • Strahler, A. N. (1964) Quantitative geomorphology of drainage basin and channel network. Handbook of Applied Hydrology. pp. 39–76.
  • Şaroğlu, F., Y. Güner, (1979) The active Tutak fault, its characteristics and relations to the Çaldıran fault, Yeryuvarı ve İnsan 4, 11-14.
  • Thomas, J., Prasannakumar, V. (2015) Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India. Geocarto Int. 30, 346–364. https://doi.org/10.1080/10106049.2014.955063
  • Utlu, M., Özdemir, H. (2018) The Role of Basin Morphometric Features in Flood Output: A Case Study of the Biga River Basin. J. Geog. 36, 49–62. https://doi.org/10.26650/JGEOG408101
  • Vijith, H., Satheesh, R., (2006) GIS based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. J. Indian Soc. Remote Sens. 34, 181–185. https://doi.org/10.1007/BF02991823
  • Yulu, A. (2019) Friedrich Parrot’un Ağrı Dağı Araştırma Keşif Gezisi, Coğrafya Dergisi, 38:49-58. https://doi.org/10.26650/JGEOG2019-0003
  • Waiyasusri, K., Chotpantarat, S. (2020) Watershed prioritization of kaeng lawa sub-watershed, khon kaen Province using the morphometric and land-use analysis: A case study of heavy flooding caused by tropical storm podul. Water (Switzerland). 12(6).
  • Youssef, A. M., Pradhan, B., Hassan, A. M. (2011) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci. 62, 611–623. https://doi.org/10.1007/s12665-010-0551-1
  • URL-1 https://igdirhaberleri.wordpress.com/2012/07/15/sel-igdir-ve-agrida-hasara-yol-acti/
  • URL-2 https://www.haberler.com/igdir-da-koyu-sel-sulari-basti-4687557-haberi/
  • URL-3 http://haberciniz.biz/igdirda-koyu-sel-sulari-basti-2072184h.htm
  • URL-4 https://www.yenisafak.com/foto-galeri/gundem/igdir-da-sel-manzaralari-2011609?page=1
There are 86 citations in total.

Details

Primary Language English
Subjects Physical Geography and Environmental Geology
Journal Section Articles
Authors

Mustafa Utlu 0000-0002-7508-4478

Redvan Ghasemlounia 0000-0003-1796-4562

Publication Date April 15, 2021
Submission Date August 16, 2020
Acceptance Date November 18, 2020
Published in Issue Year 2021 Issue: 6

Cite

APA Utlu, M., & Ghasemlounia, R. (2021). Flood Prioritization Watersheds of the Aras River, Based on Geomorphometric Properties: Case Study Iğdır Province. Jeomorfolojik Araştırmalar Dergisi(6), 21-40. https://doi.org/10.46453/jader.781152

Journal of Geomorphological Researches  ( JADER )

Turkish Society for Geomorphology ( www.jd.org.tr )