Araştırma Makalesi
BibTex RIS Kaynak Göster

Spatial Distribution and Geomorphological Characteristics of Glacial and Periglacial Landforms in the Mescit-Dumlu Mountains

Yıl 2025, Sayı: 15, 100 - 125, 15.10.2025
https://doi.org/10.46453/jader.1768588

Öz

The Mescit and Dumlu mountains are a volcanic massif located between the Erzurum Plain and the Çoruh Valley. Positioned within a transitional zone between Eastern Anatolia and the Eastern Black Sea region, this mountainous area exhibits considerable diversity in glacial and periglacial landforms. Through field observations, UAV-based photogrammetry, and GIS analyses, a total glaciated area of 256 km², more than 60 glacial cirques, distinct U-shaped valleys, and moraine assemblages divided into two main morphostratigraphic groups were mapped. Hypsometric analysis indicates that extensive plateau surfaces and low-gradient valley floors within the 2500–3000 m elevation range enhanced both the areal extent and thickness of glaciers. Paleo–equilibrium line altitude (pELA) values calculated using AAR, AABR, and MELM methods show that the ELA during past glaciations ranged between 2800 and 2900 m, whereas the current ELA, at approximately 3700 m, reflects significant climatic change.
Morphological differences among moraines point to at least two distinct glaciation phases: rounded, block-poor older moraines likely predate the Last Glacial Maximum (LGM), whereas sharp-crested, block-rich younger moraines are attributed to the LGM and/or the Late Glacial period. Periglacial processes are active both within former glaciated areas and in today’s high mountain zones. Stone-banked and turf-banked solifluction lobes, shallow ice-cemented rock glaciers, thufurs, relict palsas, and patterned ground reflect the region’s high sensitivity to freeze–thaw cycles.
The results demonstrate that the volcanic lithology, extensive plateau surfaces, and topographic features of the Mescit–Dumlu Mountains make them one of Türkiye’s most significant glacial–periglacial environments. By documenting the spatial relationships of Quaternary glaciation phases, paleo–periglacial processes, and modern periglacial dynamics, this study provides valuable contributions to regional geomorphology. Future cosmogenic dating and microclimatic measurements will play a critical role in refining the glaciation history of this area.

Kaynakça

  • Akçar, N., Yavuz, V., Yeşilyurt, S., Ivy-Ochs, S., Reber, R., Bayrakdar, C., Kubik, P., Zahno, C., Schlunegger, F., & Schlüchter, C. (2017). Synchronous glacier maximum extent during last glaciation over the Anatolian peninsula. In P. D. Hughes & J. C. Woodward (Eds.), Quaternary Glaciation in the Mediterranean Region. Geological Society of London Special Publications. https://doi.org/10.1144/SP433.7
  • Akçar, N., Yavuz, V. S., Ivy-Ochs, S., Kubik, P. W., Vardar, M., & Schlüchter, C. (2007). Paleoglacial records from Kavron Valley, NE Turkey: Field and cosmogenic exposure dating evidence. Quaternary International, 164–165, 170–183. https://doi.org/10.1016/j.quaint.2006.12.020
  • Akçar, N., Yavuz, V. S., Ivy-Ochs, S., Kubik, P. W., Vardar, M., & Schlüchter, C. (2008). A case for a downwasting mountain glacier during Termination I, Verçenik Valley, northeastern Turkey. Journal of Quaternary Science, 23(3), 273–285. https://doi.org/10.1002/jqs.1144
  • Akkuş, İ., & Nazlıoğlu, K. (1989). Erzurum-Dumlu-Akdağ alanının jeolojisi ve jeotermal enerji olanakları ile Ilıca alanının gradyan kuyuları raporu. MTA Rapor No: 9940.
  • Altınay, O., Sarıkaya, M. A., Çiner, A., Žebre, M., Stepišnik, U., Yıldırım, C., Yetemen, Ö., & Wilcken, K. M. (2022). Cosmogenic 36Cl surface exposure dating of glacial landforms on Mt. Barla (SW Turkey). Geomorphology, 416, 108424. https://doi.org/10.1016/j.geomorph.2022.108424
  • Andrews, J. T. (1975). Glacial systems: An approach to glaciers and their environments. Duxbury Press.
  • Atalay, İ. (1984). Mescid Dağı’nın glasiyal morfolojisi. Ege Coğrafya Dergisi, 2, 129–138.
  • Bakke, J., & Nesje, A. (2011). Equilibrium line altitude (ELA). In V. P. Singh, P. Singh, & U. K. Haritashya (Eds.), Encyclopaedia of Snow, Ice and Glaciers (pp. 979–984). Springer. ISBN 978-90-481-2641-5
  • Bayrakdar, C., Çılğın, Z., Döker, M. F., & Canpolat, E. (2014). Evidence of an active glacier in the Munzur Mountains, eastern Turkey. Turkish Journal of Earth Sciences, 23, 1–16. https://doi.org/10.3906/yer-1403-7
  • Bayrakdar, C., Çılğın, Z., Sarış, F., Yeşilyurt, S., Keserci, F., Büyükdeniz, Y., Halis, O., Vockenhuber, C., Ivy-Ochs, S., & Akçar, N. (2024). Late Pleistocene glacial history of Mount Karadağ, SW Türkiye. Geomorphology, 467, 109740. https://doi.org/10.1016/j.geomorph.2024.109467
  • Benn, D. I., & Lehmkuhl, F. (2000). Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65–66, 15–29. https://doi.org/10.1016/S1040-6182(99)00034-8
  • Benn, D. I., & Hulton, N. R. J. (2010). An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences, 36(5), 605–610.
  • Berthling, I., Etzelmüller, B., Kielland Larsen, C., & Nordahl, K. (2002). Sediment fluxes from creep processes at Jomfrunut, southern Norway. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 56(2), 67–73. https://doi.org/10.1080/002919502760056378
  • Bilgin, T. (1969). Gavurdağ Kütlesinde glasiyal ve periglasiyal topoğrafya şekilleri. İstanbul Üniversitesi Coğrafya Enstitüsü Yayınları, No: 58.
  • Bilgin, T. (1972). Munzur Dağları doğu kısmının glasiyal ve periglasiyal morfolojisi. İstanbul Üniversitesi Yayınları No: 1757, Coğrafya Enstitüsü Yayınları No: 69. İstanbul.
  • Blumenthal, M. M. (1958). Vom Ağrı Dağ (Ararat) zum Kaçkar Dağ. Bergfahrten in nordostanatolischen Grenzlanden. Die Alpen, 3, 125–137.
  • Bobek, H. (1940). Die gegenwärtige und eiszeitliche Vergletscherung im zentralkurdischen Hochgebirge. Zeitschrift für Gletscherkunde, 27(1–2), 50–87.
  • Bolch, T., & Loibl, D. (2018). GIS for glaciers and glacial landforms. In GIS Applications for Socio-Economics and Humanity (Vol. 3, pp. 112–139). Elsevier B.V. https://doi.org/10.1016/B978-0-12-409548-9.09639-1
  • Çalışkan, O., Gürgen, G., Yılmaz, E., & Yeşilyurt, S. (2012). Bolkar Dağları kuzeydoğusunun glasyal morfolojisi ve döküntüyle örtülü buzullar. Uluslararası İnsani Bilimler Dergisi, 9(1), 889–910.
  • Çiner, A. (2004). Turkish glaciers and glacial deposits. In J. Ehlers & P. L. Gibbard (Eds.), Quaternary Glaciations: Extent and Chronology, Part I: Europe (pp. 419–429). Elsevier Publishers.
  • Çiner, A., & Sarıkaya, M. A. (2017). Cosmogenic 36Cl geochronology of late Quaternary glaciers in the Bolkar Mountains, south central Turkey. In P. D. Hughes & J. C. Woodward (Eds.), Quaternary Glaciation in the Mediterranean Mountains (Vol. 433). Geological Society, London, Special Publications.
  • Dede, V., Çiçek, İ., & Uncu, L. (2015). Karçal Dağları’nda kaya buzulu oluşumları. Yerbilimleri, 36(2), 61–80.
  • Dede, V., Çiçek, İ., Sarıkaya, M. A., Çiner, A., & Uncu, L. (2017). First cosmogenic geochronology from the Lesser Caucasus: Late Pleistocene glaciation and rock glacier development in the Karçal Valley, NE Turkey. Quaternary Science Reviews, 164, 54–67. https://doi.org/10.1016/j.quascirev.2017.03.025
  • Doğu, A. F., Somuncu, M., Çiçek, İ., Tunçel, H., & Gürgen, G. (1993). Kaçkar Dağında buzul şekilleri, yaylalar ve turizm. A.Ü. Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 2, 157–184.
  • Draebing, D., & Eichel, J. (2018). Divergence, convergence, and path dependency of paraglacial adjustment of alpine lateral moraine slopes. Land Degradation & Development, 29(6), 1979–1990. https://doi.org/10.1002/ldr.2983
  • Erinç, S. (1951). Glasiyal ve postglasiyal safhada Erciyes glasiyesi. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 1(2), 82–90.
  • French, H. M. (2007). The periglacial environment. John Wiley & Sons.
  • Gibbons, A. B., Megeath, J. D., & Pierce, K. L. (1984). Probability of moraine survival in a succession of glacial advances. Geology, 12, 327–330.
  • Gürgen, G., & Yeşilyurt, S. (2012). Karçal Dağı buzulları (Artvin). Coğrafi Bilimler Dergisi, 10(1), 91–104.
  • Gürgen, G. (2009). Anzer-Kemer-Orsor Dağları kuzeyinin (Rize) glasyal morfolojisi. e-Journal of New World Sciences Academy, 4(4), 175–190.
  • Gürgen, G., Çalışkan, O., Yılmaz, E., & Yeşilyurt, S. (2010). Yedigöller Platosu ve Emli Vadisinde (Aladağlar) döküntü örtülü buzullar. NWSA, 5(2), 98–116.
  • Haeberli, W. (1985). Creep of mountain permafrost. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, 77, 142.
  • Harkema, M. R., Nijland, W., de Jong, S. M., Kattenborn, T., & Eichel, J. (2023). Monitoring solifluction movement in space and time: A semi-automated high-resolution approach. Geomorphology, 433, 108727. https://doi.org/10.1016/j.geomorph.2023.108727
  • Harris, C., Davies, M. C. R., & Coutard, J.-P. (1997). Rates and processes of periglacial solifluction: An experimental approach. Earth Surface Processes and Landforms, 22, 849–868.
  • Hendrickx, H., Vivero, S., De Cock, L., De Wit, B., De Maeyer, P., Lambiel, C., Delaloye, R., Nyssen, J., & Frankl, A. (2019). The reproducibility of SfM algorithms to produce detailed digital surface models: The example of PhotoScan applied to a high-alpine rock glacier. Remote Sensing Letters, 10, 11–20. https://doi.org/10.1080/2150704X.2018.1519641
  • Jaesche, P., Veit, H., & Huwe, B. (2003). Snow cover and soil moisture controls on solifluction in an area of seasonal frost, eastern Alps. Permafrost and Periglacial Processes, 14, 399–410. https://doi.org/10.1002/ppp.471
  • Keserci, F. (2025). Köse Dağı’nda (Ağrı) Geç Kuvaterner buzullaşması; buzul rekonstrüksiyonu ve paleoiklimsel uygulamalar. Jeomorfolojik Araştırmalar Dergisi, 14, 97–125. https://doi.org/10.46453/jader.1651329
  • Köse, O., Sarıkaya, M. A., Çiner, A., Candaş, A., Yıldırım, C., & Wilcken, K. M. (2022). Reconstruction of Last Glacial Maximum glaciers and palaeoclimate in the central Taurus Range, Mt. Karanfil, of the Eastern Mediterranean. Quaternary Science Reviews, 291, 107656. https://doi.org/10.1016/j.quascirev.2022.107656
  • Kurter, A. (1991). Glaciers of Middle East and Africa: Glaciers of Turkey. In R. S. Williams Jr. & J. G. Ferrigno (Eds.), Satellite Image Atlas of Glaciers of the World (U.S. Geological Survey Professional Paper, 1386, G1–G30).
  • Löffler, E. (1970). Unterschungen zum eiszeitlichen und rezenten klimagenetischen Formenschatz in den Gebirgen Anatoliens. Heidelberger Geographische Arbeiten, 27, 162 p.
  • Louis, H. (1944). Die Spuren eiszeitlicher Vergletscherung in Anatolien. Geologische Rundschau, 34, 447–481. Mark, B. G., & Osmaston, H. A. (2008). Quaternary glaciation in Africa: Key chronologies and climatic implications. Journal of Quaternary Science, 23, 589–608. https://doi.org/10.1002/jqs.1210
  • Matsuoka, N. (2001). Solifluction rates, processes and landforms: A global review. Earth-Science Reviews, 35, 107–134.
  • Matsuoka, N., Ikeda, A., & Date, T. (2005). Morphometric analysis of solifluction lobes and rock glaciers in the Swiss Alps. Permafrost and Periglacial Processes, 16(1), 99–113. https://doi.org/10.1002/ppp.517
  • Messerli, B. (1964). Der Gletscher am Erciyas Dağh und das Problem der rezenten Schneegrenze im anatolischen und mediterranen Raum. Geographica Helvetica, 19(1), 19–34.
  • Messerli, B. (1967). Die eiszeitliche und die gegenwärtige Vergletscherung im Mittelmeerraum. Geographica Helvetica, 22, 105–228.
  • Nesje, A. (1992). Topographical effects on the equilibrium-line altitude on glaciers. GeoJournal, 27(4), 383–391. https://doi.org/10.1007/BF00179763
  • Nesje, A. (2014). Reconstructing paleo ELAs on glaciated landscapes. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09425-2
  • Oien, R. P., Ely, J. C., Rea, B. R., & Boston, C. M. (2021). Testing the area–altitude balance ratio (AABR) and accumulation–area ratio (AAR) methods of calculating glacier equilibrium-line altitudes. Journal of Glaciology, 67(263), 359–373. https://doi.org/10.1017/jog.2021.100
  • Osmaston, H. (2005). Estimates of glacier equilibrium line altitudes by the area-altitude, the area-altitude balance ratio and the area-altitude balance index methods and their validation. Quaternary International, 138–139, 22–31. https://doi.org/10.1016/j.quaint.2005.02.004
  • Öztürk, M. Z., & Taşoğlu, E. (2024). Alpine periglacial zones in Anatolia: Spatial distribution and main characteristics. Mediterranean Geoscience Reviews. https://doi.org/10.1007/s42990-024-00115-9
  • Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., & Ribolini, A. (2015). A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences, 82, 55–62. https://doi.org/10.1016/j.cageo.2015.05.005
  • Porter, S. C. (1975). Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quaternary Research, 5(1), 27–47. https://doi.org/10.1016/0033-5894(75)90077-7
  • Porter, S. C. (2001). Snowline depression in the tropics during the last glaciation. Quaternary Science Reviews, 20, 1067–1091. https://doi.org/10.1016/S0277-3791(00)00178-5
  • Reber, R., Akçar, N., Yeşilyurt, S., Yavuz, V., Tikhomirov, D., Kubik, P. W., & Schlüchter, C. (2014). Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quaternary Science Reviews, 101, 177–192. https://doi.org/10.1016/j.quascirev.2014.07.014
  • Reber, R., Akçar, N., Tikhomirov, D., Yeşilyurt, S., Vockenhuber, C., Yavuz, V., Ivy-Ochs, S., & Schlüchter, C. (2022). LGM glaciations in the Northeastern Anatolian Mountains: New insights. Geosciences, 12, 257. https://doi.org/10.3390/geosciences12070257
  • Sarıkaya, M. A., Zreda, M., Çiner, A., & Zweck, C. (2008). Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modelling. Quaternary Science Reviews, 27, 769–780.
  • Sarıkaya, M. A., Zreda, M., & Çiner, A. (2009). Glaciations and paleoclimate of Mount Erciyes, central Turkey, since the Last Glacial Maximum, inferred from 36Cl cosmogenic dating and glacier modeling. Quaternary Science Reviews, 28(23–24), 2326–2341. https://doi.org/10.1016/j.quascirev.2009.04.015
  • Sarıkaya, M. A., Çiner, Ç., Haybat, H., & Zreda, M. (2014). An early advance of glaciers on Mount Akdağ, SW Turkey, before the global Last Glacial Maximum; Insights from cosmogenic nuclides and glacier modeling. Quaternary Science Reviews, 88, 96–109. https://doi.org/10.1016/j.quascirev.2014.01.016
  • Sarıkaya, M. A., Çiner, A., & Yıldırım, C. (2017). Cosmogenic 36Cl glacial chronologies of the Late Quaternary glaciers on Mount Geyikdağ in the Eastern Mediterranean. Quaternary Geochronology, 39, 189–204. https://doi.org/10.1016/j.quageo.2017.03.003
  • Spreitzer, H. (1971). Rezente und eiszeitliche Grenzen der glazialen und periglazialen Höhenstufen im Zentralen Taurus (vornehmlich am Beispiel des Kilikischen Ala Dağ). Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark, 101, 139–162.
  • Tonbul, S. (1996). Bingöl Dağı'nda buzul şekilleri. A.Ü. Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 6, 347–374.
  • Yalçınlar, İ. (1951). Soğanlı-Kaçkar ve Mescitdağ silsilelerinin glasiyasyon şekilleri. İ.Ü. Coğrafya Enstitüsü Dergisi, 2, 20–55.
  • Yeşilyurt, S. (2017). Kavuşşahap Dağları’nda (Van) Geç Kuvaterner Buzullaşması: Bölgesel Paleoiklim Açısından Bir Değerlendirme (Tez No:490694) [Doktora Tezi, Ankara Üniversitesi]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Yeşilyurt, S. (2025a). The role of Little Ice Age glaciation in shaping the rock glacier morphology of Mount Kaçkar, Türkiye. Mediterranean Geoscience Reviews. https://doi.org/10.1007/s42990-025-00160-y
  • Yeşilyurt, S. (2025b). Geomorphology and kinematic characteristics of the Derebaşı Rock Glacier, Mt. Kaçkar. Journal of Geomorphological Researches, 14, 74–96. https://doi.org/10.46453/jader.1633480
  • Yeşilyurt, S., Doğan, U., & Akçar, N. (2018). Narlıca Vadisi’nde Geç Kuvaterner buzullaşma izleri, Kavuşşahap Dağları. Türk Coğrafya Dergisi, 70, 99–108. https://doi.org/10.17211/tcd.415232
  • Yılmaz, E., & Yeşilyurt, S. (2023). Yer sistem modellerinin Son Buzul Maksimumu iklim ardgörülerinin Holdridge biyomları ve paleobuzul alanları ile değerlendirilmesi. Coğrafi Bilimler Dergisi, 21(2), 394–426. https://doi.org/10.33688/aucbd.1290590
  • Zahno, C., Akçar, N., Yavuz, V., Kubik, P. W., & Schlüchter, C. (2009). Surface exposure dating of Late Pleistocene glaciations at the Dedegöl Mountains (Lake Beyşehir, SW Turkey). Journal of Quaternary Science, 24(8), 1016–1028. https://doi.org/10.1002/jqs.1280
  • Zahno, C., Akçar, N., Yavuz, V., Kubik, P. W., & Schlüchter, C. (2010). Chronology of Late Pleistocene glacier variations at the Uludağ Mountain, NW Turkey. Quaternary Science Reviews, 29(9–10), 1173–1187. https://doi.org/10.1016/j.quascirev.2010.01.012
  • Zreda, M., Çiner, A., Sarıkaya, M. A., Zweck, C., & Bayarı, S. (2011). Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene–Holocene boundary. Geology, 39(11), 1051–1054.

Mescit - Dumlu Dağlarında Glasyal ve Periglasyal Yerşekillerinin Dağılışı ve Jeomorfolojik Özellikleri

Yıl 2025, Sayı: 15, 100 - 125, 15.10.2025
https://doi.org/10.46453/jader.1768588

Öz

Mescit ve Dumlu dağları, Erzurum Ovası ile Çoruh Vadisi arasında konumlanan volkanik bir kütledir. Doğu Anadolu ile Doğu Karadeniz arasında geçiş kuşağında yer alan bu dağlık alan, glasyal ve periglasyal oluşumlar açısından büyük çeşitlilik göstermektedir. Arazi gözlemleri, İHA tabanlı fotogrametri ve CBS analizleri ile toplam 256 km²’lik buzullaşma alanı, 60’tan fazla buzul sirki, U profilli tekne vadiler ve morfostratigrafik olarak iki ana gruba ayrılan moren toplulukları haritalanmıştır. Hipsografik analizler, özellikle 2500–3000 m yükselti aralığında geniş plato yüzeyleri ve düşük eğimli vadi tabanlarının, buzulların yayılış alanını ve kalınlığını artırdığını göstermektedir. AAR, AABR ve MELM yöntemleriyle hesaplanan paleo denge hattı yüksekliği (pELA) değerleri, paleobuzulların kalıcı kar sınırının 2800–2900 m aralığında olduğunu ortaya koymuş; güncel sınırın yaklaşık 3700 m’de olması ise iklimdeki belirgin değişimlere işaret etmiştir.
Morenlerin morfolojik farklılıkları, en az iki ayrı buzullaşma evresine işaret etmektedir: Yuvarlatılmış ve volkanik kaya blokları bakımından fakir yaşlı morenler muhtemelen Son Buzul Maksimumu öncesine; keskin sırtlı, bloklu genç morenler ise SBM ve/veya Geç Buzul Dönemi’ne aittir. Periglasyal süreçler, hem paleobuzul alanlarında hem de bu alanlar dışındaki yüksek kesimlerde etkindir. Taş yığını ve çim yığını soliflüksiyon lobları, sığ buz çimentolu kaya buzulları, tufur, relikt palsa ve desenli zeminler, bölgenin donma–çözülme döngülerine yüksek duyarlılığını yansıtmaktadır.
Sonuçlar, Mescit–Dumlu Dağları’nın volkanik litolojisi, geniş plato yüzeyleri ve topoğrafik özellikleriyle Türkiye’nin önemli glasyal–periglasyal alanlarından biri olduğunu göstermektedir. Çalışma, Kuvaterner buzullaşma evrelerinin, paleo–periglasyal süreçlerin ve güncel periglasyal süreçlerin mekânsal ilişkilerini belgeleyerek bölgesel jeomorfolojiye özgün katkılar sunmaktadır. Gelecekte yapılacak kozmojenik yaşlandırma ve mikroklimatik ölçümler, bu alanın buzullaşma tarihçesinin kesinleştirilmesinde kritik rol oynayacaktır.

Kaynakça

  • Akçar, N., Yavuz, V., Yeşilyurt, S., Ivy-Ochs, S., Reber, R., Bayrakdar, C., Kubik, P., Zahno, C., Schlunegger, F., & Schlüchter, C. (2017). Synchronous glacier maximum extent during last glaciation over the Anatolian peninsula. In P. D. Hughes & J. C. Woodward (Eds.), Quaternary Glaciation in the Mediterranean Region. Geological Society of London Special Publications. https://doi.org/10.1144/SP433.7
  • Akçar, N., Yavuz, V. S., Ivy-Ochs, S., Kubik, P. W., Vardar, M., & Schlüchter, C. (2007). Paleoglacial records from Kavron Valley, NE Turkey: Field and cosmogenic exposure dating evidence. Quaternary International, 164–165, 170–183. https://doi.org/10.1016/j.quaint.2006.12.020
  • Akçar, N., Yavuz, V. S., Ivy-Ochs, S., Kubik, P. W., Vardar, M., & Schlüchter, C. (2008). A case for a downwasting mountain glacier during Termination I, Verçenik Valley, northeastern Turkey. Journal of Quaternary Science, 23(3), 273–285. https://doi.org/10.1002/jqs.1144
  • Akkuş, İ., & Nazlıoğlu, K. (1989). Erzurum-Dumlu-Akdağ alanının jeolojisi ve jeotermal enerji olanakları ile Ilıca alanının gradyan kuyuları raporu. MTA Rapor No: 9940.
  • Altınay, O., Sarıkaya, M. A., Çiner, A., Žebre, M., Stepišnik, U., Yıldırım, C., Yetemen, Ö., & Wilcken, K. M. (2022). Cosmogenic 36Cl surface exposure dating of glacial landforms on Mt. Barla (SW Turkey). Geomorphology, 416, 108424. https://doi.org/10.1016/j.geomorph.2022.108424
  • Andrews, J. T. (1975). Glacial systems: An approach to glaciers and their environments. Duxbury Press.
  • Atalay, İ. (1984). Mescid Dağı’nın glasiyal morfolojisi. Ege Coğrafya Dergisi, 2, 129–138.
  • Bakke, J., & Nesje, A. (2011). Equilibrium line altitude (ELA). In V. P. Singh, P. Singh, & U. K. Haritashya (Eds.), Encyclopaedia of Snow, Ice and Glaciers (pp. 979–984). Springer. ISBN 978-90-481-2641-5
  • Bayrakdar, C., Çılğın, Z., Döker, M. F., & Canpolat, E. (2014). Evidence of an active glacier in the Munzur Mountains, eastern Turkey. Turkish Journal of Earth Sciences, 23, 1–16. https://doi.org/10.3906/yer-1403-7
  • Bayrakdar, C., Çılğın, Z., Sarış, F., Yeşilyurt, S., Keserci, F., Büyükdeniz, Y., Halis, O., Vockenhuber, C., Ivy-Ochs, S., & Akçar, N. (2024). Late Pleistocene glacial history of Mount Karadağ, SW Türkiye. Geomorphology, 467, 109740. https://doi.org/10.1016/j.geomorph.2024.109467
  • Benn, D. I., & Lehmkuhl, F. (2000). Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65–66, 15–29. https://doi.org/10.1016/S1040-6182(99)00034-8
  • Benn, D. I., & Hulton, N. R. J. (2010). An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences, 36(5), 605–610.
  • Berthling, I., Etzelmüller, B., Kielland Larsen, C., & Nordahl, K. (2002). Sediment fluxes from creep processes at Jomfrunut, southern Norway. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 56(2), 67–73. https://doi.org/10.1080/002919502760056378
  • Bilgin, T. (1969). Gavurdağ Kütlesinde glasiyal ve periglasiyal topoğrafya şekilleri. İstanbul Üniversitesi Coğrafya Enstitüsü Yayınları, No: 58.
  • Bilgin, T. (1972). Munzur Dağları doğu kısmının glasiyal ve periglasiyal morfolojisi. İstanbul Üniversitesi Yayınları No: 1757, Coğrafya Enstitüsü Yayınları No: 69. İstanbul.
  • Blumenthal, M. M. (1958). Vom Ağrı Dağ (Ararat) zum Kaçkar Dağ. Bergfahrten in nordostanatolischen Grenzlanden. Die Alpen, 3, 125–137.
  • Bobek, H. (1940). Die gegenwärtige und eiszeitliche Vergletscherung im zentralkurdischen Hochgebirge. Zeitschrift für Gletscherkunde, 27(1–2), 50–87.
  • Bolch, T., & Loibl, D. (2018). GIS for glaciers and glacial landforms. In GIS Applications for Socio-Economics and Humanity (Vol. 3, pp. 112–139). Elsevier B.V. https://doi.org/10.1016/B978-0-12-409548-9.09639-1
  • Çalışkan, O., Gürgen, G., Yılmaz, E., & Yeşilyurt, S. (2012). Bolkar Dağları kuzeydoğusunun glasyal morfolojisi ve döküntüyle örtülü buzullar. Uluslararası İnsani Bilimler Dergisi, 9(1), 889–910.
  • Çiner, A. (2004). Turkish glaciers and glacial deposits. In J. Ehlers & P. L. Gibbard (Eds.), Quaternary Glaciations: Extent and Chronology, Part I: Europe (pp. 419–429). Elsevier Publishers.
  • Çiner, A., & Sarıkaya, M. A. (2017). Cosmogenic 36Cl geochronology of late Quaternary glaciers in the Bolkar Mountains, south central Turkey. In P. D. Hughes & J. C. Woodward (Eds.), Quaternary Glaciation in the Mediterranean Mountains (Vol. 433). Geological Society, London, Special Publications.
  • Dede, V., Çiçek, İ., & Uncu, L. (2015). Karçal Dağları’nda kaya buzulu oluşumları. Yerbilimleri, 36(2), 61–80.
  • Dede, V., Çiçek, İ., Sarıkaya, M. A., Çiner, A., & Uncu, L. (2017). First cosmogenic geochronology from the Lesser Caucasus: Late Pleistocene glaciation and rock glacier development in the Karçal Valley, NE Turkey. Quaternary Science Reviews, 164, 54–67. https://doi.org/10.1016/j.quascirev.2017.03.025
  • Doğu, A. F., Somuncu, M., Çiçek, İ., Tunçel, H., & Gürgen, G. (1993). Kaçkar Dağında buzul şekilleri, yaylalar ve turizm. A.Ü. Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 2, 157–184.
  • Draebing, D., & Eichel, J. (2018). Divergence, convergence, and path dependency of paraglacial adjustment of alpine lateral moraine slopes. Land Degradation & Development, 29(6), 1979–1990. https://doi.org/10.1002/ldr.2983
  • Erinç, S. (1951). Glasiyal ve postglasiyal safhada Erciyes glasiyesi. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 1(2), 82–90.
  • French, H. M. (2007). The periglacial environment. John Wiley & Sons.
  • Gibbons, A. B., Megeath, J. D., & Pierce, K. L. (1984). Probability of moraine survival in a succession of glacial advances. Geology, 12, 327–330.
  • Gürgen, G., & Yeşilyurt, S. (2012). Karçal Dağı buzulları (Artvin). Coğrafi Bilimler Dergisi, 10(1), 91–104.
  • Gürgen, G. (2009). Anzer-Kemer-Orsor Dağları kuzeyinin (Rize) glasyal morfolojisi. e-Journal of New World Sciences Academy, 4(4), 175–190.
  • Gürgen, G., Çalışkan, O., Yılmaz, E., & Yeşilyurt, S. (2010). Yedigöller Platosu ve Emli Vadisinde (Aladağlar) döküntü örtülü buzullar. NWSA, 5(2), 98–116.
  • Haeberli, W. (1985). Creep of mountain permafrost. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, 77, 142.
  • Harkema, M. R., Nijland, W., de Jong, S. M., Kattenborn, T., & Eichel, J. (2023). Monitoring solifluction movement in space and time: A semi-automated high-resolution approach. Geomorphology, 433, 108727. https://doi.org/10.1016/j.geomorph.2023.108727
  • Harris, C., Davies, M. C. R., & Coutard, J.-P. (1997). Rates and processes of periglacial solifluction: An experimental approach. Earth Surface Processes and Landforms, 22, 849–868.
  • Hendrickx, H., Vivero, S., De Cock, L., De Wit, B., De Maeyer, P., Lambiel, C., Delaloye, R., Nyssen, J., & Frankl, A. (2019). The reproducibility of SfM algorithms to produce detailed digital surface models: The example of PhotoScan applied to a high-alpine rock glacier. Remote Sensing Letters, 10, 11–20. https://doi.org/10.1080/2150704X.2018.1519641
  • Jaesche, P., Veit, H., & Huwe, B. (2003). Snow cover and soil moisture controls on solifluction in an area of seasonal frost, eastern Alps. Permafrost and Periglacial Processes, 14, 399–410. https://doi.org/10.1002/ppp.471
  • Keserci, F. (2025). Köse Dağı’nda (Ağrı) Geç Kuvaterner buzullaşması; buzul rekonstrüksiyonu ve paleoiklimsel uygulamalar. Jeomorfolojik Araştırmalar Dergisi, 14, 97–125. https://doi.org/10.46453/jader.1651329
  • Köse, O., Sarıkaya, M. A., Çiner, A., Candaş, A., Yıldırım, C., & Wilcken, K. M. (2022). Reconstruction of Last Glacial Maximum glaciers and palaeoclimate in the central Taurus Range, Mt. Karanfil, of the Eastern Mediterranean. Quaternary Science Reviews, 291, 107656. https://doi.org/10.1016/j.quascirev.2022.107656
  • Kurter, A. (1991). Glaciers of Middle East and Africa: Glaciers of Turkey. In R. S. Williams Jr. & J. G. Ferrigno (Eds.), Satellite Image Atlas of Glaciers of the World (U.S. Geological Survey Professional Paper, 1386, G1–G30).
  • Löffler, E. (1970). Unterschungen zum eiszeitlichen und rezenten klimagenetischen Formenschatz in den Gebirgen Anatoliens. Heidelberger Geographische Arbeiten, 27, 162 p.
  • Louis, H. (1944). Die Spuren eiszeitlicher Vergletscherung in Anatolien. Geologische Rundschau, 34, 447–481. Mark, B. G., & Osmaston, H. A. (2008). Quaternary glaciation in Africa: Key chronologies and climatic implications. Journal of Quaternary Science, 23, 589–608. https://doi.org/10.1002/jqs.1210
  • Matsuoka, N. (2001). Solifluction rates, processes and landforms: A global review. Earth-Science Reviews, 35, 107–134.
  • Matsuoka, N., Ikeda, A., & Date, T. (2005). Morphometric analysis of solifluction lobes and rock glaciers in the Swiss Alps. Permafrost and Periglacial Processes, 16(1), 99–113. https://doi.org/10.1002/ppp.517
  • Messerli, B. (1964). Der Gletscher am Erciyas Dağh und das Problem der rezenten Schneegrenze im anatolischen und mediterranen Raum. Geographica Helvetica, 19(1), 19–34.
  • Messerli, B. (1967). Die eiszeitliche und die gegenwärtige Vergletscherung im Mittelmeerraum. Geographica Helvetica, 22, 105–228.
  • Nesje, A. (1992). Topographical effects on the equilibrium-line altitude on glaciers. GeoJournal, 27(4), 383–391. https://doi.org/10.1007/BF00179763
  • Nesje, A. (2014). Reconstructing paleo ELAs on glaciated landscapes. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09425-2
  • Oien, R. P., Ely, J. C., Rea, B. R., & Boston, C. M. (2021). Testing the area–altitude balance ratio (AABR) and accumulation–area ratio (AAR) methods of calculating glacier equilibrium-line altitudes. Journal of Glaciology, 67(263), 359–373. https://doi.org/10.1017/jog.2021.100
  • Osmaston, H. (2005). Estimates of glacier equilibrium line altitudes by the area-altitude, the area-altitude balance ratio and the area-altitude balance index methods and their validation. Quaternary International, 138–139, 22–31. https://doi.org/10.1016/j.quaint.2005.02.004
  • Öztürk, M. Z., & Taşoğlu, E. (2024). Alpine periglacial zones in Anatolia: Spatial distribution and main characteristics. Mediterranean Geoscience Reviews. https://doi.org/10.1007/s42990-024-00115-9
  • Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., & Ribolini, A. (2015). A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences, 82, 55–62. https://doi.org/10.1016/j.cageo.2015.05.005
  • Porter, S. C. (1975). Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quaternary Research, 5(1), 27–47. https://doi.org/10.1016/0033-5894(75)90077-7
  • Porter, S. C. (2001). Snowline depression in the tropics during the last glaciation. Quaternary Science Reviews, 20, 1067–1091. https://doi.org/10.1016/S0277-3791(00)00178-5
  • Reber, R., Akçar, N., Yeşilyurt, S., Yavuz, V., Tikhomirov, D., Kubik, P. W., & Schlüchter, C. (2014). Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quaternary Science Reviews, 101, 177–192. https://doi.org/10.1016/j.quascirev.2014.07.014
  • Reber, R., Akçar, N., Tikhomirov, D., Yeşilyurt, S., Vockenhuber, C., Yavuz, V., Ivy-Ochs, S., & Schlüchter, C. (2022). LGM glaciations in the Northeastern Anatolian Mountains: New insights. Geosciences, 12, 257. https://doi.org/10.3390/geosciences12070257
  • Sarıkaya, M. A., Zreda, M., Çiner, A., & Zweck, C. (2008). Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modelling. Quaternary Science Reviews, 27, 769–780.
  • Sarıkaya, M. A., Zreda, M., & Çiner, A. (2009). Glaciations and paleoclimate of Mount Erciyes, central Turkey, since the Last Glacial Maximum, inferred from 36Cl cosmogenic dating and glacier modeling. Quaternary Science Reviews, 28(23–24), 2326–2341. https://doi.org/10.1016/j.quascirev.2009.04.015
  • Sarıkaya, M. A., Çiner, Ç., Haybat, H., & Zreda, M. (2014). An early advance of glaciers on Mount Akdağ, SW Turkey, before the global Last Glacial Maximum; Insights from cosmogenic nuclides and glacier modeling. Quaternary Science Reviews, 88, 96–109. https://doi.org/10.1016/j.quascirev.2014.01.016
  • Sarıkaya, M. A., Çiner, A., & Yıldırım, C. (2017). Cosmogenic 36Cl glacial chronologies of the Late Quaternary glaciers on Mount Geyikdağ in the Eastern Mediterranean. Quaternary Geochronology, 39, 189–204. https://doi.org/10.1016/j.quageo.2017.03.003
  • Spreitzer, H. (1971). Rezente und eiszeitliche Grenzen der glazialen und periglazialen Höhenstufen im Zentralen Taurus (vornehmlich am Beispiel des Kilikischen Ala Dağ). Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark, 101, 139–162.
  • Tonbul, S. (1996). Bingöl Dağı'nda buzul şekilleri. A.Ü. Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 6, 347–374.
  • Yalçınlar, İ. (1951). Soğanlı-Kaçkar ve Mescitdağ silsilelerinin glasiyasyon şekilleri. İ.Ü. Coğrafya Enstitüsü Dergisi, 2, 20–55.
  • Yeşilyurt, S. (2017). Kavuşşahap Dağları’nda (Van) Geç Kuvaterner Buzullaşması: Bölgesel Paleoiklim Açısından Bir Değerlendirme (Tez No:490694) [Doktora Tezi, Ankara Üniversitesi]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Yeşilyurt, S. (2025a). The role of Little Ice Age glaciation in shaping the rock glacier morphology of Mount Kaçkar, Türkiye. Mediterranean Geoscience Reviews. https://doi.org/10.1007/s42990-025-00160-y
  • Yeşilyurt, S. (2025b). Geomorphology and kinematic characteristics of the Derebaşı Rock Glacier, Mt. Kaçkar. Journal of Geomorphological Researches, 14, 74–96. https://doi.org/10.46453/jader.1633480
  • Yeşilyurt, S., Doğan, U., & Akçar, N. (2018). Narlıca Vadisi’nde Geç Kuvaterner buzullaşma izleri, Kavuşşahap Dağları. Türk Coğrafya Dergisi, 70, 99–108. https://doi.org/10.17211/tcd.415232
  • Yılmaz, E., & Yeşilyurt, S. (2023). Yer sistem modellerinin Son Buzul Maksimumu iklim ardgörülerinin Holdridge biyomları ve paleobuzul alanları ile değerlendirilmesi. Coğrafi Bilimler Dergisi, 21(2), 394–426. https://doi.org/10.33688/aucbd.1290590
  • Zahno, C., Akçar, N., Yavuz, V., Kubik, P. W., & Schlüchter, C. (2009). Surface exposure dating of Late Pleistocene glaciations at the Dedegöl Mountains (Lake Beyşehir, SW Turkey). Journal of Quaternary Science, 24(8), 1016–1028. https://doi.org/10.1002/jqs.1280
  • Zahno, C., Akçar, N., Yavuz, V., Kubik, P. W., & Schlüchter, C. (2010). Chronology of Late Pleistocene glacier variations at the Uludağ Mountain, NW Turkey. Quaternary Science Reviews, 29(9–10), 1173–1187. https://doi.org/10.1016/j.quascirev.2010.01.012
  • Zreda, M., Çiner, A., Sarıkaya, M. A., Zweck, C., & Bayarı, S. (2011). Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene–Holocene boundary. Geology, 39(11), 1051–1054.
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Buzulbilim
Bölüm Makaleler
Yazarlar

Serdar Yeşilyurt 0000-0002-2896-9644

Erken Görünüm Tarihi 3 Ekim 2025
Yayımlanma Tarihi 15 Ekim 2025
Gönderilme Tarihi 19 Ağustos 2025
Kabul Tarihi 20 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 15

Kaynak Göster

APA Yeşilyurt, S. (2025). Mescit - Dumlu Dağlarında Glasyal ve Periglasyal Yerşekillerinin Dağılışı ve Jeomorfolojik Özellikleri. Jeomorfolojik Araştırmalar Dergisi(15), 100-125. https://doi.org/10.46453/jader.1768588
Jeomorfolojik Araştırmalar Dergisi ( JADER ) / Journal of Geomorphological Researches
TR Dizin - Crossref - Google ScholarDOAJ - DRJI - ASOS İndeks - Scientific Indexing Service  tarafından taranmaktadır. 
Jeomorfoloji Derneği  / Turkish Society for Geomorphology ( www.jd.org.tr )