Ahsan, M., Eshkabilov, S., Cemek, B., Küçüktopcu, E., Lee, C. W., & Simsek, H. (2022). Deep Learning Models to Determine Nutrient Concentration in Hydroponically Grown Lettuce Cultivars (Lactuca sativa L.). Sustainability, 14(1). https://doi.org/10.3390/su14010416
Akdemir, S. (2018). Marul (Lactuca sativa L.) fide kalitesi ve bitki gelişimi üzerine paclobutrazol ve prohexadione-calcium uygulamalarının etkileri. Yüksek Lisans Tezi, Kırşehir Ahi Evran Üniversitesi. Fen Bilimleri Enstitüsü, Kırşehir. (in Turkish)
Alon, A. S. (2020). Machine Vision Recognition System for Iceberg Lettuce Health Condition on Raspberry Pi 4b: A Mobile Net SSD v2 Inference Approach. International Journal of Emerging Trends in Engineering Research, 8(4), 1073–1078. https://doi.org/10.30534/ijeter/2020/20842020
Balkaya, A., Özgen, R. (2019). Marul Tarımı. Tarım Gündem Dergisi, s. 9-11. (in Turkish)
Doğru Ş. M., Çilingir A. (2019). Marul Tarımı. Tarım Gündem Dergisi, s. 26-29. (in Turkish)
Du, J., Lu, X., Fan, J., Qin, Y., Yang, X., & Guo, X. (2020).” Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties.”, Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.563386
Hassim, S. A., & Chuah, J. H. (2020). Lettuce classification using convolutional neural network. Food Research, 4, 118–123. https://doi.org/10.26656/fr.2017.4(S6).029
Lu, J. Y., Chang, C. L., & Kuo, Y. F. (2019). Monitoring growth rate of lettuce using deep convolutional neural networks. 2019 ASABE Annual International Meeting. https://doi.org/10.13031/aim.201900341
Rizkiana, A., Nugroho, A. P., Salma, N. M., Afif, S., Masithoh, R. E., Sutiarso, L., & Okayasu, T. (2021). Plant growth prediction model for lettuce (Lactuca sativa.) in plant factories using artificial neural network. IOP Conference Series: Earth and Environmental Science, 733(1). https://doi.org/10.1088/1755-1315/733/1/012027
Sevgican, A. (2002). Örtüaltı Sebzeciliği. Cilt I, E.Ü. Zir. Fak. Yay., No:528, 476 s. (in Turkish
Vural, H., Eşiyok D., & Duman İ. (2000). Kültür Sebzeleri; Sebze Yetiştirme. Ege Üniversitesi Ziraat Fakültesi, Bahçe Bitkileri Bölümü, Bornova-İzmir, 440 s. (in Turkish
Yelboğa, K., 2014. Tarımın büyüyen gücü: Fide sektörü. Bahçe Haber Dergisi, 3(2):13-16. (in Turkish
Yıldırım, M., Bahar, E., & Demireli, K. (2015). The effects of different irrigation levels on the yield and physical properties of lettuce cultivars (Lactuca sativa var.campania). COMU Journal of Agriculture Faculty, 3(1), 29-34.
Yudha Pratama, I., Wahab, A., & Alaydrus, M. (2020, November 3). Deep learning for assessing unhealthy lettuce hydroponic using convolutional neural network based on faster R-CNN with Inception V2. 2020 5th International Conference on Informatics and Computing, ICIC 2020. https://doi.org/10.1109/ICIC50835.2020.9288554
Zhang, L., Xu, Z., Xu, D., Ma, J., Chen, Y., & Fu, Z. (2020). Growth monitoring of greenhouse lettuce based on a convolutional neural network. Horticulture Research, 7(1). https://doi.org/10.1038/s41438-020-00345-6
An example of lettuce (Lactuca Sativa) seedling selection using deep learning method for robotic seedling selection system
Lettuce is a type of vegetable that is widely cultivated and consumed in our country and in the world. The seedling period, which is the beginning of production, is the most sensitive time for the plant. Starting production with healthy seedlings is an important parameter for quality and efficient production. In this study, a sample program for automatic seedling selection was developed for a robotic system to be used in seedling production. With the developed program, it was aimed to select seedlings with the same degree of maturity in multi-well pots. In this study, Yolo5n was used for the training model. A learning system was established on two types of lettuce (curly salad), and red curly lettuce leaf (lolo-rosso) seedlings. As a result of the training, F1 score was found as 83%; Precision was 100%; Recall was 95%; Precision Recall was 86.7%. The learning rate was 0.0005 for all given images. In view of these data, positive results were obtained for the mentioned method in seedling selection.
Ahsan, M., Eshkabilov, S., Cemek, B., Küçüktopcu, E., Lee, C. W., & Simsek, H. (2022). Deep Learning Models to Determine Nutrient Concentration in Hydroponically Grown Lettuce Cultivars (Lactuca sativa L.). Sustainability, 14(1). https://doi.org/10.3390/su14010416
Akdemir, S. (2018). Marul (Lactuca sativa L.) fide kalitesi ve bitki gelişimi üzerine paclobutrazol ve prohexadione-calcium uygulamalarının etkileri. Yüksek Lisans Tezi, Kırşehir Ahi Evran Üniversitesi. Fen Bilimleri Enstitüsü, Kırşehir. (in Turkish)
Alon, A. S. (2020). Machine Vision Recognition System for Iceberg Lettuce Health Condition on Raspberry Pi 4b: A Mobile Net SSD v2 Inference Approach. International Journal of Emerging Trends in Engineering Research, 8(4), 1073–1078. https://doi.org/10.30534/ijeter/2020/20842020
Balkaya, A., Özgen, R. (2019). Marul Tarımı. Tarım Gündem Dergisi, s. 9-11. (in Turkish)
Doğru Ş. M., Çilingir A. (2019). Marul Tarımı. Tarım Gündem Dergisi, s. 26-29. (in Turkish)
Du, J., Lu, X., Fan, J., Qin, Y., Yang, X., & Guo, X. (2020).” Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties.”, Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.563386
Hassim, S. A., & Chuah, J. H. (2020). Lettuce classification using convolutional neural network. Food Research, 4, 118–123. https://doi.org/10.26656/fr.2017.4(S6).029
Lu, J. Y., Chang, C. L., & Kuo, Y. F. (2019). Monitoring growth rate of lettuce using deep convolutional neural networks. 2019 ASABE Annual International Meeting. https://doi.org/10.13031/aim.201900341
Rizkiana, A., Nugroho, A. P., Salma, N. M., Afif, S., Masithoh, R. E., Sutiarso, L., & Okayasu, T. (2021). Plant growth prediction model for lettuce (Lactuca sativa.) in plant factories using artificial neural network. IOP Conference Series: Earth and Environmental Science, 733(1). https://doi.org/10.1088/1755-1315/733/1/012027
Sevgican, A. (2002). Örtüaltı Sebzeciliği. Cilt I, E.Ü. Zir. Fak. Yay., No:528, 476 s. (in Turkish
Vural, H., Eşiyok D., & Duman İ. (2000). Kültür Sebzeleri; Sebze Yetiştirme. Ege Üniversitesi Ziraat Fakültesi, Bahçe Bitkileri Bölümü, Bornova-İzmir, 440 s. (in Turkish
Yelboğa, K., 2014. Tarımın büyüyen gücü: Fide sektörü. Bahçe Haber Dergisi, 3(2):13-16. (in Turkish
Yıldırım, M., Bahar, E., & Demireli, K. (2015). The effects of different irrigation levels on the yield and physical properties of lettuce cultivars (Lactuca sativa var.campania). COMU Journal of Agriculture Faculty, 3(1), 29-34.
Yudha Pratama, I., Wahab, A., & Alaydrus, M. (2020, November 3). Deep learning for assessing unhealthy lettuce hydroponic using convolutional neural network based on faster R-CNN with Inception V2. 2020 5th International Conference on Informatics and Computing, ICIC 2020. https://doi.org/10.1109/ICIC50835.2020.9288554
Zhang, L., Xu, Z., Xu, D., Ma, J., Chen, Y., & Fu, Z. (2020). Growth monitoring of greenhouse lettuce based on a convolutional neural network. Horticulture Research, 7(1). https://doi.org/10.1038/s41438-020-00345-6
Kahya, E., & Özdüven, F. (2023). An example of lettuce (Lactuca Sativa) seedling selection using deep learning method for robotic seedling selection system. International Journal of Agriculture Environment and Food Sciences, 7(2), 349-356. https://doi.org/10.31015/jaefs.2023.2.13
The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences.