Research Article
BibTex RIS Cite

How growing conditions are influential on the agronomic attributes and fiber-related quality parameters of flax (Linum usitatissimum L.) fibers: A seismomorphogenesis approach

Year 2024, , 220 - 234, 25.03.2024
https://doi.org/10.31015/jaefs.2024.1.22

Abstract

Among industrial crops, flax (Linum usitatissimum L.) is a multi-purpose crop grown for production of stem fiber and seed oil. Through longterm domestication for these purposes, cultivated flax has diversified into two main types, namely fiber and oil or linseed types, as well as an intermediate type. This study was designed to investigate the effect of flax fibers of flax varieties (Antares, Dakota and Mures) in field and greenhouse cultivation on fiber mechanical performances, morphological properties and fatty acid composition in flaxseed was investigated. Additionally, plants can change their morphology and mechanical properties when exposed to stress, as is particularly the case when plants respond to wind, a phenomenon known as seismomorphogenesis. Greenhouse plants were found to be significantly lower than field grown plants, with an increase of 16.79cm in technical stem length and 56.02cm in technical stem height. In addition, the total plant height of flax grown in the field was 59.33 cm compared to 17.32 cm in the greenhouse. The Mures variety was found to be the highest both in the field (79.50-76.10cm) and in the greenhouse (18.36-17.47cm). Considering the fatty acid percentages, the highest α-linolenic acid was found in Dakota (29.23%) and the lowest in Antares (20.53%) in the field, while the highest was found in Dakota (19.25%) and the lowest in Mures (16.13%) in the greenhouse. In addition, the highest tensile strength was found in Dakota (704.6 Mpa) and the closest Antares (692.2 Mpa) under field conditions, while the lowest was found in Dakota (198.5 Mpa) and Mures varieties (288.8 Mpa) under greenhouse conditions. In order to reduce the dimension, correlate and visualize the measured parameters, the relevant data of the study were subjected to principal component analysis and heat-map clustering.

Ethical Statement

Ethical approval: Ethics committee approval is not required.

Supporting Institution

Funding: This research received no external funding

Thanks

Acknowledgments: We extend our special thanks to M. Güven Kaysim and Harun Alptekin for his criticism in improving the manuscript. In addition, I would also like to thank my dear wife Semra Koçak for her patience during my studies.

References

  • Baley, C., Goudenhooft, C., Gibaud, M., & Bourmaud, A. (2018). Flax stems: from a specific architecture to an instructive model for bioinspired composite structures. Bioinspiration & Biomimetics, 13(2), 026007. https://doi.org/10.1088/1748-3190/aaa6b7
  • Biddington, N. L. (1986). The effects of mechanically-induced stress in plants—a review. Plant growth regulation, 4, 103-123. https://doi.org/10.1007/BF00025193
  • Bourmaud, A., Gibaud, M., & Baley, C. (2016). Impact of the seeding rate on flax stem stability and the mechanical properties of elementary fibres. Industrial Crops and Products, 80, 17-25. https://doi.org/10.1016/j.indcrop.2015.10.053
  • Börnke, F., & Rocksch, T. (2018). Thigmomorphogenesis–control of plant growth by mechanical stimulation. Scientia Horticulturae, 234, 344-353. https://doi.org/10.1016/j.scienta.2018.02.059
  • Brulé, V., Rafsanjani, A., Pasini, D., & Western, T. L. (2016). Hierarchies of plant stiffness. Plant Science, 250, 79-96. https://doi.org/10.1016/j.plantsci.2016.06.002
  • Choudhary, S. B., Sharma, H. K., Kumar, A. A., Maruthi, R. T., Mitra, J., Chowdhury, I., & Karmakar, P. G. (2017). SSR and morphological trait based population structure analysis of 130 diverse flax (Linum usitatissimum L.) accessions. Comptes rendus biologies, 340(2), 65-75. https://doi.org/10.1016/j.crvi.2016.12.002
  • Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building materials, 73, 113-124. https://doi.org/10.1016/j.conbuildmat.2014.09.040
  • Carmona, S., & Ezzamel, M. (2007). Accounting and accountability in ancient civilizations: Mesopotamia and ancient Egypt. Accounting, Auditing & Accountability Journal, 20(2), 177-209. https://doi.org/10.1108/09513570710740993
  • Crook, M. J., & Ennos, A. R. (1996). Mechanical differences between free-standing and supported wheat plants, Triticum aestivum L. Annals of Botany, 77(3), 197-202. https://doi.org/10.1006/anbo.1996.0023
  • da Silva, T. R., de Matos, P. R., Júnior, L. U. D. T., Marvila, M. T., & de Azevedo, A. R. G. (2023). A review on the performance of açaí fiber in cementitious composites: Characteristics and application challenges. Journal of Building Engineering, 106481. https://doi.org/10.1016/j.jobe.2023.106481
  • Davis, P. H. (1982). Flora of Turkey and the East Aegean Islands. Vol. 3. Flora of Turkey and the East Aegean Islands. Vol. 3. https://www.jstor.org/stable/10.3366/j.ctvxcrhxk
  • Deme, T., Haki, G. D., Retta, N., Woldegiorgis, A., & Geleta, M. (2021). Fatty acid profile, total phenolic content, and antioxidant activity of niger seed (Guizotia abyssinica) and linseed (Linum usitatissimum). Frontiers in Nutrition, 8, 674882. https://doi.org/10.3389/fnut.2021.674882
  • Dubey, S., Bhargava, A., Fuentes, F., Shukla, S., & Srivastava, S. (2020). Effect of salinity stress on yield and quality parameters in flax (Linum usitatissimum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 954-966. https://doi.org/10.15835/NBHA48211861
  • Dumanoğlu, Z. (2020). Keten (Linum usitatissimum L.) Bitkisi tohumlarının genel özellikleri. Bütünleyici ve Anadolu Tıbbı Dergisi, 2(1), 3-9. (in Turkish). Retrieved from https://dergipark.org.tr/en/pub/batd/issue/59277/800008
  • Gorshkova, T., Brutch, N., Chabbert, B., Deyholos, M., Hayashi, T., Lev-Yadun, S., Pilate, G. (2012). Plant fiber formation: state of the art, recent and expected progress, and open questions. Critical Reviews in Plant Sciences, 31(3), 201-228. https://doi.org/10.1080/07352689.2011.616096
  • Goudenhooft, C., Bourmaud, A., & Baley, C. (2017). Varietal selection of flax over time: Evolution of plant architecture related to influence on the mechanical properties of fibers. Industrial Crops and Products, 97, 56-64. https://doi.org/10.1016/j.indcrop.2016.11.062
  • Goudenhooft, C., Bourmaud, A., & Baley, C. (2018). Conventional or greenhouse cultivation of flax: What influence on the number and quality of flax fibers?. Industrial crops and products, 123, 111-117. https://doi.org/10.1016/j.indcrop.2018.06.066
  • Goudenhooft, C., Bourmaud, A., & Baley, C. (2019). Flax (Linum usitatissimum L.) fibers for composite reinforcement: exploring the link between plant growth, cell walls development, and fiber properties. Frontiers in Plant Science, 10, 411. https://doi.org/10.3389/fpls.2019.00411
  • Goutianos, S., Peijs, T., Nystrom, B., & Skrifvars, M. (2006). Development of flax fibre based textile reinforcements for composite applications. Applied composite materials, 13, 199-215. https://doi.org/10.1007/s10443-006-9010-2
  • Hatanaka, T., Yamamoto, N., Araki, R., Kishigami, M., Nakamoto, T., Masumura, T., & Sugimoto, T. (2021). Fatty acid compositions of triacylglycerols in flax (Linum usitatissimum L.) seeds with varied seeding dates and nitrogen fertilization in a temperate region of Japan: Seeding date and fatty acids in flax seed. Soil Science and Plant Nutrition, 67(3), 269-276. https://doi.org/10.1080/00380768.2021.1908093
  • Heller, K., Sheng, Q. C., Guan, F., Alexopoulou, E., Hua, L. S., Wu, G. W., & Fu, W. Y. (2015). A comparative study between Europe and China in crop management of two types of flax: linseed and fibre flax. Industrial Crops and Products, 68, 24-31. https://doi.org/10.1016/j.indcrop.2014.07.010
  • Jacobsson, E. (2018). Environmental Impact Analysis of Flax Fibre Cultivation for Composite Reinforcement. urn: nbn: se: miun: diva-34881
  • Karaoğlu, M., & Çelim, Ş. (2018). Doğu Anadolu Bölgesi Ve Iğdır’ın Jeolojisi Ve Toprak Özellikleri. Journal of Agriculture, 1(1), 14-26. (in Turkish)
  • Keskin, N. Ç., Öztürk, Ö., Eğribaş, Z. E., & Yılmaz, E. (2020). Bazı yağlık keten çeşitlerinde farklı sıra aralıklarının verim ve verim unsurları üzerine etkilerinin belirlenmesi. Ziraat Fakültesi Dergisi, 109-120. ISSN 1304-9984. (in Turkish)
  • Koçak, M. Z. (2022). Fatty acid and organic acid compositions of some Türkiye registered flax (Linum usitatissimum L.) varieties grown under alkaline soils. International Journal of Agriculture Environment and Food Sciences, 6(3), 358-369. https://doi.org/10.31015/jaefs.2022.3.4
  • Koçak, M. Z., Kumlay, A. M., & Alma, M. H. (2023). Morphological and molecular characterization of flax (Linum usitatissimum L.) accessions obtained from different locations in Turkey. Genetic Resources and Crop Evolution, 1-27. https://doi.org/10.1007/s10722-023-01589-6
  • Lamani, S., Anu-Appaiah, K. A., Murthy, H. N., Dewir, Y. H., & Rihan, H. Z. (2021). Fatty acid profile, tocopherol content of seed oil, and nutritional analysis of seed cake of wood apple (Limonia acidissima L.), an underutilized fruit-yielding tree species. Horticulturae, 7(9), 275. https://doi.org/10.3390/horticulturae7090275
  • Li, Q., Fu, C., Liang, C., Ni, X., Zhao, X., Chen, M., & Ou, L. (2022). Crop lodging and the roles of lignin, cellulose, and hemicellulose in lodging resistance. Agronomy, 12(8), 1795. https://doi.org/10.3390/agronomy12081795
  • Li, Y., Hoogenboom, G., Asseng, S., Niu, J. Y., Wu, L., & Kang, L. H. (2022). Adaptation of the SIMPLE model to oilseed flax (Linum usitatissimum L.) for arid and semi-arid environments. Agronomy, 12(6), 1267. https://doi.org/10.3390/agronomy12061267
  • Melelli, A., Jamme, F., Beaugrand, J., & Bourmaud, A. (2022). Evolution of the ultrastructure and polysaccharide composition of flax fibres over time: When history meets science. Carbohydrate polymers, 291, 119584. https://doi.org/10.1016/j.carbpol.2022.119584
  • Mirshekari, M., Amiri, R., Nezhad, H. I., Noori, S. S., & Zandvakili, O. R. (2012). Effects of planting date and water deficit on quantitative and qualitative traits of flax seed. American Eurasian Journal of Agricultural and Environment Science, 12(7), 901-913. https://doi.org/10.5829/idosi.aejaes.2012.12.07.1781
  • Moulia, B., Coutand, C., & Lenne, C. (2006). Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. American Journal of Botany, 93(10), 1477-1489. https://doi.org/10.3732/ajb.93.10.1477
  • Moudood, A., Rahman, A., Öchsner, A., Islam, M., & Francucci, G. (2019). Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. Journal of Reinforced Plastics and Composites, 38(7), 323-339. https://doi.org/10.1177/073168441881889
  • Njembe, M. N., Dormal, E., Gardin, C., Mignolet, E., Debier, C., & Larondelle, Y. (2021). Effect of the dietary combination of flaxseed and Ricinodendron heudelotii or Punica granatum seed oil on the fatty acid profile of eggs. Food Chemistry, 344, 128668. https://doi.org/10.1016/j.foodchem.2020.128668
  • Omrani, F., Wang, P., Soulat, D., & Ferreira, M. (2017). Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterisations. Composites Part A: Applied Science and Manufacturing, 93, 72-81. https://doi.org/10.1016/j.compositesa.2016.11.013
  • Paul-Victor, C., & Rowe, N. (2011). Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana. Annals of botany, 107(2), 209-218. https://doi.org/10.1093/aob/mcq227
  • Pisupati, A., Willaert, L., Goethals, F., Uyttendaele, W., & Park, C. H. (2021). Variety and growing condition effect on the yield and tensile strength of flax fibers. Industrial crops and products, 170, 113736. https://doi.org/10.1016/j.indcrop.2021.113736
  • Poudyal, S. (2017). Application of cleaner production technique followed by experimentation on high yield semi-chemical pulping of rice straw and sabai grass for corrugating medium and linerboard (Doctoral dissertation). http://archive.nnl.gov.np:8080/handle/123456789/407
  • Saleem, M. H., Ali, S., Hussain, S., Kamran, M., Chattha, M. S., Ahmad, S., Abdel-Daim, M. M. (2020). Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants, 9(4), 496. https://doi.org/10.3390/plants9040496
  • Sarmast, M. K., Salehi, H., & Khosh-Khui, M. (2014). Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants. 3 Biotech, 4, 599-604. https://doi.org/10.1007/s13205-013-0191-8
  • Saroha, A., Pal, D., Kaur, V., Kumar, S., Bartwal, A., Aravind, J., Wankhede, D. P. (2022). Agro-morphological variability and genetic diversity in linseed (Linum usitatissimum L.) germplasm accessions with emphasis on flowering and maturity time. Genetic Resources and Crop Evolution, 69(1), 315-333. https://doi.org/10.1007/s10722-021-01231-3
  • Šic Žlabur, J., Radman, S., Fabek Uher, S., Opačić, N., Benko, B., Galić, A., Voća, S. (2021). Plant response to mechanically-induced stress: a case study on specialized metabolites of leafy vegetables. Plants, 10(12), 2650. https://doi.org/10.3390/plants10122650
  • Sheng, Q. C., Stybayev, G., Fu, W. Y., Begalina, A., Hua, L. S., Baitelenova, A., Tussipkan, D. (2022). Flax varieties experimental report in Kazakhstan in 2019. Journal of natural fibers, 19(6), 2356-2365. https://doi.org/10.1080/15440478.2020.1813674
  • Shiba, M., Mizuno, T., & Fukuda, T. (2023). Effect of strong wind on laminas and petioles of Farfugium japonicum (L.) Kitamura var. japonicum (Asteraceae). Frontiers in Plant Science, 14, 1182266. https://doi.org/10.3389/fpls.2023.1182266
  • Stavropoulos, P., Mavroeidis, A., Papadopoulos, G., Roussis, I., Bilalis, D., & Kakabouki, I. (2023). On the path towards a “Greener” EU: A Mini review on Flax (Linum usitatissimum L.) as a Case Study. Plants, 12(5), 1102. https://doi.org/10.3390/plants12051102
  • Tian, X., Engel, B. A., Qian, H., Hua, E., Sun, S., Wang, Y. (2021). Will reaching the maximum achievable yield potential meet future global food demand?. Journal of Cleaner Production, 294, 126285. https://doi.org/10.1016/j.jclepro.2021.126285
  • Tork, D. G., Anderson, N. O., Wyse, D. L., & Betts, K. J. (2019). Domestication of perennial flax using an ideotype approach for oilseed, cut flower, and garden performance. Agronomy, 9(11), 707. https://doi.org/10.3390/agronomy9110707
  • Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E.,Verpoest, I. (2003). Influence of processing and chemical treatment of flax fibres on their composites. Composites science and technology, 63(9), 1241-1246. https://doi.org/10.1016/S0266-3538(03)00093-9
  • Vavilov, N. I., & Chester, K. S. (1951). The origin, variation, immunity and breeding of cultivated plants: selected writings. (No Title).
  • Xie, Y., Yan, Z., Niu, Z., Coulter, J. A., Niu, J., Zhang, J., Wang, L. (2020). Yield, oil content, and fatty acid profile of flax (Linum usitatissimum L.) as affected by phosphorus rate and seeding rate. Industrial Crops and Products, 145, 112087. https://doi.org/10.1016/j.indcrop.2020.112087
  • Yan, L., Chouw, N., & Jayaraman, K. (2014). Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes. Composites Part B: Engineering, 63, 15-26. https://doi.org/10.1016/j.compositesb.2014.03.013
  • Yang, J., Wen, C., Duan, Y., Deng, Q., Peng, D., Zhang, H., & Ma, H. (2021). The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends in Food Science & Technology, 118, 252-260. https://doi.org/10.1016/j.tifs.2021.09.025
  • Yılmaz, S.; Uzun, A. “Keten Tarımı”, Tarım ve Orman Bakanlığı. TAGEM. Karadeniz Tarımsal Araştırma En-stitüsü Müdürlüğü, 2019, 04, 34. (in Turkish)
Year 2024, , 220 - 234, 25.03.2024
https://doi.org/10.31015/jaefs.2024.1.22

Abstract

References

  • Baley, C., Goudenhooft, C., Gibaud, M., & Bourmaud, A. (2018). Flax stems: from a specific architecture to an instructive model for bioinspired composite structures. Bioinspiration & Biomimetics, 13(2), 026007. https://doi.org/10.1088/1748-3190/aaa6b7
  • Biddington, N. L. (1986). The effects of mechanically-induced stress in plants—a review. Plant growth regulation, 4, 103-123. https://doi.org/10.1007/BF00025193
  • Bourmaud, A., Gibaud, M., & Baley, C. (2016). Impact of the seeding rate on flax stem stability and the mechanical properties of elementary fibres. Industrial Crops and Products, 80, 17-25. https://doi.org/10.1016/j.indcrop.2015.10.053
  • Börnke, F., & Rocksch, T. (2018). Thigmomorphogenesis–control of plant growth by mechanical stimulation. Scientia Horticulturae, 234, 344-353. https://doi.org/10.1016/j.scienta.2018.02.059
  • Brulé, V., Rafsanjani, A., Pasini, D., & Western, T. L. (2016). Hierarchies of plant stiffness. Plant Science, 250, 79-96. https://doi.org/10.1016/j.plantsci.2016.06.002
  • Choudhary, S. B., Sharma, H. K., Kumar, A. A., Maruthi, R. T., Mitra, J., Chowdhury, I., & Karmakar, P. G. (2017). SSR and morphological trait based population structure analysis of 130 diverse flax (Linum usitatissimum L.) accessions. Comptes rendus biologies, 340(2), 65-75. https://doi.org/10.1016/j.crvi.2016.12.002
  • Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building materials, 73, 113-124. https://doi.org/10.1016/j.conbuildmat.2014.09.040
  • Carmona, S., & Ezzamel, M. (2007). Accounting and accountability in ancient civilizations: Mesopotamia and ancient Egypt. Accounting, Auditing & Accountability Journal, 20(2), 177-209. https://doi.org/10.1108/09513570710740993
  • Crook, M. J., & Ennos, A. R. (1996). Mechanical differences between free-standing and supported wheat plants, Triticum aestivum L. Annals of Botany, 77(3), 197-202. https://doi.org/10.1006/anbo.1996.0023
  • da Silva, T. R., de Matos, P. R., Júnior, L. U. D. T., Marvila, M. T., & de Azevedo, A. R. G. (2023). A review on the performance of açaí fiber in cementitious composites: Characteristics and application challenges. Journal of Building Engineering, 106481. https://doi.org/10.1016/j.jobe.2023.106481
  • Davis, P. H. (1982). Flora of Turkey and the East Aegean Islands. Vol. 3. Flora of Turkey and the East Aegean Islands. Vol. 3. https://www.jstor.org/stable/10.3366/j.ctvxcrhxk
  • Deme, T., Haki, G. D., Retta, N., Woldegiorgis, A., & Geleta, M. (2021). Fatty acid profile, total phenolic content, and antioxidant activity of niger seed (Guizotia abyssinica) and linseed (Linum usitatissimum). Frontiers in Nutrition, 8, 674882. https://doi.org/10.3389/fnut.2021.674882
  • Dubey, S., Bhargava, A., Fuentes, F., Shukla, S., & Srivastava, S. (2020). Effect of salinity stress on yield and quality parameters in flax (Linum usitatissimum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 954-966. https://doi.org/10.15835/NBHA48211861
  • Dumanoğlu, Z. (2020). Keten (Linum usitatissimum L.) Bitkisi tohumlarının genel özellikleri. Bütünleyici ve Anadolu Tıbbı Dergisi, 2(1), 3-9. (in Turkish). Retrieved from https://dergipark.org.tr/en/pub/batd/issue/59277/800008
  • Gorshkova, T., Brutch, N., Chabbert, B., Deyholos, M., Hayashi, T., Lev-Yadun, S., Pilate, G. (2012). Plant fiber formation: state of the art, recent and expected progress, and open questions. Critical Reviews in Plant Sciences, 31(3), 201-228. https://doi.org/10.1080/07352689.2011.616096
  • Goudenhooft, C., Bourmaud, A., & Baley, C. (2017). Varietal selection of flax over time: Evolution of plant architecture related to influence on the mechanical properties of fibers. Industrial Crops and Products, 97, 56-64. https://doi.org/10.1016/j.indcrop.2016.11.062
  • Goudenhooft, C., Bourmaud, A., & Baley, C. (2018). Conventional or greenhouse cultivation of flax: What influence on the number and quality of flax fibers?. Industrial crops and products, 123, 111-117. https://doi.org/10.1016/j.indcrop.2018.06.066
  • Goudenhooft, C., Bourmaud, A., & Baley, C. (2019). Flax (Linum usitatissimum L.) fibers for composite reinforcement: exploring the link between plant growth, cell walls development, and fiber properties. Frontiers in Plant Science, 10, 411. https://doi.org/10.3389/fpls.2019.00411
  • Goutianos, S., Peijs, T., Nystrom, B., & Skrifvars, M. (2006). Development of flax fibre based textile reinforcements for composite applications. Applied composite materials, 13, 199-215. https://doi.org/10.1007/s10443-006-9010-2
  • Hatanaka, T., Yamamoto, N., Araki, R., Kishigami, M., Nakamoto, T., Masumura, T., & Sugimoto, T. (2021). Fatty acid compositions of triacylglycerols in flax (Linum usitatissimum L.) seeds with varied seeding dates and nitrogen fertilization in a temperate region of Japan: Seeding date and fatty acids in flax seed. Soil Science and Plant Nutrition, 67(3), 269-276. https://doi.org/10.1080/00380768.2021.1908093
  • Heller, K., Sheng, Q. C., Guan, F., Alexopoulou, E., Hua, L. S., Wu, G. W., & Fu, W. Y. (2015). A comparative study between Europe and China in crop management of two types of flax: linseed and fibre flax. Industrial Crops and Products, 68, 24-31. https://doi.org/10.1016/j.indcrop.2014.07.010
  • Jacobsson, E. (2018). Environmental Impact Analysis of Flax Fibre Cultivation for Composite Reinforcement. urn: nbn: se: miun: diva-34881
  • Karaoğlu, M., & Çelim, Ş. (2018). Doğu Anadolu Bölgesi Ve Iğdır’ın Jeolojisi Ve Toprak Özellikleri. Journal of Agriculture, 1(1), 14-26. (in Turkish)
  • Keskin, N. Ç., Öztürk, Ö., Eğribaş, Z. E., & Yılmaz, E. (2020). Bazı yağlık keten çeşitlerinde farklı sıra aralıklarının verim ve verim unsurları üzerine etkilerinin belirlenmesi. Ziraat Fakültesi Dergisi, 109-120. ISSN 1304-9984. (in Turkish)
  • Koçak, M. Z. (2022). Fatty acid and organic acid compositions of some Türkiye registered flax (Linum usitatissimum L.) varieties grown under alkaline soils. International Journal of Agriculture Environment and Food Sciences, 6(3), 358-369. https://doi.org/10.31015/jaefs.2022.3.4
  • Koçak, M. Z., Kumlay, A. M., & Alma, M. H. (2023). Morphological and molecular characterization of flax (Linum usitatissimum L.) accessions obtained from different locations in Turkey. Genetic Resources and Crop Evolution, 1-27. https://doi.org/10.1007/s10722-023-01589-6
  • Lamani, S., Anu-Appaiah, K. A., Murthy, H. N., Dewir, Y. H., & Rihan, H. Z. (2021). Fatty acid profile, tocopherol content of seed oil, and nutritional analysis of seed cake of wood apple (Limonia acidissima L.), an underutilized fruit-yielding tree species. Horticulturae, 7(9), 275. https://doi.org/10.3390/horticulturae7090275
  • Li, Q., Fu, C., Liang, C., Ni, X., Zhao, X., Chen, M., & Ou, L. (2022). Crop lodging and the roles of lignin, cellulose, and hemicellulose in lodging resistance. Agronomy, 12(8), 1795. https://doi.org/10.3390/agronomy12081795
  • Li, Y., Hoogenboom, G., Asseng, S., Niu, J. Y., Wu, L., & Kang, L. H. (2022). Adaptation of the SIMPLE model to oilseed flax (Linum usitatissimum L.) for arid and semi-arid environments. Agronomy, 12(6), 1267. https://doi.org/10.3390/agronomy12061267
  • Melelli, A., Jamme, F., Beaugrand, J., & Bourmaud, A. (2022). Evolution of the ultrastructure and polysaccharide composition of flax fibres over time: When history meets science. Carbohydrate polymers, 291, 119584. https://doi.org/10.1016/j.carbpol.2022.119584
  • Mirshekari, M., Amiri, R., Nezhad, H. I., Noori, S. S., & Zandvakili, O. R. (2012). Effects of planting date and water deficit on quantitative and qualitative traits of flax seed. American Eurasian Journal of Agricultural and Environment Science, 12(7), 901-913. https://doi.org/10.5829/idosi.aejaes.2012.12.07.1781
  • Moulia, B., Coutand, C., & Lenne, C. (2006). Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. American Journal of Botany, 93(10), 1477-1489. https://doi.org/10.3732/ajb.93.10.1477
  • Moudood, A., Rahman, A., Öchsner, A., Islam, M., & Francucci, G. (2019). Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. Journal of Reinforced Plastics and Composites, 38(7), 323-339. https://doi.org/10.1177/073168441881889
  • Njembe, M. N., Dormal, E., Gardin, C., Mignolet, E., Debier, C., & Larondelle, Y. (2021). Effect of the dietary combination of flaxseed and Ricinodendron heudelotii or Punica granatum seed oil on the fatty acid profile of eggs. Food Chemistry, 344, 128668. https://doi.org/10.1016/j.foodchem.2020.128668
  • Omrani, F., Wang, P., Soulat, D., & Ferreira, M. (2017). Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterisations. Composites Part A: Applied Science and Manufacturing, 93, 72-81. https://doi.org/10.1016/j.compositesa.2016.11.013
  • Paul-Victor, C., & Rowe, N. (2011). Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana. Annals of botany, 107(2), 209-218. https://doi.org/10.1093/aob/mcq227
  • Pisupati, A., Willaert, L., Goethals, F., Uyttendaele, W., & Park, C. H. (2021). Variety and growing condition effect on the yield and tensile strength of flax fibers. Industrial crops and products, 170, 113736. https://doi.org/10.1016/j.indcrop.2021.113736
  • Poudyal, S. (2017). Application of cleaner production technique followed by experimentation on high yield semi-chemical pulping of rice straw and sabai grass for corrugating medium and linerboard (Doctoral dissertation). http://archive.nnl.gov.np:8080/handle/123456789/407
  • Saleem, M. H., Ali, S., Hussain, S., Kamran, M., Chattha, M. S., Ahmad, S., Abdel-Daim, M. M. (2020). Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants, 9(4), 496. https://doi.org/10.3390/plants9040496
  • Sarmast, M. K., Salehi, H., & Khosh-Khui, M. (2014). Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants. 3 Biotech, 4, 599-604. https://doi.org/10.1007/s13205-013-0191-8
  • Saroha, A., Pal, D., Kaur, V., Kumar, S., Bartwal, A., Aravind, J., Wankhede, D. P. (2022). Agro-morphological variability and genetic diversity in linseed (Linum usitatissimum L.) germplasm accessions with emphasis on flowering and maturity time. Genetic Resources and Crop Evolution, 69(1), 315-333. https://doi.org/10.1007/s10722-021-01231-3
  • Šic Žlabur, J., Radman, S., Fabek Uher, S., Opačić, N., Benko, B., Galić, A., Voća, S. (2021). Plant response to mechanically-induced stress: a case study on specialized metabolites of leafy vegetables. Plants, 10(12), 2650. https://doi.org/10.3390/plants10122650
  • Sheng, Q. C., Stybayev, G., Fu, W. Y., Begalina, A., Hua, L. S., Baitelenova, A., Tussipkan, D. (2022). Flax varieties experimental report in Kazakhstan in 2019. Journal of natural fibers, 19(6), 2356-2365. https://doi.org/10.1080/15440478.2020.1813674
  • Shiba, M., Mizuno, T., & Fukuda, T. (2023). Effect of strong wind on laminas and petioles of Farfugium japonicum (L.) Kitamura var. japonicum (Asteraceae). Frontiers in Plant Science, 14, 1182266. https://doi.org/10.3389/fpls.2023.1182266
  • Stavropoulos, P., Mavroeidis, A., Papadopoulos, G., Roussis, I., Bilalis, D., & Kakabouki, I. (2023). On the path towards a “Greener” EU: A Mini review on Flax (Linum usitatissimum L.) as a Case Study. Plants, 12(5), 1102. https://doi.org/10.3390/plants12051102
  • Tian, X., Engel, B. A., Qian, H., Hua, E., Sun, S., Wang, Y. (2021). Will reaching the maximum achievable yield potential meet future global food demand?. Journal of Cleaner Production, 294, 126285. https://doi.org/10.1016/j.jclepro.2021.126285
  • Tork, D. G., Anderson, N. O., Wyse, D. L., & Betts, K. J. (2019). Domestication of perennial flax using an ideotype approach for oilseed, cut flower, and garden performance. Agronomy, 9(11), 707. https://doi.org/10.3390/agronomy9110707
  • Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E.,Verpoest, I. (2003). Influence of processing and chemical treatment of flax fibres on their composites. Composites science and technology, 63(9), 1241-1246. https://doi.org/10.1016/S0266-3538(03)00093-9
  • Vavilov, N. I., & Chester, K. S. (1951). The origin, variation, immunity and breeding of cultivated plants: selected writings. (No Title).
  • Xie, Y., Yan, Z., Niu, Z., Coulter, J. A., Niu, J., Zhang, J., Wang, L. (2020). Yield, oil content, and fatty acid profile of flax (Linum usitatissimum L.) as affected by phosphorus rate and seeding rate. Industrial Crops and Products, 145, 112087. https://doi.org/10.1016/j.indcrop.2020.112087
  • Yan, L., Chouw, N., & Jayaraman, K. (2014). Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes. Composites Part B: Engineering, 63, 15-26. https://doi.org/10.1016/j.compositesb.2014.03.013
  • Yang, J., Wen, C., Duan, Y., Deng, Q., Peng, D., Zhang, H., & Ma, H. (2021). The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends in Food Science & Technology, 118, 252-260. https://doi.org/10.1016/j.tifs.2021.09.025
  • Yılmaz, S.; Uzun, A. “Keten Tarımı”, Tarım ve Orman Bakanlığı. TAGEM. Karadeniz Tarımsal Araştırma En-stitüsü Müdürlüğü, 2019, 04, 34. (in Turkish)
There are 53 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Mehmet Zeki Koçak 0000-0002-8368-2478

Publication Date March 25, 2024
Submission Date January 17, 2024
Acceptance Date March 12, 2024
Published in Issue Year 2024

Cite

APA Koçak, M. Z. (2024). How growing conditions are influential on the agronomic attributes and fiber-related quality parameters of flax (Linum usitatissimum L.) fibers: A seismomorphogenesis approach. International Journal of Agriculture Environment and Food Sciences, 8(1), 220-234. https://doi.org/10.31015/jaefs.2024.1.22

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27