Research Article
BibTex RIS Cite

Isolation and characterization of plant growth promoting rhizobacteria (PGPR) from rhizosphere of Helianthus annuus L.

Year 2024, , 412 - 429, 27.06.2024
https://doi.org/10.31015/jaefs.2024.2.16

Abstract

Plant growth-promoting rhizobacteria (PGPR) support plant growth through direct and indirect mechanisms. To investigate PGPR strains that support plant growth, 21 bacterial isolates, mostly Bacillus ssp. and Pseudomonas ssp., were isolated from different rhizospheric soils of sunflowers in Kırşehir districts in 2020. All isolates were characterized morphologically, biochemically by screening under in vitro conditions for plant growth-promoting properties such as nitrogen fixation, IAA (indoleacetic acid) production, siderophore production, HCN (hydrogen cyanide) production, inorganic phosphate solubility. It was also screened for extracellular enzyme production and antifungal activity against Fusarium oxysporum. Among the 21 isolates, 3 isolates (MH-35-4, MH-49-4, MH-64-3) fixed nitrogen, 2 isolates (MH-59-6, MH-64-3), produced siderophores, 8 isolates (MH-35-4, MH-35-6, MH-54-3, MH-54-4, MH-59-1, MH-59-2, MH-59-4, MH-59-8) produced HCN, 6 isolates (MH-35-6, MH-54-4, MH-59-1, MH-59-2, MH-59-4, MH-59-8) produced IAA, and 7 isolates (MH-35-4, MH-35-6, MH-59-1, MH-59-2, MH-59-4, MH-59-8, MH-64-3) solubilized inorganic phosphate. Additionally, only 2 isolates (MH-54-3, MH-54-4) were positive amylase tests, 8 isolates (MH-35-6, MH-54-4, MH-59-1, MH-59-2, MH-59-4, MH-59-6, MH-59-7, MH-59-8) were positive citrate tests, 8 isolates (MH-35-1, MH-35-4, MH-35-7, MH-49-4, MH-54-4, MH-59-6, MH-59-7, MH-64-3) were positive protease tests, and 6 isolates (MH-35-1, MH-35-3, MH-35-7, MH-54-3, MH-54-4, MH-59-7) were positive gelatin hydrolysis tests. Among 21 isolates, 38% were determined as hydrogen cyanide producers, 10% as siderophore producers, 29% IAA producers, 33% as phosphate solubilizers and 14% as nitrogen fixers. Isolate MH-35-6 showed the highest antifungal activity against Fusarium oxysporum with an inhibition rate of 53.57%. This was followed by isolates MH-54-1 (51.19%), MH-54-3 (47.61%) and MH-59-2 (38.09%), respectively. Therefore, our study reveals that bacteria that promote plant growth in sunflowers can be used to increase crop yield and as a biocontrol agent.

References

  • Abdullah, Çil., Çil, A.N., Şahin, V., Yaşar, Y. (2023). Sunflower (Helianthus annuus L.) advanced breeding materials in field trials in different geographical regions of Turkey. MAS Journal of Applied Sciences, 8(2), 384-390. https://doi.org/10.5281/zenodo.8051748
  • Adeleke, B. S., Ayangbenro, A. S., Babalola, O.O. (2022). In vitro screening of sunflower associated endophytic bacteria with plant growth-promoting traits. Frontiers in Sustainable Food Systems, 6, 903114. https://doi.org/10.3389/fsufs.2022.903114
  • Ahmad, F., Ahmad, I., Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163 (2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  • Ambrosini, A., Beneduzi, A., Stefanski, T., Pinheiro, F. G., Vargas, L.K., Passaglia, L.M. (2012). Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant and Soil, 356, 245-264. https://doi.org/10.1007/s11104-011-1079-1
  • Bakker, A.W. & Schippers, BOB. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biology and Biochemistry ,19(4), 451-457. https://doi.org/10.1016/0038-0717(87)90037-x
  • Bashan, Y. & De-Bashan, L.E. (2010), How the plant growth-promoting bacterium Azospirillum promotes plant growth- a critical assessment. Advances in Agronomy, 108, 77-136. https://doi.org/10.1016/s0065-2113(10)08002-8
  • Bashir, S., Iqbal, A., Hasnain, S., White, J.F. (2021). Screening of sunflower associated bacteria as biocontrol agents for plant growth promotion. Archives of Microbiology, 203, 4901-4912. https://doi.org/10.1007/s00203-021-02463-8
  • Bashir, T., Iqbal, M., Javed, S., Riaz, J., Bukhari, N. T., Nisa, I., Khan, N. (2023). Isolation and characterization of plant growth promoting bacteria from rhızosphere of Okra. Journal of Population Therapeutics and Clinical Pharmacology, 30(18), 1257-1268. https://doi.org/10.53555/jptcp.v30i18.3264
  • Beattie, G.A. (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Journal of Applied Sciences, (6), 1–56. https://doi.org/10.1007/1-4020-4538-7_1
  • Beneduzi, A., Peres, D., Vargas, L.K., Bodanese-Zanettini, M.H., Passaglia, L.M.P. (2008). Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Applied Soil Ecology, 39:311–320. https://doi.org/10.1016/j.apsoil.2008.01.006
  • Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. Bacteria in Agrobiology: Plant Growth Responses, 41-76. https://doi.org/10.1007/978-3-642-20332-9_3
  • Bushra, R., Uzair, B., Ali, A., Manzoor, S., Abbas, S., Ahmed, I. (2023). Draft genome sequence of a halotolerant plant growth-promoting bacterium Pseudarthrobacter oxydans NCCP-2145 isolated from rhizospheric soil of mangrove plant Avicennia marina. Electronic Journal of Biotechnology, 66, 52-59. https://doi.org/10.1016/j.ejbt.2023.08.003
  • Chai, J., Wang, X., Liu, X., Li, C., Han, J., Yao, T. (2023). Inoculation of cold-adapted microbial consortium screened from alpine meadows promotes the growth of mixed grasses by changing soil properties and enzyme activity. Rhizosphere, 28, 100782. https://doi.org/10.1016/j.rhisph.2023.100782
  • Chaiharn, M. & Lumyong, S. (2011). Screening and optimization of Indole-3-Acetic production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Current Microbiology. 62, 173-181. https://doi.org/10.1007/s00284-010-9674-6
  • Chaurasiya, D. K., Sahni, S., Prasad, B. D., Kumar, B. (2023). Biological management of Lentil (Lens culinaris) Fusarium wilt by using the potential Pseudomonas isolates. International Journal of Plant & Soil Science, 35(2), 7-11. https://doi.org/10.9734/ijpss/2023/v35i22752
  • Çevik, Y.N. & Ogutcu, H. (2020). Identification of bacteria in soil by MALDI-TOF MS and analysis of Bacillus spp., Paenibacillus spp. and Pseudomonas spp. with PCA. Analytical Chemistry Letters, 10(6), 784-797. https://doi.org/10.1080/22297928.2021.1877194
  • Deka, H., Deka, S. & Baruah, C.K. (2015). Plant growth promoting rhizobacteria for value addition: mechanism of action. In Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants, Soil Biology, (42), 305-321. https://doi.org/10.1007/978-3-319-13401-7_15
  • Devi, S., Sharma, S., Tiwari, A., Bhatt, A. K., Singh, N. K., Singh, M., Kumar, A. (2023). Screening for multifarious plant growth promoting and biocontrol attributes in Bacillus strains isolated from Indo Gangetic soil for enhancing growth of rice crops. Microorganisms, 11(4), 1085. https://doi.org/10.3390/microorganisms11041085
  • Dhole, A., Shelat, H., Panpatte, D. (2017). Chryseobacterium indologenes a novel root nodule endophyte in Vigna radiata. International Journal of Current Microbiology and Applied Sciences, 6, 836-44. https://doi.org/10.20546/ijcmas.2017.604.104
  • Dorjey, S., Dolkar, D. & Sharma, R. (2017). Plant growth promoting rhizobacteria Pseudomonas: a review. International Journal of Current Microbiology and Applied Sciences, 6(7), 1335-1344. https://doi.org/10.20546/ijcmas.2017.607.160
  • Ercole, T.G., Kava, V.M., Aluizio, R., Pauletti, V., Hungria, M., Galli-Terasawa, L.V. (2023). Co-inoculation of Bacillus velezensis and Stenotrophomonas maltophilia strains improves growth and salinity tolerance in maize (Zea mays L.). Rhizosphere, 27, 100752. https://doi.org/10.1016/j.rhisph.2023.100752
  • Fatima, I., Hakim, S., Imran, A., Ahmad, N., Imtiaz, M., Ali, H., Mubeen, F. (2022). Exploring biocontrol and growth-promoting potential of multifaceted PGPR isolated from natural suppressive soil against the causal agent of chickpea wilt. Microbiological Research, 260, 127015. https://doi.org/10.1016/j.micres.2022.127015
  • Ferioun, M., Srhiouar, N., Tirry, N., Belahcen, D., Siang, T. C., Louahlia, S., El Ghachtouli, N. (2023). Optimized drought tolerance in barley (Hordeum vulgare L.) using plant growth-promoting rhizobacteria (PGPR). Biocatalysis and Agricultural Biotechnology, 50, 102691. https://doi.org/10.1016/j.bcab.2023.102691
  • Fiodor, A., Ajijah, N., Dziewit, L. Pranaw, K. (2023). Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology, 14, 1142966. https://doi.org/10.3389/fmicb.2023.1142966
  • Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., Abdala, G. (2007). Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology, 76, 1145-1152. https://doi.org/10.1007/s00253-007-1077-7
  • Ghosh, R., Chatterjee, S. & Mandal, N.C. (2020). Stenotrophomonas. In Beneficial Microbes in Agro-Ecology. Academic Press, 427-442. https://doi.org/10.1016/b978-0-12-823414-3.00020-4
  • Glickmann, E. & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied Environmental. Microbiology 61, 793–796. https://doi.org/10.1128/aem.61.2.793-796.1995
  • Goes, K.C.G.P.D., Fisher, M.L.D.C., Cattelan, A.J., Nogueira, M.A., Carvalho, C.G.P.D., Oliveira, A.L.M.D. (2012). Biochemical and molecular characterization of high population density bacteria isolated from sunflower. Journal of Microbiology and Biotechnology, 22(4), 437-447. https://doi.org/10.4014/jmb.1109.09007
  • Gopalakrishnan, S., Srinivas, V. & Samineni, S. (2017). Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 11, 116-123. https://doi.org/10.1016/j.bcab.2017.06.012
  • Gulya, T. J., Mathew, F., Harveson, R., Markell, S., Block, C. (2016). Diseases of sunflower. Handbook of Florists' crops diseases, handbook of plant disease management. 1-20, Springer International Publishing. https://doi.org/10.1007/978-3-319-32374-9_27-1
  • Gupta, A. & Gopal, M. (2008). Siderophore production by plant growth promoting rhizobacteria. Indian Journal of Agricultural Research, 42(2), 153-156.
  • Haghighi, B.J., Alizadeh, O. & Firoozabadi, A.H. (2011). The role of plant growth promoting rhizobacteria (PGPR) in sustainable agriculture, Advances in Environmental Biology, 5(10), 3079-3083. https://doi.org/10.1007/978-981-13-6790-8_2
  • Hameeda, B., Harini, G., Rupela, O.P., Wani, S.P., Reddy, G. (2008). Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Research, 163(2), 234–242. https://doi.org/10.1016/j.micres.2006.05.009
  • Hamid, S., Lone, R. & Mohamed, H.I. (2021). Production of antibiotics from PGPR and their role in biocontrol of plant diseases. Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management, 441-461. https://doi.org/10.1007/978-3-030-66587-6_16
  • Hayat, R., Ahmed, I. & Sheirdil, R.A. (2012). An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Crop Production for Agricultural Improvement, 557-579. https://doi.org/10.1007/978-94-007-4116-4_22
  • Huang, C., Jiang, L., Liang, Y.P., Han, L.J., Yang, K.Y., Qin, Y.M., & Zhao, X. (2023). Acinetobacter calcoaceticus promotes the seedling growth of Lespedeza daurica under saline-alkaline stress, Acta Microbiologica Sinica, 8, 3264-3278.
  • Jiang, Z., Zheng, H. & Xing, B. (2021). Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Science of The Total Environment, 760, 143342. https://doi.org/10.1016/j.scitotenv.2020.143342
  • Kapulnik, Y., Okon, Y., Kigel, J., Nur, I., Henis, Y. (1981). Effects of temperature, nitrogen fertilization, and plant age on nitrogen fixation by Setaria italica inoculated with Azospirillum brasilense (strain cd), Plant Physiology, 68(2), 340-343. https://doi.org/10.1104/pp.68.2.340
  • Khalil, M.S.M., Hassan, M.H.A.R., Mahmoud, A.F., Morsy, K.M.M. (2022). Involvement of secondary metabolites and extracellular lytic enzymes produced by plant growth promoting rhizobacteria in inhibiting the soilborne pathogens in Faba Bean Plants. Jurnal Hama dan Penyakit Tumbuhan Tropika, 22(2), 100-108. https://doi.org/10.23880/oajmms-16000161
  • Khan, M. S., Zaidi, A. & Ahmad, E. (2014). Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. Phosphate solubilizing microorganisms: Principles and Application of Microphos Technology, Springer International Publishing Switzerland, 31-62. https://doi.org/10.1007/978-3-319-08216-5_2
  • Khare, E., Singh, S., Maheshwari, D.K., Arora, N.K. (2011). Suppression of charcoal rot of chickpea by fluorescent Pseudomonas under saline stress condition. Current Microbiology, 62, 1548-1553. https://doi.org/10.1007/s00284-011-9895-3
  • Kloepper, J.W., Leong, J., Teintze, M., Schroth, M.N. (1980). Enhanced plant growth promoting rhizobacteria, Nature, 286 (5776), 883-885. https://doi.org/10.1038/286885a0
  • Koçak, R. & Boyraz, N. (2024). Determination of In Vitro and In Vivo Efficacy of Some Bacterial Antagonists Against Sclerotinia sclerotiorum (Lib.) De Bary in Sunflowers. Tekirdağ Ziraat Fakültesi Dergisi, 21(2), 362-374. https://doi.org/10.33462/jotaf.1259380
  • Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Borriss, R. (2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 1084–1096. https://doi.org/10.1128/jb.186.4.1084-1096.2004
  • Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493-499. https://doi.org/10.1016/j.micres.2012.05.002
  • Krieg, N.R. & Holt, J.G. (1984). Bergey's manual of systemic bacteriology. The William and Wilkins Co. Baltimore. (1), 964. https://doi.org/10.1099/00207713-35-3-408
  • Liang, Y., Xu, Z., Xu, Q., Zhao, X., Niu, S., & Yin, X. (2023). Isolation of Inorganic Phosphorus-Solubilizing Bacteria from the Rhizosphere of Festuca arundinacea Schreb. Geomicrobiology Journal, 40(6), 538-546.
  • Lucas Garcia, J.A., Probanza, A., Ramos, B., Barriuso, J., Gutierrez Manero, F.J. (2004). Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant and Soil, 267, 143-153. https://doi.org/10.1007/s11104-005-4885-5
  • Mahapatra, A.N.I.T.A., Gouda, B. & Ramesh, K. (2021). Productivity and profitability of summer sunflower (Helianthus annuus L.) with integrated nutrient management. Journal of Oilseeds Research, 38(1), 106-109. https://doi.org/10.56739/jor.v38i1.137020
  • Majeed, A., Abbasi, M. K., Hameed, S., Imran, A., Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, (6), 198. https://doi.org/10.3389/fmicb.2015.00198
  • Majeed, A., Abbasi, M.K., Hameed, S., Imran, A., Naqqash, T., Hanif, M.K. (2018). Isolation and characterization of sunflower associated bacterial strain with broad spectrum plant growth promoting traits. International Journal of Biosciences, 13, 110-123. http://dx.doi.org/10.12692/ijb/13.2.110-123.
  • Majeed, A., Abbasi, M. K., Hameed, S., Yasmin, S., Hanif, M. K., Naqqash, T., & Imran, A. (2018). Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Microbiological Research, 216, 56-69.
  • Manasa, K., Reddy, S. & Triveni, S. (2017). Characterization of potential PGPR and antagonistic activities of Rhizobium isolates from different rhizosphere soils. Journal of Pharmacognosy and Phytochemistry, 6(3), 51-54. https://doi.org/10.20546/ijcmas.2017.605.316
  • Marakana, T., Sharma, M. & Sangani, K. (2018). Isolation and characterization of halotolerant bacteria and it’s effects on wheat plant as PGPR. The Pharma Innovation Journal, 7(7), 102-110.
  • Mari, M., Guizzardi, M. & Pratella, G.C. (1996). Biological control of gray mold in pears by antagonistic bacteria. Biological Control, 7(1), 30-37. https://doi.org/10.1006/bcon.1996.0060
  • Mehta, S. & Nautiyal, CS. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, (43), 51-56. https://doi.org/10.1007/s002840010259
  • Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037.
  • Mishra, R. K., Pandey, S., Rathore, U. S., Mishra, M., Kumar, K., Kumar, S., & Manjunatha, L. (2023). Characterization of plant growth-promoting, antifungal, and enzymatic properties of beneficial bacterial strains associated with pulses rhizosphere from Bundelkhand region of India. Brazilian Journal of Microbiology, 54(3), 2349-2360.
  • Moussa, T.A.A., Almaghrabi, O.A., Abdel‐Moneim, T.S. (2013). Biological control of the wheat root rot caused by Fusarium graminearum using some PGPR strains in Saudi Arabia. Annals of Applied Biology, 163(1), 72-81. https://doi.org/10.1111/aab.12034
  • Moustaine, M.R. Elkahkahi, A., Benbouazza, R., Benkirane, E., Achbani. (2017). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Environment, Agriculture and Biotechnology, 2:238708. https://doi.org/10.22161/ijeab/2.2.5
  • Morgado González, A., Espinosa Victoria, D., Gómez Merino, F. C. (2015). Efficiency of plant growth promoting rhizobacteria (PGPR) in sugarcane. Terra Latinoamericana, 33(4), 321-330. Retrieved in March 12, 2024, from https://www.scielo.org.mx/scielo.php?pid=S0187-57792015000400321&script=sci_arttext.
  • Mushtaq, Z., Faizan, S. & Hussain, A. (2021). Role of microorganisms as biofertilizers. Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health, 83-98. https://doi.org/10.1007/978-3-030-48771-3_6
  • Nathan, P., Rathinam, X., Kasi, M., Rahman, Z.A., Subramaniam, S. (2011). A pilot study on the isolation and biochemical characterization of Pseudomonas from chemical intensive rice ecosystem. African Journal of Biotechnology, 10(59), 12653-12656.
  • Nishioka, T., Elsharkawy, M.M., Suga, H., Kageyama, K., Hyakumachi, M., Shimizu, M. (2016). Development of culture medium for the isolation of Flavobacterium and Chryseobacterium from rhizosphere soil. Microbes and Environments, 31(2), 104-110. https://doi.org/10.1264/jsme2.me15144
  • Öğütcü, H. & Avsar, H. (2020). Characterization and siderophores production of Rhizobium spp. Isolated from wild legumes, International Journal of Computational and Experimental Science and Engineering (IJCESEN), 6(3), 176-179.
  • Paul, D. & Sinha, S.N. (2017). Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science, 15(1), 130-136. https://doi.org/10.1016/j.aasci.2016.10.001
  • Pandey, R., Chavan, P. N., Walokar, N. M., Sharma, N., Tripathi, V., Khetmalas, M.B. (2013). Pseudomonas stutzeri RP1: a versatile plant growth promoting endorhizospheric bacteria inhabiting sunflower (Helianthus annuus). Journal of Biotechnology, 8(7), 48-55.
  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., Sa, T. (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2), 127-133. https://doi.org/10.1016/j.micres.2004.10.003
  • Parveen, G., Saleem, S.M.S., Raıt, N., Rahman, A. (2020). Role of Pseudomonas aerugınosa in Enhancing The Growth of Sunflower and Suppressıon of Root Rottıng Fungi. International Journal of Biology Research 8 (12): 43-55.
  • Pathma, J. & Sakthivel, N. (2013). Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Applied Soil Ecology, 70, 33-47. https://doi.org/10.1016/j.apsoil.2013.03.011
  • Petrović, M., Janakiev, T., Grbić, M. L., Unković, N., Stević, T., Vukićević, S., Dimkić, I. (2024). Insights into Endophytic and Rhizospheric Bacteria of Five Sugar Beet Hybrids in Terms of Their Diversity, Plant-Growth Promoting, and Biocontrol Properties. Microbial Ecology, 87(1), 1-25. https://doi.org/10.1007/s00248-023-02329-0
  • Pramanik, K., Mitra, S., Sarkar, A., Soren, T., Maiti, T.K. (2018). Characterization of a Cd2+-resistant plant growth promoting rhizobacterium (Enterobacter sp.) and its effects on rice seedling growth promotion under Cd2+-stress in vitro. Agriculture and Natural Resources, 52(3), 215-221. https://doi.org/10.1016/j.anres.2018.09.007
  • Raval, A.A. & Desai, P.B. (2012). Rhizobacteria from rhizosphere of sunflower (Helianthus annuus L.) and their effect on plant growth. Research Journal of Recent Sciences, ISSN, 2277-2502.
  • Rawat, P., Das, S., Shankhdhar, D., Shankhdhar, S. C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21, 49-68. https://doi.org/10.1007/s42729-020-00342-7
  • Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., Nazir, M.Z. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as biofertilizers and biopesticides. Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health, 181-196. ttps://doi.org/10.1007/978-3-030-48771-3_11
  • Rosas, S.B., Andrés, J. A., Rovera, M., Correa, N.S. (2006). Phosphate-solubilizing Pseudomonas putida can influence the rhizobia–legume symbiosis. Soil Biology and Biochemistry, 38(12), 3502-3505. https://doi.org/10.1016/j.soilbio.2006.05.008
  • Sarwar, M. & Kremer, R.J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in applied microbiology, 20(5): 282-285. https://doi.org/10.1111/j.1472-765x.1995.tb00446.x
  • Sebastian, A. M., Umesh, M., Priyanka, K., Preethi, K. (2021). Isolation of plant growth-promoting Bacillus cereus from soil and its use as a microbial inoculant. Arabian Journal for Science and Engineering, 46(1), 151-161. https://doi.org/10.1007/s13369-020-04895-8
  • Schwyn, B. & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Shittu, H.O., Castroverde, D.C., Nazar, R.N., Robb, J. (2009). Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta, 229, 415-426. https://doi.org/10.1007/s00425-008-0840-z
  • Shobha, G., & Kumudini, B. S. (2012). Antagonistic effect of the newly isolated PGPR Bacillus spp. on Fusarium oxysporum. International Journal of Applied Sciences and Engineering Research, 1(3), 463-474. https://doi.org/10.6088/ijaser.0020101047
  • Shrivastava, S., Egamberdieva, D. & Varma, A. (2015). Plant growth-promoting rhizobacteria (PGPR) and medicinal plants: The state of the art. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, 1-16. https://doi.org/10.1007/978-3-319-13401-7_1
  • Singh, N., Raina, S., Singh, D., Ghosh, M., Heflish, A.I.A.I. (2017). Exploitation of promising native strains of Bacillus subtilis with antagonistic properties against fungal pathogens and their PGPR characteristics. Journal of Plant Pathology, 27-35.
  • Singh, S.B., Gowtham, H.G., Murali, M., Hariprasad, P., Lakshmeesha, T.R., Murthy, K.N., Niranjana, S.R. (2019). Plant growth promoting ability of ACC deaminase producing rhizobacteria native to Sunflower (Helianthus annuus L.). Biocatalysis and Agricultural Biotechnology, 18, 101089. https://doi.org/10.1016/j.bcab.2019.101089
  • Singh, R.K., Singh, P., Li, H. B., Guo, D.J., Song, Q.Q., Yang, L.T., Li, Y.R. (2020). Plant-PGPR interaction study of plant growth-promoting diazotrophs Kosakonia radicincitans BA1 and Stenotrophomonas maltophilia COA2 to enhance growth and stress-related gene expression in Saccharum spp. Journal of Plant Interactions, 15(1), 427-445. https://doi.org/10.1080/17429145.2020.1857857
  • Sivasakthivelan, P. & Stella, D. (2012). Studies on the phytohormone producing potential of agriculturally beneficial microbial (ABM) isolates from different rhizosphere soils of sunflower in Tamil Nadu. International Journal of Pharmaceutical and Biological Archives, 3(5), 1150-1156.
  • Smibert, R.M. & Kreig, N.R. (1994). “Phenotypic characterization in Gerhardt P.et al. Method for general and molecular bacteriology”, American Society for Microbiology, Washington DC, 607-654.
  • Soares, A.S., Nascimento, V.L., De Oliveira, E.E., Jumbo, L.V., Dos Santos, G.R., Queiroz, L. L., de Souza Aguiar, R.W. (2023). Pseudomonas aeruginosa and Bacillus cereus Isolated from Brazilian Cerrado Soil Act as Phosphate-Solubilizing Bacteria. Current Microbiology, 80(5), 146. https://doi.org/10.1007/s00284-023-03260-w
  • Sokolova, M.G., Akimova, G.P. & Vaishlya, O.B. (2011). Effect of phytohormones synthesized by rhizosphere bacteria on plants. Applied Biochemistry and Microbiology, 47, 274-278. https://doi.org/10.1134/s0003683811030148
  • Sun, L., Qiu, F., Zhang, X., Dai, X., Dong, X., Song, W. (2008). Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microbial Ecology, 55, 415-424. https://doi.org/10.1007/s00248-007-9287-1
  • Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M.S.I., Shahid, N., Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR, Applied Soil Ecology, 121, 102-117. https://doi.org/10.1016/j.apsoil.2017.09.030
  • Temiz, A., 2010, Genel Mikrobiyoloji Uygulama Teknikleri, Hatipoğlu Yayıncılık, Ankara, 1- 277.
  • Thakker, J. N., Badrakia, J., Patel, K., Makwana, U., Parmar, K., Dhandhukia, P. (2023). Potential of a marine Pseudomonas aeruginosa strain OG101 to combat Fusarium oxysporum associated wilt in legume crops. Archives of Phytopathology and Plant Protection, 56(4), 284-294. https://doi.org/10.1080/03235408.2023.2183800
  • Verma, P. & Shahi, S.K. (2015). Characterization of plant growth promoting rhizobacteria associated with potato rhizosphere. International Journal of Advanced Research, (3)6, 564-572.
  • Waqas, M., Khan, A.L., Hamayun, M., Shahzad, R., Kim, Y.H., Choi, K.S., Lee, I.J. (2015). Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. European Journal of Plant Pathology, 141, 803-824. https://doi.org/10.1007/s10658-014-0581-8
  • Walker, V., Bertrand, C., Bellvert, F., Moënne‐Loccoz, Y., Bally, R., Comte, G., (2011). Host plant secondary metabolite profiling shows a complex, strain‐dependent response of maize to plant growth‐promoting rhizobacteria of the genus Azospirillum, New Phytologist, 189(2), 494-506. https://doi.org/10.1111/j.1469-8137.2010.03484.x
  • Wilson, M. & Knight, D. (1952). Methods of Plant Pathology, Ed. Tuite, J. London: Academic Press, 343
  • Yadav, A.N. (2020). Plant microbiomes for sustainable agriculture: current research and future challenges. Springer International Publishing, 475-482. https://doi.org/10.1007/978-3-030-38453-1_16
  • Zou, D., Zheng, H., Zhang, Y., Gu, Y., Cao, Y., Song, Y., Li, L. (2020). Screening of rhizosphere growth promoting bacteria and their growth promoting ability of sunflower in cold black soil area. In IOP Conference Series: Earth and Environmental Science, (526),10, 12039. https://doi.org/10.1088/1755-1315/526/1/012039.
Year 2024, , 412 - 429, 27.06.2024
https://doi.org/10.31015/jaefs.2024.2.16

Abstract

References

  • Abdullah, Çil., Çil, A.N., Şahin, V., Yaşar, Y. (2023). Sunflower (Helianthus annuus L.) advanced breeding materials in field trials in different geographical regions of Turkey. MAS Journal of Applied Sciences, 8(2), 384-390. https://doi.org/10.5281/zenodo.8051748
  • Adeleke, B. S., Ayangbenro, A. S., Babalola, O.O. (2022). In vitro screening of sunflower associated endophytic bacteria with plant growth-promoting traits. Frontiers in Sustainable Food Systems, 6, 903114. https://doi.org/10.3389/fsufs.2022.903114
  • Ahmad, F., Ahmad, I., Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163 (2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  • Ambrosini, A., Beneduzi, A., Stefanski, T., Pinheiro, F. G., Vargas, L.K., Passaglia, L.M. (2012). Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant and Soil, 356, 245-264. https://doi.org/10.1007/s11104-011-1079-1
  • Bakker, A.W. & Schippers, BOB. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biology and Biochemistry ,19(4), 451-457. https://doi.org/10.1016/0038-0717(87)90037-x
  • Bashan, Y. & De-Bashan, L.E. (2010), How the plant growth-promoting bacterium Azospirillum promotes plant growth- a critical assessment. Advances in Agronomy, 108, 77-136. https://doi.org/10.1016/s0065-2113(10)08002-8
  • Bashir, S., Iqbal, A., Hasnain, S., White, J.F. (2021). Screening of sunflower associated bacteria as biocontrol agents for plant growth promotion. Archives of Microbiology, 203, 4901-4912. https://doi.org/10.1007/s00203-021-02463-8
  • Bashir, T., Iqbal, M., Javed, S., Riaz, J., Bukhari, N. T., Nisa, I., Khan, N. (2023). Isolation and characterization of plant growth promoting bacteria from rhızosphere of Okra. Journal of Population Therapeutics and Clinical Pharmacology, 30(18), 1257-1268. https://doi.org/10.53555/jptcp.v30i18.3264
  • Beattie, G.A. (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Journal of Applied Sciences, (6), 1–56. https://doi.org/10.1007/1-4020-4538-7_1
  • Beneduzi, A., Peres, D., Vargas, L.K., Bodanese-Zanettini, M.H., Passaglia, L.M.P. (2008). Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Applied Soil Ecology, 39:311–320. https://doi.org/10.1016/j.apsoil.2008.01.006
  • Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. Bacteria in Agrobiology: Plant Growth Responses, 41-76. https://doi.org/10.1007/978-3-642-20332-9_3
  • Bushra, R., Uzair, B., Ali, A., Manzoor, S., Abbas, S., Ahmed, I. (2023). Draft genome sequence of a halotolerant plant growth-promoting bacterium Pseudarthrobacter oxydans NCCP-2145 isolated from rhizospheric soil of mangrove plant Avicennia marina. Electronic Journal of Biotechnology, 66, 52-59. https://doi.org/10.1016/j.ejbt.2023.08.003
  • Chai, J., Wang, X., Liu, X., Li, C., Han, J., Yao, T. (2023). Inoculation of cold-adapted microbial consortium screened from alpine meadows promotes the growth of mixed grasses by changing soil properties and enzyme activity. Rhizosphere, 28, 100782. https://doi.org/10.1016/j.rhisph.2023.100782
  • Chaiharn, M. & Lumyong, S. (2011). Screening and optimization of Indole-3-Acetic production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Current Microbiology. 62, 173-181. https://doi.org/10.1007/s00284-010-9674-6
  • Chaurasiya, D. K., Sahni, S., Prasad, B. D., Kumar, B. (2023). Biological management of Lentil (Lens culinaris) Fusarium wilt by using the potential Pseudomonas isolates. International Journal of Plant & Soil Science, 35(2), 7-11. https://doi.org/10.9734/ijpss/2023/v35i22752
  • Çevik, Y.N. & Ogutcu, H. (2020). Identification of bacteria in soil by MALDI-TOF MS and analysis of Bacillus spp., Paenibacillus spp. and Pseudomonas spp. with PCA. Analytical Chemistry Letters, 10(6), 784-797. https://doi.org/10.1080/22297928.2021.1877194
  • Deka, H., Deka, S. & Baruah, C.K. (2015). Plant growth promoting rhizobacteria for value addition: mechanism of action. In Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants, Soil Biology, (42), 305-321. https://doi.org/10.1007/978-3-319-13401-7_15
  • Devi, S., Sharma, S., Tiwari, A., Bhatt, A. K., Singh, N. K., Singh, M., Kumar, A. (2023). Screening for multifarious plant growth promoting and biocontrol attributes in Bacillus strains isolated from Indo Gangetic soil for enhancing growth of rice crops. Microorganisms, 11(4), 1085. https://doi.org/10.3390/microorganisms11041085
  • Dhole, A., Shelat, H., Panpatte, D. (2017). Chryseobacterium indologenes a novel root nodule endophyte in Vigna radiata. International Journal of Current Microbiology and Applied Sciences, 6, 836-44. https://doi.org/10.20546/ijcmas.2017.604.104
  • Dorjey, S., Dolkar, D. & Sharma, R. (2017). Plant growth promoting rhizobacteria Pseudomonas: a review. International Journal of Current Microbiology and Applied Sciences, 6(7), 1335-1344. https://doi.org/10.20546/ijcmas.2017.607.160
  • Ercole, T.G., Kava, V.M., Aluizio, R., Pauletti, V., Hungria, M., Galli-Terasawa, L.V. (2023). Co-inoculation of Bacillus velezensis and Stenotrophomonas maltophilia strains improves growth and salinity tolerance in maize (Zea mays L.). Rhizosphere, 27, 100752. https://doi.org/10.1016/j.rhisph.2023.100752
  • Fatima, I., Hakim, S., Imran, A., Ahmad, N., Imtiaz, M., Ali, H., Mubeen, F. (2022). Exploring biocontrol and growth-promoting potential of multifaceted PGPR isolated from natural suppressive soil against the causal agent of chickpea wilt. Microbiological Research, 260, 127015. https://doi.org/10.1016/j.micres.2022.127015
  • Ferioun, M., Srhiouar, N., Tirry, N., Belahcen, D., Siang, T. C., Louahlia, S., El Ghachtouli, N. (2023). Optimized drought tolerance in barley (Hordeum vulgare L.) using plant growth-promoting rhizobacteria (PGPR). Biocatalysis and Agricultural Biotechnology, 50, 102691. https://doi.org/10.1016/j.bcab.2023.102691
  • Fiodor, A., Ajijah, N., Dziewit, L. Pranaw, K. (2023). Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology, 14, 1142966. https://doi.org/10.3389/fmicb.2023.1142966
  • Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., Abdala, G. (2007). Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology, 76, 1145-1152. https://doi.org/10.1007/s00253-007-1077-7
  • Ghosh, R., Chatterjee, S. & Mandal, N.C. (2020). Stenotrophomonas. In Beneficial Microbes in Agro-Ecology. Academic Press, 427-442. https://doi.org/10.1016/b978-0-12-823414-3.00020-4
  • Glickmann, E. & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied Environmental. Microbiology 61, 793–796. https://doi.org/10.1128/aem.61.2.793-796.1995
  • Goes, K.C.G.P.D., Fisher, M.L.D.C., Cattelan, A.J., Nogueira, M.A., Carvalho, C.G.P.D., Oliveira, A.L.M.D. (2012). Biochemical and molecular characterization of high population density bacteria isolated from sunflower. Journal of Microbiology and Biotechnology, 22(4), 437-447. https://doi.org/10.4014/jmb.1109.09007
  • Gopalakrishnan, S., Srinivas, V. & Samineni, S. (2017). Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 11, 116-123. https://doi.org/10.1016/j.bcab.2017.06.012
  • Gulya, T. J., Mathew, F., Harveson, R., Markell, S., Block, C. (2016). Diseases of sunflower. Handbook of Florists' crops diseases, handbook of plant disease management. 1-20, Springer International Publishing. https://doi.org/10.1007/978-3-319-32374-9_27-1
  • Gupta, A. & Gopal, M. (2008). Siderophore production by plant growth promoting rhizobacteria. Indian Journal of Agricultural Research, 42(2), 153-156.
  • Haghighi, B.J., Alizadeh, O. & Firoozabadi, A.H. (2011). The role of plant growth promoting rhizobacteria (PGPR) in sustainable agriculture, Advances in Environmental Biology, 5(10), 3079-3083. https://doi.org/10.1007/978-981-13-6790-8_2
  • Hameeda, B., Harini, G., Rupela, O.P., Wani, S.P., Reddy, G. (2008). Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Research, 163(2), 234–242. https://doi.org/10.1016/j.micres.2006.05.009
  • Hamid, S., Lone, R. & Mohamed, H.I. (2021). Production of antibiotics from PGPR and their role in biocontrol of plant diseases. Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management, 441-461. https://doi.org/10.1007/978-3-030-66587-6_16
  • Hayat, R., Ahmed, I. & Sheirdil, R.A. (2012). An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Crop Production for Agricultural Improvement, 557-579. https://doi.org/10.1007/978-94-007-4116-4_22
  • Huang, C., Jiang, L., Liang, Y.P., Han, L.J., Yang, K.Y., Qin, Y.M., & Zhao, X. (2023). Acinetobacter calcoaceticus promotes the seedling growth of Lespedeza daurica under saline-alkaline stress, Acta Microbiologica Sinica, 8, 3264-3278.
  • Jiang, Z., Zheng, H. & Xing, B. (2021). Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Science of The Total Environment, 760, 143342. https://doi.org/10.1016/j.scitotenv.2020.143342
  • Kapulnik, Y., Okon, Y., Kigel, J., Nur, I., Henis, Y. (1981). Effects of temperature, nitrogen fertilization, and plant age on nitrogen fixation by Setaria italica inoculated with Azospirillum brasilense (strain cd), Plant Physiology, 68(2), 340-343. https://doi.org/10.1104/pp.68.2.340
  • Khalil, M.S.M., Hassan, M.H.A.R., Mahmoud, A.F., Morsy, K.M.M. (2022). Involvement of secondary metabolites and extracellular lytic enzymes produced by plant growth promoting rhizobacteria in inhibiting the soilborne pathogens in Faba Bean Plants. Jurnal Hama dan Penyakit Tumbuhan Tropika, 22(2), 100-108. https://doi.org/10.23880/oajmms-16000161
  • Khan, M. S., Zaidi, A. & Ahmad, E. (2014). Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. Phosphate solubilizing microorganisms: Principles and Application of Microphos Technology, Springer International Publishing Switzerland, 31-62. https://doi.org/10.1007/978-3-319-08216-5_2
  • Khare, E., Singh, S., Maheshwari, D.K., Arora, N.K. (2011). Suppression of charcoal rot of chickpea by fluorescent Pseudomonas under saline stress condition. Current Microbiology, 62, 1548-1553. https://doi.org/10.1007/s00284-011-9895-3
  • Kloepper, J.W., Leong, J., Teintze, M., Schroth, M.N. (1980). Enhanced plant growth promoting rhizobacteria, Nature, 286 (5776), 883-885. https://doi.org/10.1038/286885a0
  • Koçak, R. & Boyraz, N. (2024). Determination of In Vitro and In Vivo Efficacy of Some Bacterial Antagonists Against Sclerotinia sclerotiorum (Lib.) De Bary in Sunflowers. Tekirdağ Ziraat Fakültesi Dergisi, 21(2), 362-374. https://doi.org/10.33462/jotaf.1259380
  • Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Borriss, R. (2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 1084–1096. https://doi.org/10.1128/jb.186.4.1084-1096.2004
  • Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493-499. https://doi.org/10.1016/j.micres.2012.05.002
  • Krieg, N.R. & Holt, J.G. (1984). Bergey's manual of systemic bacteriology. The William and Wilkins Co. Baltimore. (1), 964. https://doi.org/10.1099/00207713-35-3-408
  • Liang, Y., Xu, Z., Xu, Q., Zhao, X., Niu, S., & Yin, X. (2023). Isolation of Inorganic Phosphorus-Solubilizing Bacteria from the Rhizosphere of Festuca arundinacea Schreb. Geomicrobiology Journal, 40(6), 538-546.
  • Lucas Garcia, J.A., Probanza, A., Ramos, B., Barriuso, J., Gutierrez Manero, F.J. (2004). Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant and Soil, 267, 143-153. https://doi.org/10.1007/s11104-005-4885-5
  • Mahapatra, A.N.I.T.A., Gouda, B. & Ramesh, K. (2021). Productivity and profitability of summer sunflower (Helianthus annuus L.) with integrated nutrient management. Journal of Oilseeds Research, 38(1), 106-109. https://doi.org/10.56739/jor.v38i1.137020
  • Majeed, A., Abbasi, M. K., Hameed, S., Imran, A., Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, (6), 198. https://doi.org/10.3389/fmicb.2015.00198
  • Majeed, A., Abbasi, M.K., Hameed, S., Imran, A., Naqqash, T., Hanif, M.K. (2018). Isolation and characterization of sunflower associated bacterial strain with broad spectrum plant growth promoting traits. International Journal of Biosciences, 13, 110-123. http://dx.doi.org/10.12692/ijb/13.2.110-123.
  • Majeed, A., Abbasi, M. K., Hameed, S., Yasmin, S., Hanif, M. K., Naqqash, T., & Imran, A. (2018). Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Microbiological Research, 216, 56-69.
  • Manasa, K., Reddy, S. & Triveni, S. (2017). Characterization of potential PGPR and antagonistic activities of Rhizobium isolates from different rhizosphere soils. Journal of Pharmacognosy and Phytochemistry, 6(3), 51-54. https://doi.org/10.20546/ijcmas.2017.605.316
  • Marakana, T., Sharma, M. & Sangani, K. (2018). Isolation and characterization of halotolerant bacteria and it’s effects on wheat plant as PGPR. The Pharma Innovation Journal, 7(7), 102-110.
  • Mari, M., Guizzardi, M. & Pratella, G.C. (1996). Biological control of gray mold in pears by antagonistic bacteria. Biological Control, 7(1), 30-37. https://doi.org/10.1006/bcon.1996.0060
  • Mehta, S. & Nautiyal, CS. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, (43), 51-56. https://doi.org/10.1007/s002840010259
  • Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037.
  • Mishra, R. K., Pandey, S., Rathore, U. S., Mishra, M., Kumar, K., Kumar, S., & Manjunatha, L. (2023). Characterization of plant growth-promoting, antifungal, and enzymatic properties of beneficial bacterial strains associated with pulses rhizosphere from Bundelkhand region of India. Brazilian Journal of Microbiology, 54(3), 2349-2360.
  • Moussa, T.A.A., Almaghrabi, O.A., Abdel‐Moneim, T.S. (2013). Biological control of the wheat root rot caused by Fusarium graminearum using some PGPR strains in Saudi Arabia. Annals of Applied Biology, 163(1), 72-81. https://doi.org/10.1111/aab.12034
  • Moustaine, M.R. Elkahkahi, A., Benbouazza, R., Benkirane, E., Achbani. (2017). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Environment, Agriculture and Biotechnology, 2:238708. https://doi.org/10.22161/ijeab/2.2.5
  • Morgado González, A., Espinosa Victoria, D., Gómez Merino, F. C. (2015). Efficiency of plant growth promoting rhizobacteria (PGPR) in sugarcane. Terra Latinoamericana, 33(4), 321-330. Retrieved in March 12, 2024, from https://www.scielo.org.mx/scielo.php?pid=S0187-57792015000400321&script=sci_arttext.
  • Mushtaq, Z., Faizan, S. & Hussain, A. (2021). Role of microorganisms as biofertilizers. Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health, 83-98. https://doi.org/10.1007/978-3-030-48771-3_6
  • Nathan, P., Rathinam, X., Kasi, M., Rahman, Z.A., Subramaniam, S. (2011). A pilot study on the isolation and biochemical characterization of Pseudomonas from chemical intensive rice ecosystem. African Journal of Biotechnology, 10(59), 12653-12656.
  • Nishioka, T., Elsharkawy, M.M., Suga, H., Kageyama, K., Hyakumachi, M., Shimizu, M. (2016). Development of culture medium for the isolation of Flavobacterium and Chryseobacterium from rhizosphere soil. Microbes and Environments, 31(2), 104-110. https://doi.org/10.1264/jsme2.me15144
  • Öğütcü, H. & Avsar, H. (2020). Characterization and siderophores production of Rhizobium spp. Isolated from wild legumes, International Journal of Computational and Experimental Science and Engineering (IJCESEN), 6(3), 176-179.
  • Paul, D. & Sinha, S.N. (2017). Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science, 15(1), 130-136. https://doi.org/10.1016/j.aasci.2016.10.001
  • Pandey, R., Chavan, P. N., Walokar, N. M., Sharma, N., Tripathi, V., Khetmalas, M.B. (2013). Pseudomonas stutzeri RP1: a versatile plant growth promoting endorhizospheric bacteria inhabiting sunflower (Helianthus annuus). Journal of Biotechnology, 8(7), 48-55.
  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., Sa, T. (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2), 127-133. https://doi.org/10.1016/j.micres.2004.10.003
  • Parveen, G., Saleem, S.M.S., Raıt, N., Rahman, A. (2020). Role of Pseudomonas aerugınosa in Enhancing The Growth of Sunflower and Suppressıon of Root Rottıng Fungi. International Journal of Biology Research 8 (12): 43-55.
  • Pathma, J. & Sakthivel, N. (2013). Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Applied Soil Ecology, 70, 33-47. https://doi.org/10.1016/j.apsoil.2013.03.011
  • Petrović, M., Janakiev, T., Grbić, M. L., Unković, N., Stević, T., Vukićević, S., Dimkić, I. (2024). Insights into Endophytic and Rhizospheric Bacteria of Five Sugar Beet Hybrids in Terms of Their Diversity, Plant-Growth Promoting, and Biocontrol Properties. Microbial Ecology, 87(1), 1-25. https://doi.org/10.1007/s00248-023-02329-0
  • Pramanik, K., Mitra, S., Sarkar, A., Soren, T., Maiti, T.K. (2018). Characterization of a Cd2+-resistant plant growth promoting rhizobacterium (Enterobacter sp.) and its effects on rice seedling growth promotion under Cd2+-stress in vitro. Agriculture and Natural Resources, 52(3), 215-221. https://doi.org/10.1016/j.anres.2018.09.007
  • Raval, A.A. & Desai, P.B. (2012). Rhizobacteria from rhizosphere of sunflower (Helianthus annuus L.) and their effect on plant growth. Research Journal of Recent Sciences, ISSN, 2277-2502.
  • Rawat, P., Das, S., Shankhdhar, D., Shankhdhar, S. C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21, 49-68. https://doi.org/10.1007/s42729-020-00342-7
  • Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., Nazir, M.Z. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as biofertilizers and biopesticides. Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health, 181-196. ttps://doi.org/10.1007/978-3-030-48771-3_11
  • Rosas, S.B., Andrés, J. A., Rovera, M., Correa, N.S. (2006). Phosphate-solubilizing Pseudomonas putida can influence the rhizobia–legume symbiosis. Soil Biology and Biochemistry, 38(12), 3502-3505. https://doi.org/10.1016/j.soilbio.2006.05.008
  • Sarwar, M. & Kremer, R.J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in applied microbiology, 20(5): 282-285. https://doi.org/10.1111/j.1472-765x.1995.tb00446.x
  • Sebastian, A. M., Umesh, M., Priyanka, K., Preethi, K. (2021). Isolation of plant growth-promoting Bacillus cereus from soil and its use as a microbial inoculant. Arabian Journal for Science and Engineering, 46(1), 151-161. https://doi.org/10.1007/s13369-020-04895-8
  • Schwyn, B. & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Shittu, H.O., Castroverde, D.C., Nazar, R.N., Robb, J. (2009). Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta, 229, 415-426. https://doi.org/10.1007/s00425-008-0840-z
  • Shobha, G., & Kumudini, B. S. (2012). Antagonistic effect of the newly isolated PGPR Bacillus spp. on Fusarium oxysporum. International Journal of Applied Sciences and Engineering Research, 1(3), 463-474. https://doi.org/10.6088/ijaser.0020101047
  • Shrivastava, S., Egamberdieva, D. & Varma, A. (2015). Plant growth-promoting rhizobacteria (PGPR) and medicinal plants: The state of the art. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, 1-16. https://doi.org/10.1007/978-3-319-13401-7_1
  • Singh, N., Raina, S., Singh, D., Ghosh, M., Heflish, A.I.A.I. (2017). Exploitation of promising native strains of Bacillus subtilis with antagonistic properties against fungal pathogens and their PGPR characteristics. Journal of Plant Pathology, 27-35.
  • Singh, S.B., Gowtham, H.G., Murali, M., Hariprasad, P., Lakshmeesha, T.R., Murthy, K.N., Niranjana, S.R. (2019). Plant growth promoting ability of ACC deaminase producing rhizobacteria native to Sunflower (Helianthus annuus L.). Biocatalysis and Agricultural Biotechnology, 18, 101089. https://doi.org/10.1016/j.bcab.2019.101089
  • Singh, R.K., Singh, P., Li, H. B., Guo, D.J., Song, Q.Q., Yang, L.T., Li, Y.R. (2020). Plant-PGPR interaction study of plant growth-promoting diazotrophs Kosakonia radicincitans BA1 and Stenotrophomonas maltophilia COA2 to enhance growth and stress-related gene expression in Saccharum spp. Journal of Plant Interactions, 15(1), 427-445. https://doi.org/10.1080/17429145.2020.1857857
  • Sivasakthivelan, P. & Stella, D. (2012). Studies on the phytohormone producing potential of agriculturally beneficial microbial (ABM) isolates from different rhizosphere soils of sunflower in Tamil Nadu. International Journal of Pharmaceutical and Biological Archives, 3(5), 1150-1156.
  • Smibert, R.M. & Kreig, N.R. (1994). “Phenotypic characterization in Gerhardt P.et al. Method for general and molecular bacteriology”, American Society for Microbiology, Washington DC, 607-654.
  • Soares, A.S., Nascimento, V.L., De Oliveira, E.E., Jumbo, L.V., Dos Santos, G.R., Queiroz, L. L., de Souza Aguiar, R.W. (2023). Pseudomonas aeruginosa and Bacillus cereus Isolated from Brazilian Cerrado Soil Act as Phosphate-Solubilizing Bacteria. Current Microbiology, 80(5), 146. https://doi.org/10.1007/s00284-023-03260-w
  • Sokolova, M.G., Akimova, G.P. & Vaishlya, O.B. (2011). Effect of phytohormones synthesized by rhizosphere bacteria on plants. Applied Biochemistry and Microbiology, 47, 274-278. https://doi.org/10.1134/s0003683811030148
  • Sun, L., Qiu, F., Zhang, X., Dai, X., Dong, X., Song, W. (2008). Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microbial Ecology, 55, 415-424. https://doi.org/10.1007/s00248-007-9287-1
  • Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M.S.I., Shahid, N., Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR, Applied Soil Ecology, 121, 102-117. https://doi.org/10.1016/j.apsoil.2017.09.030
  • Temiz, A., 2010, Genel Mikrobiyoloji Uygulama Teknikleri, Hatipoğlu Yayıncılık, Ankara, 1- 277.
  • Thakker, J. N., Badrakia, J., Patel, K., Makwana, U., Parmar, K., Dhandhukia, P. (2023). Potential of a marine Pseudomonas aeruginosa strain OG101 to combat Fusarium oxysporum associated wilt in legume crops. Archives of Phytopathology and Plant Protection, 56(4), 284-294. https://doi.org/10.1080/03235408.2023.2183800
  • Verma, P. & Shahi, S.K. (2015). Characterization of plant growth promoting rhizobacteria associated with potato rhizosphere. International Journal of Advanced Research, (3)6, 564-572.
  • Waqas, M., Khan, A.L., Hamayun, M., Shahzad, R., Kim, Y.H., Choi, K.S., Lee, I.J. (2015). Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. European Journal of Plant Pathology, 141, 803-824. https://doi.org/10.1007/s10658-014-0581-8
  • Walker, V., Bertrand, C., Bellvert, F., Moënne‐Loccoz, Y., Bally, R., Comte, G., (2011). Host plant secondary metabolite profiling shows a complex, strain‐dependent response of maize to plant growth‐promoting rhizobacteria of the genus Azospirillum, New Phytologist, 189(2), 494-506. https://doi.org/10.1111/j.1469-8137.2010.03484.x
  • Wilson, M. & Knight, D. (1952). Methods of Plant Pathology, Ed. Tuite, J. London: Academic Press, 343
  • Yadav, A.N. (2020). Plant microbiomes for sustainable agriculture: current research and future challenges. Springer International Publishing, 475-482. https://doi.org/10.1007/978-3-030-38453-1_16
  • Zou, D., Zheng, H., Zhang, Y., Gu, Y., Cao, Y., Song, Y., Li, L. (2020). Screening of rhizosphere growth promoting bacteria and their growth promoting ability of sunflower in cold black soil area. In IOP Conference Series: Earth and Environmental Science, (526),10, 12039. https://doi.org/10.1088/1755-1315/526/1/012039.
There are 99 citations in total.

Details

Primary Language English
Subjects Organic Agriculture, Soil Biology, Soil Microbiology
Journal Section Research Articles
Authors

Murat Güler 0000-0002-3074-6458

Hatice Öğütcü 0000-0001-7100-9318

Early Pub Date June 24, 2024
Publication Date June 27, 2024
Submission Date March 26, 2024
Acceptance Date June 11, 2024
Published in Issue Year 2024

Cite

APA Güler, M., & Öğütcü, H. (2024). Isolation and characterization of plant growth promoting rhizobacteria (PGPR) from rhizosphere of Helianthus annuus L. International Journal of Agriculture Environment and Food Sciences, 8(2), 412-429. https://doi.org/10.31015/jaefs.2024.2.16

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27