Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops and agro-morphological characterization has a key role in the development of new varieties. In this study, 228 samples of the tomato hybrid type “Beef” (Solanum lycopersicum L.) were characterized by comparing with 11 standard varieties based on 24 quantitative traits and 2 qualitative traits to reveal the phenotypic diversity by using conventional descriptors proposed by IPGRI (1996) and UPOV (2011). A significant level of variability was found in most of the traits studied among the genotypes in two locations. A high level of broad-sense heritability (H2) was detected for many traits such as the number of fruits, firmness, immature fruit color, stem length up to the first inflorescence, total height, and number of days to the first flowering in both locations. There was a highly significant positive correlation among the color values (L*, a*, b*, c*, h*) but no positive correlation between a* and h*. Number of locule had a positive correlation with fruit width and fruit weight, and a positive correlation was determined between fruit length and pericarp thickness in both locations. While fruit weight had a highly significant negative correlation with the number of fruits and number of flowers, there was a highly significant negative correlation between the number of locules and the fruit length-to-width ratio in both locations. Results of PCA showed that PC1 and PC2 accounted for around 15.6% and 13.7% of total variation and 13.8% and 11.8% of total variation for Location 1 and Location 2, respectively. The first five principal components accounted for around 54.2% of the total variation for Location 1 and 48.2% of the total variation for Location 2. Cluster analysis grouped the 239 genotypes under six cluster groups for Location 1 and seven cluster groups for Location 2. Results of the cluster analysis revealed that Cluster 3 for Location 1 and Cluster 2 for Location 2 had prominent genotypes for some of the agronomically important traits like yield. The results showed that present phenotypic diversity could be useful in the selection of best-performing genotypes, which would be important candidates for the beef red tomato market in the spring season.
This study was financially supported by Enza Zaden Tarim.
References
Avdikos, I. D., Tsivelika, N., Gallidou, A., Koutsika-Sotiriou, M., & Traka-Mavrona, E. (2011). The exploitation of heterosis through recurrent selection scheme applied in segregating generations of a tomato breeding program. Scientia Horticultural, 130(4), 701-707. https://doi.org/10.1016/j.scienta.2011.07.026
Aravind J., Mukesh SS., Wankhede D.P. and Kaur V. (2019) augmentedRCBD: Analysis of augmented randomised complete block designs. R package version 0.1.1.9000.
Burton, G. W. (1951). Quantitative inheritance in pearl millet (Pennisetum glaucum) 1. Agronomy Journal, 43(9), 409-417. https://doi.org/10.2134/agronj1951.00021962004300090001x
Burton, G. W. (1952, August). Qualitative inheritance in grasses. Vol. 1. In Proceedings of the 6th International Grassland Congress, Pennsylvania State College (pp. 17-23).
Charles, W. B., & Harris, R. E. (1972). Tomato fruit set at high and low temperatures. Canadian Journal of Plant Science, 52(4), 497-506. https://doi.org/10.4141/cjps72-080
Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. https://doi.org/10.1590/0103-9016-2014-0322
Davies, J. N., Hobson, G. E., & McGlasson, W. B. (1981). The constituents of tomato fruit—the influence of environment, nutrition, and genotype. Critical Reviews in Food Science & Nutrition, 15(3), 205-280. https://doi.org/10.1080/10408398109527317
de Koning, A. N. (1994). Development and dry matter distribution in glasshouse tomato: a quantitative approach. Wageningen University and Research.
El-Gabry, M. A. H., Solieman, T. I. H., & Abido, A. I. A. (2014). Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Scientia Horticulturae, 167, 153-157. https://doi.org/10.1016/j.scienta.2014.01.010
FAOSTAT, 2021, Tomato data report. Retrieved in January, 29, 2024 from https://www.fao.org/faostat/en/#data
Federer, W. T., & Raghavarao, D. (1975). On augmented designs. Biometrics, 29-35. https://doi.org/10.2307/2529707
Federer, W. T., & Searle, S. R. (1976). Model Considerations and Variance Component Estimation in Augmented Completely Randomized and Randomized Complete Blocks Designs-Preliminary Version.
Figàs, M. R., Prohens, J., Raigón, M. D., Fernández-de-Córdova, P., Fita, A., & Soler, S. (2015). Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool tomato analyzer. Genetic Resources and Crop Evolution, 62(2), 189-204. https://dx.doi.org/10.1007/s10722-014-0142-1
Gosselin, A., & Trudel, M. J. (1984). Interactions between root-zone temperature and light levels on growth, development and photosynthesis of Lycopersicon esculentum Mill. cultivar ‘Vendor’. Scientia Horticulture, 23(4), 313-321. https://doi.org/10.1016/0304-4238(84)90027-X
Hanson, P. M., Chen, J. T., & Kuo, G. (2002). Gene action and heritability of high-temperature fruit set in tomato line CL5915. HortScience, 37(1), 172-175. https://doi.org/10.21273/HORTSCI.37.1.172
IPGRI (1996) Descriptors for tomato (Lycopersicon spp.). International Plant Genetic Resources Institute, Rome.
Jenkins, J. A. (1948). The origin of the cultivated tomato. Economic Botany, 2(4), 379-392.
Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x
Lush, J. L. (1940). Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. Journal of Animal Science, 1940(1), 293-301. https://doi.org/10.2527/jas1940.19401293x
Ortiz, R., & Izquierdo, J. (1994). Yield stability differences among tomato genotypes grown in Latin America and the Caribbean. HortScience, 29(10), 1175-1177. https://doi.org/10.21273/HORTSCI.29.10.1175
Peralta, I. E., Spooner, D. M., & Knapp, S. (2008). Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany Monographs, 84.
Picken, A. J. F. (1984). A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal of Horticultural Science, 59(1), 1-13. https://doi.org/10.1080/00221589.1984.11515163
Prohens-Tomás, J. and Nuez, F. (Eds.)., 2007, Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae (Vol. 2). Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74110-9
Renna, M., D’Imperio, M., Gonnella, M., Durante, M., Parente, A., Mita, G., & Serio, F. (2019). Morphological and chemical profile of three tomato (Solanum lycopersicum L.) landraces of a semi-arid Mediterranean environment. Plants, 8(8), 273. https://doi.org/10.3390/plants8080273
Sainju, U. M., Dris, R., & Singh, B. (2003). Mineral nutrition of tomato. Food, Agriculture & Environment, 1(2), 176-183.
Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97(5), 731-738. https://doi.org/10.1093/aob/mcl037
UPOV (2011) International Union for The Protection of New Varieties of Plants. Retrieved in January, 29, 2024 from https://www.upov.int/databases/en/
Wang, S. S., Li, Y. L., & Wen, X. Z. (2017). Effect of increasing humidity on flowering, fruit-setting and pollen characteristics of tomato under heat stress. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1227 (pp. 305-312). 10.17660/ActaHortic.2018.1227.37
Avdikos, I. D., Tsivelika, N., Gallidou, A., Koutsika-Sotiriou, M., & Traka-Mavrona, E. (2011). The exploitation of heterosis through recurrent selection scheme applied in segregating generations of a tomato breeding program. Scientia Horticultural, 130(4), 701-707. https://doi.org/10.1016/j.scienta.2011.07.026
Aravind J., Mukesh SS., Wankhede D.P. and Kaur V. (2019) augmentedRCBD: Analysis of augmented randomised complete block designs. R package version 0.1.1.9000.
Burton, G. W. (1951). Quantitative inheritance in pearl millet (Pennisetum glaucum) 1. Agronomy Journal, 43(9), 409-417. https://doi.org/10.2134/agronj1951.00021962004300090001x
Burton, G. W. (1952, August). Qualitative inheritance in grasses. Vol. 1. In Proceedings of the 6th International Grassland Congress, Pennsylvania State College (pp. 17-23).
Charles, W. B., & Harris, R. E. (1972). Tomato fruit set at high and low temperatures. Canadian Journal of Plant Science, 52(4), 497-506. https://doi.org/10.4141/cjps72-080
Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. https://doi.org/10.1590/0103-9016-2014-0322
Davies, J. N., Hobson, G. E., & McGlasson, W. B. (1981). The constituents of tomato fruit—the influence of environment, nutrition, and genotype. Critical Reviews in Food Science & Nutrition, 15(3), 205-280. https://doi.org/10.1080/10408398109527317
de Koning, A. N. (1994). Development and dry matter distribution in glasshouse tomato: a quantitative approach. Wageningen University and Research.
El-Gabry, M. A. H., Solieman, T. I. H., & Abido, A. I. A. (2014). Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Scientia Horticulturae, 167, 153-157. https://doi.org/10.1016/j.scienta.2014.01.010
FAOSTAT, 2021, Tomato data report. Retrieved in January, 29, 2024 from https://www.fao.org/faostat/en/#data
Federer, W. T., & Raghavarao, D. (1975). On augmented designs. Biometrics, 29-35. https://doi.org/10.2307/2529707
Federer, W. T., & Searle, S. R. (1976). Model Considerations and Variance Component Estimation in Augmented Completely Randomized and Randomized Complete Blocks Designs-Preliminary Version.
Figàs, M. R., Prohens, J., Raigón, M. D., Fernández-de-Córdova, P., Fita, A., & Soler, S. (2015). Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool tomato analyzer. Genetic Resources and Crop Evolution, 62(2), 189-204. https://dx.doi.org/10.1007/s10722-014-0142-1
Gosselin, A., & Trudel, M. J. (1984). Interactions between root-zone temperature and light levels on growth, development and photosynthesis of Lycopersicon esculentum Mill. cultivar ‘Vendor’. Scientia Horticulture, 23(4), 313-321. https://doi.org/10.1016/0304-4238(84)90027-X
Hanson, P. M., Chen, J. T., & Kuo, G. (2002). Gene action and heritability of high-temperature fruit set in tomato line CL5915. HortScience, 37(1), 172-175. https://doi.org/10.21273/HORTSCI.37.1.172
IPGRI (1996) Descriptors for tomato (Lycopersicon spp.). International Plant Genetic Resources Institute, Rome.
Jenkins, J. A. (1948). The origin of the cultivated tomato. Economic Botany, 2(4), 379-392.
Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x
Lush, J. L. (1940). Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. Journal of Animal Science, 1940(1), 293-301. https://doi.org/10.2527/jas1940.19401293x
Ortiz, R., & Izquierdo, J. (1994). Yield stability differences among tomato genotypes grown in Latin America and the Caribbean. HortScience, 29(10), 1175-1177. https://doi.org/10.21273/HORTSCI.29.10.1175
Peralta, I. E., Spooner, D. M., & Knapp, S. (2008). Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany Monographs, 84.
Picken, A. J. F. (1984). A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal of Horticultural Science, 59(1), 1-13. https://doi.org/10.1080/00221589.1984.11515163
Prohens-Tomás, J. and Nuez, F. (Eds.)., 2007, Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae (Vol. 2). Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74110-9
Renna, M., D’Imperio, M., Gonnella, M., Durante, M., Parente, A., Mita, G., & Serio, F. (2019). Morphological and chemical profile of three tomato (Solanum lycopersicum L.) landraces of a semi-arid Mediterranean environment. Plants, 8(8), 273. https://doi.org/10.3390/plants8080273
Sainju, U. M., Dris, R., & Singh, B. (2003). Mineral nutrition of tomato. Food, Agriculture & Environment, 1(2), 176-183.
Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97(5), 731-738. https://doi.org/10.1093/aob/mcl037
UPOV (2011) International Union for The Protection of New Varieties of Plants. Retrieved in January, 29, 2024 from https://www.upov.int/databases/en/
Wang, S. S., Li, Y. L., & Wen, X. Z. (2017). Effect of increasing humidity on flowering, fruit-setting and pollen characteristics of tomato under heat stress. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1227 (pp. 305-312). 10.17660/ActaHortic.2018.1227.37
Ünal, A., Özbaş, M. O., Arslan, D., İlbi, H. (2024). Morphological and agronomical characterization of beef type tomato hybrids. International Journal of Agriculture Environment and Food Sciences, 8(2), 430-445. https://doi.org/10.31015/jaefs.2024.2.17
The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences.