Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 1, 33 - 41, 31.03.2021
https://doi.org/10.31015/jaefs.2021.1.5

Abstract

References

  • Aiken, J.D., Finke, R.G. (1999). A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. Journal of Molecular Catalysis A: Chemical, 145(1-2), 1-44. https://doi.org/10.1016/S1381-1169(99)00098-9
  • Ansari, M.A., Murali, M., Prasad, D., Alzohairy, M.A., Almatroudi, A., Alomary, M.N., Udayashankar, A.C., Singh, S.B., Asiri, S.M.M., Ashwini, B.S., Gowtham, H.G., Kalegowda, N., Amruthesh, K.N., Lakshmeesha, T.R., Niranjana, S.R. (2020). Cinnamomum verum Bark Extract Mediated Green Synthesis of ZnO Nanoparticles and Their Antibacterial Potentiality. Biomolecules, 10(2), 336. https://doi.org/10.3390/biom10020336
  • Anvekar, T.S., Chari, V.R., Kadam, H. (2017). Green Synthesis of ZnO Nano Particles, its Characterization and Application. Mat. Sci. Res. India, 14(2), 153-157. http://dx.doi.org/10.13005/msri/140211
  • Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature 181, 1199.
  • Bupesh, G., Manikandan, E., Thanigaiarul, K., Magesh, S., Senthilkumar, V., Tamilarasan, S., Pandian, K., Gurib-Fakim, A., Maaza, M. (2016). Enhanced antibacterial, anticancer activity from Terminalia chebula medicinal plant rapid extract by phytosynthesis of silver nanoparticles core-shell structures. J. Nanomed. Nanotechnol. 7(1), http://dx.doi.org/10.4172/2157-7439.1000355
  • Büyük, G.İ., Ilıcan, S. (2018). Nanoyapılı Lantan Katkılı ZnO Filmlerinin Elde Edilmesi ve Karakterizasyonu. Ad. Üni. Müh. Bil. Der., 5(9), 174-187.
  • Das, R.K., Brar, S.K., Verma, M. (2016). Checking the Biocompatibility of Plant-Derived Metallic Nanoparticles: Molecular Perspectives. Trends Biotechnol., 34(6), 440-449. https://doi.org/10.1016/j.tibtech.2016.02.005
  • Dipankar, C., Murugan, S. (2012). The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B. Biointerfaces, 98, 112–119. https://doi.org /10.1016/j.colsurfb.2012.04.006
  • Elumalai, K., Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci., 345, 329-336. https://doi.org/10.1016/j.apsusc.2015.03.176
  • Erdoğan, Ö., Birtekocak, F., Oryaşın, E., Abbak, M., Demirbolat, G.M., Paşa, S., Çevik, Ö. (2019). Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel ve Sitotoksik Etkileri. Düzce Tıp Fakültesi Dergisi, 21(1), 19- 26. https://doi.org/10.18678/dtfd.482351
  • Gün, S.Ş., Çinbilgel, İ., Öz, E., Çetin, H., (2011). Bazı Salvia L. (Labiatae) Bitki Ekstraktlarının, Sivrisinek Culex pipiens L. (Diptera: Culicidae)’e Karşı Larva Öldürücü Aktivitesi. Kafkas Univ Vet. Fak. Derg., 17(Suppl A), 61-65. https://doi.org/10.9775/kvfd.2010.3338
  • Hanan, N.A., Chiu, H.I., Ramachandran, M.R., Tung, W.H., Zain, N.N.M., Yahaya, N., Lim, V. (2018). Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review. Int. J. Mol. Sci., 19, 1725. https://doi.org/10.3390/ijms19061725
  • Hay, S.I., Jayaraman, S.P., Truelsen, T., Sorensen, R.J., Millear, A., Giussani, G., Beghi, E. (2016). Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries,: A systematic analysis for the Global Burden of Disease Study 1990–2015. Lancet, 388, 1545-602. https://doi.org/10.1016/S0140-6736(16)31678-6
  • Herlekar, M., Barve, S., Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticle Research, https://doi.org/10.1155/2014/140614
  • Joseph, S., Mathew, B. (2015). Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J. Mol. Liq., 204, 184-191.
  • Khan, T., Ullah, N., Khan, M.A., Mashwani, Z.U.R., Nadhman, A. (2019). 4 Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci. 272, https://doi.org/10.1016/j.cis.2019.102017
  • Koçak, Y., Oto, G., Meydan, İ., Seçkin, H. (2020). Van Bölgesinde Yetişen Allium schoenoprasum L. Bitkisinin Toplam Flavonoid, DPPH Radikal Söndürme, Lipid Peroksidasyonu ve Antimikrobiyal Aktivitesinin Araştırılması YYÜ Tar. Bil. Derg. 30(1), 147-155. https://doi.org/10.29133/yyutbd.674507.
  • Miri, A., Mahdinejad, N., Ebrahimy, O., Khatami, M., Sarani, M. (2019). Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity. Materials Science & Engineering C, 104, https://doi.org/10.1016/j.msec.2019.109981
  • Nunes, M.R., Castilho, M.S.M., Veeck, A.P.L., Rosa, C.G., Noronha C.M., Maciel, M.V.O.B., Barreto, P.M. (2018). Antioxidant and antimicrobial me-thylcellulose films containing Lippia alba extract and silver nanoparticles, Carbohydr. Polym., 192, 37-43. https://doi.org/10.1016/j.carbpol.2018.03.014
  • Prabhu. N., Raj, D.T., Gowrik, Y., Siddiquas, A., Innocentd, J.P. (2010). Synthesis of silver phyto nanoparticles and their antibacterial efficacy. Dig. J. Nanomater. Biostruct., 5(1), 185-189.
  • Prasad, A.S., (2014). Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Frontiers in nutrition, 1 (14), https://doi.org/10.3389/fnut.2014.00014 Rai, P.K., Kumar, V., Lee, S.S., Raza, N., Kim, K.H., Ok, Y.S., Tsang, D.C.W. (2018). Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ Int., 119, 1-19. https://doi.org/10.1016/j.envint.2018.06.012
  • Rajeshkumar, S., Bharath, L.V. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles -A review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact., 273, 219-227. http://dx.doi.org/10.1016/j.cbi.2017.06.019.
  • Rančić, A., Soković, M., Vukojević, J., Simić, A., Marin, P., Duletić-Laušević, S., Djoković, D. (2005). Chemical composition and antimicrobial activities of essential oils of Myrrhis odorata (L.) Scop, Hypericum perforatum (L.) and Helichrysum arenarium (L.) Moench. J. Essent. Oil Res., 17(3), 341–345. https://doi.org/10.1080/10412905.2005.9698925
  • Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., et al. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nanomicro Lett., 7(3), 219-242. https://doi.org/10.1007/s40820-015-0040-x
  • Suresh, D., Shobharani, R.M., Nethravathi, P.C., Kumar, M.A.P., Nagabhushana, H., Sharma S.C. (2015). Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 141, 128-134. https://doi.org/10.1016/j.saa.2015.01.048
  • Tepe, B., Sokmen, M., Akpulat, H.A., Sokmen, A. (2005). İki Farklı Lokasyona ait Altın Otunun (Helichrysum arenarium) Uçucu Bileşenlerinin Belirlenmesi ve Karşılaştırılması. Food. Chem., 90(4), 685–689. https://doi.org/10.1016/j.foodchem.2004.04.030
  • Wu, F., Chen, Y., Li, G., Zhu, D., Wang, L., Wang, J. (2019). Zinc oxide nanoparticles syn-thesized from Allium cepa prevents UVB radiation mediated inflammation inhuman epidermal keratinocytes (HaCaT cells), Artific. Cells Nanomed. Biotechnol., 47(1), 3548–3558. https://doi.org/10.1080/21691401.2019.1642905
  • Wu, H., Santana, I., Dansie, J., Giraldo, J.P. (2017). In Vivo Delivery of Nanoparticles into Plant Leaves. Curr. Protoc. Chem. Biol., 9(4), 269-284. https://doi.org/10.1002/cpch.29
  • Xiong, H.M., Shchukin, D.G., Möhwald, H., Xu, Y., Xia, Y.Y. (2009). Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew Chem Int Ed., 48(15), 2727-2731. https://doi.org/10.1002/anie.200805590
  • Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., Qian, M. (2002). Free Radical mScavenging Properties of Wheat Extracts. Journal of Agriculture and Food Chemistry, 50(6), 1619-1624. https://doi.org/10.1021/jf010964p.

Green synthesis, characterization, antimicrobial and antioxidant activities of zinc oxide nanoparticles using Helichrysum arenarium extract

Year 2021, Volume: 5 Issue: 1, 33 - 41, 31.03.2021
https://doi.org/10.31015/jaefs.2021.1.5

Abstract

Active substance production at the nano-level attracts attention in the scientific world due to its wide application area. Different methods are used for the biosynthesis of nanoparticles. Recent studies have focused on non-toxic, environmentally friendly synthesis methods. Nanoparticles obtained by green synthesis using various biological elements such as plants, microorganisms and proteins have taken part in many scientific studies. Plants, which have an important potential in active ingredient production, are highly preferred in nanoparticle production. Scanning Electron Microscope and Energy Dispersive X-Ray Analysis (SEM / SEM-EDX), Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Ultraviolet visible light absorption Spectroscopy (UV-vis) techniques were used for the structural and morphological characterization of Zn nanoparticles obtained by green synthesis using Helichrysum arenarium plant extract and ZnO.The antioxidant capacity of Zn NPs/Ha structures was determined by performing the DPPH test. Antimicrobial effects of zinc nanoparticles on six different pathogens (Bacillus cereus ATCC 10876, Escherichia coli ATCC 25952, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATTC 29213, Pseudomonas aeruginosa ATCC 27853 and Candida albicans ATTC 90028) were investigated. As a result of this studies, it has been observed that it has an inhibitory effect against some pathogen microorganisms. It has also been found that its antioxidant content is at a significant level.

References

  • Aiken, J.D., Finke, R.G. (1999). A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. Journal of Molecular Catalysis A: Chemical, 145(1-2), 1-44. https://doi.org/10.1016/S1381-1169(99)00098-9
  • Ansari, M.A., Murali, M., Prasad, D., Alzohairy, M.A., Almatroudi, A., Alomary, M.N., Udayashankar, A.C., Singh, S.B., Asiri, S.M.M., Ashwini, B.S., Gowtham, H.G., Kalegowda, N., Amruthesh, K.N., Lakshmeesha, T.R., Niranjana, S.R. (2020). Cinnamomum verum Bark Extract Mediated Green Synthesis of ZnO Nanoparticles and Their Antibacterial Potentiality. Biomolecules, 10(2), 336. https://doi.org/10.3390/biom10020336
  • Anvekar, T.S., Chari, V.R., Kadam, H. (2017). Green Synthesis of ZnO Nano Particles, its Characterization and Application. Mat. Sci. Res. India, 14(2), 153-157. http://dx.doi.org/10.13005/msri/140211
  • Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature 181, 1199.
  • Bupesh, G., Manikandan, E., Thanigaiarul, K., Magesh, S., Senthilkumar, V., Tamilarasan, S., Pandian, K., Gurib-Fakim, A., Maaza, M. (2016). Enhanced antibacterial, anticancer activity from Terminalia chebula medicinal plant rapid extract by phytosynthesis of silver nanoparticles core-shell structures. J. Nanomed. Nanotechnol. 7(1), http://dx.doi.org/10.4172/2157-7439.1000355
  • Büyük, G.İ., Ilıcan, S. (2018). Nanoyapılı Lantan Katkılı ZnO Filmlerinin Elde Edilmesi ve Karakterizasyonu. Ad. Üni. Müh. Bil. Der., 5(9), 174-187.
  • Das, R.K., Brar, S.K., Verma, M. (2016). Checking the Biocompatibility of Plant-Derived Metallic Nanoparticles: Molecular Perspectives. Trends Biotechnol., 34(6), 440-449. https://doi.org/10.1016/j.tibtech.2016.02.005
  • Dipankar, C., Murugan, S. (2012). The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B. Biointerfaces, 98, 112–119. https://doi.org /10.1016/j.colsurfb.2012.04.006
  • Elumalai, K., Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci., 345, 329-336. https://doi.org/10.1016/j.apsusc.2015.03.176
  • Erdoğan, Ö., Birtekocak, F., Oryaşın, E., Abbak, M., Demirbolat, G.M., Paşa, S., Çevik, Ö. (2019). Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel ve Sitotoksik Etkileri. Düzce Tıp Fakültesi Dergisi, 21(1), 19- 26. https://doi.org/10.18678/dtfd.482351
  • Gün, S.Ş., Çinbilgel, İ., Öz, E., Çetin, H., (2011). Bazı Salvia L. (Labiatae) Bitki Ekstraktlarının, Sivrisinek Culex pipiens L. (Diptera: Culicidae)’e Karşı Larva Öldürücü Aktivitesi. Kafkas Univ Vet. Fak. Derg., 17(Suppl A), 61-65. https://doi.org/10.9775/kvfd.2010.3338
  • Hanan, N.A., Chiu, H.I., Ramachandran, M.R., Tung, W.H., Zain, N.N.M., Yahaya, N., Lim, V. (2018). Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review. Int. J. Mol. Sci., 19, 1725. https://doi.org/10.3390/ijms19061725
  • Hay, S.I., Jayaraman, S.P., Truelsen, T., Sorensen, R.J., Millear, A., Giussani, G., Beghi, E. (2016). Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries,: A systematic analysis for the Global Burden of Disease Study 1990–2015. Lancet, 388, 1545-602. https://doi.org/10.1016/S0140-6736(16)31678-6
  • Herlekar, M., Barve, S., Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticle Research, https://doi.org/10.1155/2014/140614
  • Joseph, S., Mathew, B. (2015). Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J. Mol. Liq., 204, 184-191.
  • Khan, T., Ullah, N., Khan, M.A., Mashwani, Z.U.R., Nadhman, A. (2019). 4 Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci. 272, https://doi.org/10.1016/j.cis.2019.102017
  • Koçak, Y., Oto, G., Meydan, İ., Seçkin, H. (2020). Van Bölgesinde Yetişen Allium schoenoprasum L. Bitkisinin Toplam Flavonoid, DPPH Radikal Söndürme, Lipid Peroksidasyonu ve Antimikrobiyal Aktivitesinin Araştırılması YYÜ Tar. Bil. Derg. 30(1), 147-155. https://doi.org/10.29133/yyutbd.674507.
  • Miri, A., Mahdinejad, N., Ebrahimy, O., Khatami, M., Sarani, M. (2019). Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity. Materials Science & Engineering C, 104, https://doi.org/10.1016/j.msec.2019.109981
  • Nunes, M.R., Castilho, M.S.M., Veeck, A.P.L., Rosa, C.G., Noronha C.M., Maciel, M.V.O.B., Barreto, P.M. (2018). Antioxidant and antimicrobial me-thylcellulose films containing Lippia alba extract and silver nanoparticles, Carbohydr. Polym., 192, 37-43. https://doi.org/10.1016/j.carbpol.2018.03.014
  • Prabhu. N., Raj, D.T., Gowrik, Y., Siddiquas, A., Innocentd, J.P. (2010). Synthesis of silver phyto nanoparticles and their antibacterial efficacy. Dig. J. Nanomater. Biostruct., 5(1), 185-189.
  • Prasad, A.S., (2014). Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Frontiers in nutrition, 1 (14), https://doi.org/10.3389/fnut.2014.00014 Rai, P.K., Kumar, V., Lee, S.S., Raza, N., Kim, K.H., Ok, Y.S., Tsang, D.C.W. (2018). Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ Int., 119, 1-19. https://doi.org/10.1016/j.envint.2018.06.012
  • Rajeshkumar, S., Bharath, L.V. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles -A review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact., 273, 219-227. http://dx.doi.org/10.1016/j.cbi.2017.06.019.
  • Rančić, A., Soković, M., Vukojević, J., Simić, A., Marin, P., Duletić-Laušević, S., Djoković, D. (2005). Chemical composition and antimicrobial activities of essential oils of Myrrhis odorata (L.) Scop, Hypericum perforatum (L.) and Helichrysum arenarium (L.) Moench. J. Essent. Oil Res., 17(3), 341–345. https://doi.org/10.1080/10412905.2005.9698925
  • Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., et al. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nanomicro Lett., 7(3), 219-242. https://doi.org/10.1007/s40820-015-0040-x
  • Suresh, D., Shobharani, R.M., Nethravathi, P.C., Kumar, M.A.P., Nagabhushana, H., Sharma S.C. (2015). Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 141, 128-134. https://doi.org/10.1016/j.saa.2015.01.048
  • Tepe, B., Sokmen, M., Akpulat, H.A., Sokmen, A. (2005). İki Farklı Lokasyona ait Altın Otunun (Helichrysum arenarium) Uçucu Bileşenlerinin Belirlenmesi ve Karşılaştırılması. Food. Chem., 90(4), 685–689. https://doi.org/10.1016/j.foodchem.2004.04.030
  • Wu, F., Chen, Y., Li, G., Zhu, D., Wang, L., Wang, J. (2019). Zinc oxide nanoparticles syn-thesized from Allium cepa prevents UVB radiation mediated inflammation inhuman epidermal keratinocytes (HaCaT cells), Artific. Cells Nanomed. Biotechnol., 47(1), 3548–3558. https://doi.org/10.1080/21691401.2019.1642905
  • Wu, H., Santana, I., Dansie, J., Giraldo, J.P. (2017). In Vivo Delivery of Nanoparticles into Plant Leaves. Curr. Protoc. Chem. Biol., 9(4), 269-284. https://doi.org/10.1002/cpch.29
  • Xiong, H.M., Shchukin, D.G., Möhwald, H., Xu, Y., Xia, Y.Y. (2009). Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew Chem Int Ed., 48(15), 2727-2731. https://doi.org/10.1002/anie.200805590
  • Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., Qian, M. (2002). Free Radical mScavenging Properties of Wheat Extracts. Journal of Agriculture and Food Chemistry, 50(6), 1619-1624. https://doi.org/10.1021/jf010964p.
There are 30 citations in total.

Details

Primary Language English
Subjects Environmental Sciences, Food Engineering
Journal Section Research Articles
Authors

İsmet Meydan 0000-0001-5640-6665

Hamdullah Seçkin 0000-0003-3884-4121

Publication Date March 31, 2021
Submission Date December 22, 2020
Acceptance Date February 10, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Meydan, İ., & Seçkin, H. (2021). Green synthesis, characterization, antimicrobial and antioxidant activities of zinc oxide nanoparticles using Helichrysum arenarium extract. International Journal of Agriculture Environment and Food Sciences, 5(1), 33-41. https://doi.org/10.31015/jaefs.2021.1.5


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27