Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2021, Volume 5, Issue 3, 425 - 432, 15.09.2021
https://doi.org/10.31015/jaefs.2021.3.22

Abstract

References

  • Atlas, Ronald M. (2010). Handbook of Microbiological Media, Fourth Edition, 1249, CRC Press, USA.
  • Basilio, A., González, I., Vicente, M. F., Gorrochategui, J., Cabello, A., González, A. and Genilloud, O. (2003). Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. Journal of Applied Microbiology, 95(4): 814-823. Doi: https://doi.org/10.1046/j.1365-2672.2003.02049.x
  • Buchholz-Cleven, B. E. E., Rattunde, B. and Straub, K. L. (1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology, 20: 301-309. Doi: https://doi.org/10.1016/S0723-2020(97)80077-X
  • Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao T, Ye J, Zaretskaya, I. (2013). BLAST: a more efficient report with usability improvements. Nucleic Acids Research, 41: 29-33. Doi: https://doi.org/10.1093/nar/gkt282
  • Chun, J. and Goodfellow, M. (1995). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. International Journal of Systematic Bacteriology, 45(2): 240-245. Doi: https://doi.org/10.1099/00207713-45-2-240
  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., da Costa, M. S., Rooney, A. P., Yi, H., Xu, X. W., De Meyer, S. and Trujillo, M. E. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 68: 461-466. Doi: https://doi.org/10.1099/ijsem.0.002516
  • El-Tarabily, K. A. and Sivasithamparam, K. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry, 38: 1505-1520. Doi: https://doi.org/10.1016/j.soilbio.2005.12.017
  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17: 368-376. Doi: https://doi.org/10.1007/BF01734359
  • Felsenstein, J. (1985). Confidence limits on phylogeny: an approach using the bootstrap. Evolution, 39: 783-791. Doi: https://doi.org/10.2307/2408678
  • Gauze, G. F., Preobrazhenskaya, T. P., Kudrina, E. S., Blinov, N. O., Ryabova, I. D. and Sveshnikova, M. A.(1957). Problems in the Classification of Antagonistic Actinomycetes (State Publishing House for Medical Literature, Moscow, Russia).
  • Gomes, R. C., Semêdo, L. T., Soares, R. M., Alviano, C. S., Linhares, L. F. and Coelho, R. R. (2000). Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Letters in Applied Microbiology, 30(2): 146-150. Doi: https://doi.org/10.1046/j.1472-765x.2000.00687.x
  • Hayakawa, M. and Nonomura, H. (1987). Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Journal of Fermentation Technology, 65: 501-509. Doi: https://doi.org/10.1016/0385-6380(87)90108-7
  • Jones, K. L. (1949). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. Journal of Bacteriology, 57(2): 141-145. Doi: https://doi.org/10.1128/jb.57.2.141-145.1949
  • Kim, M., Oh, H. S., Park, S. C. and Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64: 346-351. Doi: https://doi.org/10.1099/ijs.0.059774-0
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111-120. Doi: https://doi.org/10.1007/BF01731581
  • Kluge, A. G. and Farris, F. S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Biology, 18(1): 1-32. Doi: https://doi.org/10.1093/sysbio/18.1.1
  • Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870-1874. Doi: https://doi.org/10.1093/molbev/msw054
  • Küster, E. and Williams, S. T. (1964). Selection of media for isolation of streptomycetes. Nature, 202: 928-929. Doi: https://doi.org/10.1038/202928a0
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E., and Goodfellow, M., eds., John Wiley and Sons, New York, 115-175.
  • Lazzarini, A., Cavaletti, L., Toppo, G. and Marinelli, F. (2000). Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek, 78: 399-405. Doi: https://doi.org/10.1023/A:1010287600557
  • Li, Q., Jiang, Y., Ning, P., Zheng, L., Huang, J., Li, G., Jiang, D. and Hsiang, T. (2011). Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biological Control, 58: 139-148. Doi: https://doi.org/10.1016/j.biocontrol.2011.04.013
  • Mincer, T. J., Jensen, P. R., Kauffman, C. A. and Fenical, W. (2002). Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Applied Environmental Microbiology, 68(10): 5005-5011. Doi: https://doi.org/10.1128/AEM.68.10.5005-5011.2002
  • Ou Slough, S. H. (1987). Rice Diseases. CAB International, Slough, England, 2nd, edn: 380.
  • Ökmen, G. and Dönmez, G. (2007). Işık şiddetinin çeltik tarlalarından izole edilen siyanobakterilerde üremeye ve nitrojenaz aktivitesine etkisi. Türk Mikrobiyoloji Cemiyeti Dergisi, 37(1): 5-10. Doi: https://app.trdizin.gov.tr//makale/T0RBMU5qZzQ
  • Patil, H. J., Srivastava, A. K., Singh, D. P., Chaudhari, B. L. and Arora, D. K. (2011). Actinomycetes mediated biochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctonia solani. Crop Protection, 30: 1269-1273. Doi: https://doi.org/10.1016/j.cropro.2011.04.008
  • Pingali, P. L., Marquez, C. B., Palis, F. G. and Rola, A. C. (1995).in Impact of Pesticides on Farmer Health and the Rice Environment. The Impact of Pesticides on Farmer Health: A Medical and Economic Analysis in the Philippines (eds Pingali, P. L. & Roger, P. A.) (Kluwer Academic Publishers, Massachusetts, USA), 343-360. Doi: https://doi.org/10.1007/978-94-011-0647-4
  • Poomthongdee, N., Duangmal, K. and Pathom-aree, W. (2015). Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants. The Journal of Antibiotics, 68(2): 106-114. Doi: https://doi.org/10.1038/ja.2014.117
  • Procόpio, R. E., Silva, I. S., Martins, M. K., Azevedo, J. L. and Araújo, J. M. (2012). Antibiotics produced by Streptomyces. The Brazilian Journal of Infectious Diseases, 16(5): 466-471. Doi: https://doi.org/10.1016/j.bjid.2012.08.014
  • Saitou, N. and Nei, M. (1987). The neighbour-joining method: a new method for constructing phylogenetic trees. Molecular and Biological Evolution, 4: 406-425. Doi: https://doi.org/10.1093/molbev/msl072
  • Sanglier, J. J., Whitehead, D., Saddler, G. S., Ferguson, E.V. and Goodfellow, M. (1992). Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene, 115(1-2): 235-242. Doi: https://doi.org/10.1016/0378-1119(92)90564-6
  • Sanglier, J. J., Haag, H., Huck, T. and Fehr, T. (1996). Section review; anti-infectives: review of actinomycetes compounds 1990–1995. Expert Opinion on Investigational Drugs, 5: 207-223. Doi: https://doi.org/10.1517/13543784.5.2.207
  • Stackebrandt, E. and Ebers, J. (2006). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today, 33: 152-155. Doi: https://doi.org/10.1099/ijsem.0.002516
  • Tan, G. Y. A., Ward, A.C. and Goodfellow, M. (2006). Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Systematic and Applied Microbiology, 29(7): 557-569. Doi: https://doi.org/10.1016/j.syapm.2006.01.007
  • Tsukano, Y. (1986). Transformations of selected pesticides in flooded rice-field soil-A review. Journal of Contaminant Hydrology, 1(1-2): 47-63. Doi: https://doi.org/10.1016/0169-7722(86)90006-9
  • Veyisoglu, A. and Sahin, N. (2015). Streptomyces klenkii sp. nov., isolated from deep marine sediment. Antonie van Leeuwenhoek, 107: 273-279. Doi: https://doi.org/10.1007/s10482-014-0325-y
  • Veyisoglu, A., Cetin, D., Inan Bektas, K., Guven, K. and Sahin, N. (2016). Streptomyces ovatisporus sp. nov., isolated from deep marine sediment. International Journal of Systematic and Evolutionary Microbiology, 66: 4856-4863. Doi: https://doi.org/10.1099/ijsem.0.001442
  • Veyisoglu, A., Carro, L., Cetin, D., Igual, J. M., Klenk, H. P. and Sahin, N. (2020). Micromonospora orduensis sp. nov., isolated from deep marine sediment. Antonie van Leeuwenhoek, 113(3): 397-405. Doi: https://doi.org/10.1007/s10482-019-01349-6
  • Williams, S. T. and Mayfield, C. I. (1971). Studies on the ecology of actinomycetes in soil III: the behaviour of neutrophilic streptomycetes in acid soil. Soil Biology and Biochemistry, 3(3): 197-208. Doi: https://doi.org/10.1016/0038-0717(71)90015-0
  • Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A. and Sackin, M. J. (1983). Numerical classification of Streptomyces and related genera. Journal of General Microbiology, 129: 1743-1813. Doi: https://doi.org/10.1099/00221287-129-6-1743
  • Xu, C., Wang, L., Cui, Q., Huang, Y., Lui, Z., Zheng, G. and Goodfellow, M. (2006). Neutrotolerant acidophilic Streptomyces species isolated from acidic soils in China: Streptomyces guanduensis sp. nov., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 56: 1109-1115. Doi: https://doi.org/10.1099/ijs.0.63959-0
  • Xue, L., Lin, C., Shen, G., Zhao, J., Chen, Q. and Xue, Q. (2013). Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Protection, 43: 231-240. Doi: https://doi.org/10.1016/j.cropro.2012.10.002
  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67: 1613-1617. Doi: https://doi.org/10.1099/ijsem.0.001755
  • Yuan, W. M. and Crawford, D. L. (1995). Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology, 61: 3119-3128. Doi: https://doi.org/10.1128/aem.61.8.3119-3128.1995
  • Zakalyukina, Y. V. and Zenova, G. M. (2007). Antagonistic activity of soil acidophilic actinomycetes. Biology Bulletin, 34: 329-332. Doi: https://doi.org/10.1134/S1062359007040036
  • Zenova, G. M., Manucharova, N. A. and Zvyagintsev, D. G. (2011). Extremophilic and extremotolerant actinomycetes in different soil types. Eurasian Soil Science, 44: 417-436. Doi: https://doi.org/10.1134/S1064229311040132

Screening of Acidophilic Actinobacteria That Show Activity against Paddy Pest Fungi

Year 2021, Volume 5, Issue 3, 425 - 432, 15.09.2021
https://doi.org/10.31015/jaefs.2021.3.22

Abstract

This study aimed to isolate and identify acidophilic actinobacteria. Acidophilic actinobacteria isolates were had from a paddy field soil in Osmancık placed near Çorum province in Turkey. The dilution plate technique on seven selective media with pH 5.5 was used for isolation. 16S rRNA gene PCR amplification of acidophilic actinobacteria was performed. Three different algorithms were used in the phylogenetic analyzes made with MEGA 7.0 software. Twenty-two isolates were obtained from seven selective media, and according to 16S rRNA gene sequence analysis of 22 isolates, twenty-one Streptomyces isolates and one Rhodococcus isolate were identified. The antifungal activities of isolated acidophilic actinobacteria against Fusarium moniliforme and Rhizoctonia solani, the rice pathogenic fungi were evaluated. The isolates with antifungal activity have the potential to be used as biological control agents against rice pathogens.

References

  • Atlas, Ronald M. (2010). Handbook of Microbiological Media, Fourth Edition, 1249, CRC Press, USA.
  • Basilio, A., González, I., Vicente, M. F., Gorrochategui, J., Cabello, A., González, A. and Genilloud, O. (2003). Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. Journal of Applied Microbiology, 95(4): 814-823. Doi: https://doi.org/10.1046/j.1365-2672.2003.02049.x
  • Buchholz-Cleven, B. E. E., Rattunde, B. and Straub, K. L. (1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology, 20: 301-309. Doi: https://doi.org/10.1016/S0723-2020(97)80077-X
  • Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao T, Ye J, Zaretskaya, I. (2013). BLAST: a more efficient report with usability improvements. Nucleic Acids Research, 41: 29-33. Doi: https://doi.org/10.1093/nar/gkt282
  • Chun, J. and Goodfellow, M. (1995). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. International Journal of Systematic Bacteriology, 45(2): 240-245. Doi: https://doi.org/10.1099/00207713-45-2-240
  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., da Costa, M. S., Rooney, A. P., Yi, H., Xu, X. W., De Meyer, S. and Trujillo, M. E. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 68: 461-466. Doi: https://doi.org/10.1099/ijsem.0.002516
  • El-Tarabily, K. A. and Sivasithamparam, K. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry, 38: 1505-1520. Doi: https://doi.org/10.1016/j.soilbio.2005.12.017
  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17: 368-376. Doi: https://doi.org/10.1007/BF01734359
  • Felsenstein, J. (1985). Confidence limits on phylogeny: an approach using the bootstrap. Evolution, 39: 783-791. Doi: https://doi.org/10.2307/2408678
  • Gauze, G. F., Preobrazhenskaya, T. P., Kudrina, E. S., Blinov, N. O., Ryabova, I. D. and Sveshnikova, M. A.(1957). Problems in the Classification of Antagonistic Actinomycetes (State Publishing House for Medical Literature, Moscow, Russia).
  • Gomes, R. C., Semêdo, L. T., Soares, R. M., Alviano, C. S., Linhares, L. F. and Coelho, R. R. (2000). Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Letters in Applied Microbiology, 30(2): 146-150. Doi: https://doi.org/10.1046/j.1472-765x.2000.00687.x
  • Hayakawa, M. and Nonomura, H. (1987). Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Journal of Fermentation Technology, 65: 501-509. Doi: https://doi.org/10.1016/0385-6380(87)90108-7
  • Jones, K. L. (1949). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. Journal of Bacteriology, 57(2): 141-145. Doi: https://doi.org/10.1128/jb.57.2.141-145.1949
  • Kim, M., Oh, H. S., Park, S. C. and Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64: 346-351. Doi: https://doi.org/10.1099/ijs.0.059774-0
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111-120. Doi: https://doi.org/10.1007/BF01731581
  • Kluge, A. G. and Farris, F. S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Biology, 18(1): 1-32. Doi: https://doi.org/10.1093/sysbio/18.1.1
  • Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870-1874. Doi: https://doi.org/10.1093/molbev/msw054
  • Küster, E. and Williams, S. T. (1964). Selection of media for isolation of streptomycetes. Nature, 202: 928-929. Doi: https://doi.org/10.1038/202928a0
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E., and Goodfellow, M., eds., John Wiley and Sons, New York, 115-175.
  • Lazzarini, A., Cavaletti, L., Toppo, G. and Marinelli, F. (2000). Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek, 78: 399-405. Doi: https://doi.org/10.1023/A:1010287600557
  • Li, Q., Jiang, Y., Ning, P., Zheng, L., Huang, J., Li, G., Jiang, D. and Hsiang, T. (2011). Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biological Control, 58: 139-148. Doi: https://doi.org/10.1016/j.biocontrol.2011.04.013
  • Mincer, T. J., Jensen, P. R., Kauffman, C. A. and Fenical, W. (2002). Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Applied Environmental Microbiology, 68(10): 5005-5011. Doi: https://doi.org/10.1128/AEM.68.10.5005-5011.2002
  • Ou Slough, S. H. (1987). Rice Diseases. CAB International, Slough, England, 2nd, edn: 380.
  • Ökmen, G. and Dönmez, G. (2007). Işık şiddetinin çeltik tarlalarından izole edilen siyanobakterilerde üremeye ve nitrojenaz aktivitesine etkisi. Türk Mikrobiyoloji Cemiyeti Dergisi, 37(1): 5-10. Doi: https://app.trdizin.gov.tr//makale/T0RBMU5qZzQ
  • Patil, H. J., Srivastava, A. K., Singh, D. P., Chaudhari, B. L. and Arora, D. K. (2011). Actinomycetes mediated biochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctonia solani. Crop Protection, 30: 1269-1273. Doi: https://doi.org/10.1016/j.cropro.2011.04.008
  • Pingali, P. L., Marquez, C. B., Palis, F. G. and Rola, A. C. (1995).in Impact of Pesticides on Farmer Health and the Rice Environment. The Impact of Pesticides on Farmer Health: A Medical and Economic Analysis in the Philippines (eds Pingali, P. L. & Roger, P. A.) (Kluwer Academic Publishers, Massachusetts, USA), 343-360. Doi: https://doi.org/10.1007/978-94-011-0647-4
  • Poomthongdee, N., Duangmal, K. and Pathom-aree, W. (2015). Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants. The Journal of Antibiotics, 68(2): 106-114. Doi: https://doi.org/10.1038/ja.2014.117
  • Procόpio, R. E., Silva, I. S., Martins, M. K., Azevedo, J. L. and Araújo, J. M. (2012). Antibiotics produced by Streptomyces. The Brazilian Journal of Infectious Diseases, 16(5): 466-471. Doi: https://doi.org/10.1016/j.bjid.2012.08.014
  • Saitou, N. and Nei, M. (1987). The neighbour-joining method: a new method for constructing phylogenetic trees. Molecular and Biological Evolution, 4: 406-425. Doi: https://doi.org/10.1093/molbev/msl072
  • Sanglier, J. J., Whitehead, D., Saddler, G. S., Ferguson, E.V. and Goodfellow, M. (1992). Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene, 115(1-2): 235-242. Doi: https://doi.org/10.1016/0378-1119(92)90564-6
  • Sanglier, J. J., Haag, H., Huck, T. and Fehr, T. (1996). Section review; anti-infectives: review of actinomycetes compounds 1990–1995. Expert Opinion on Investigational Drugs, 5: 207-223. Doi: https://doi.org/10.1517/13543784.5.2.207
  • Stackebrandt, E. and Ebers, J. (2006). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today, 33: 152-155. Doi: https://doi.org/10.1099/ijsem.0.002516
  • Tan, G. Y. A., Ward, A.C. and Goodfellow, M. (2006). Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Systematic and Applied Microbiology, 29(7): 557-569. Doi: https://doi.org/10.1016/j.syapm.2006.01.007
  • Tsukano, Y. (1986). Transformations of selected pesticides in flooded rice-field soil-A review. Journal of Contaminant Hydrology, 1(1-2): 47-63. Doi: https://doi.org/10.1016/0169-7722(86)90006-9
  • Veyisoglu, A. and Sahin, N. (2015). Streptomyces klenkii sp. nov., isolated from deep marine sediment. Antonie van Leeuwenhoek, 107: 273-279. Doi: https://doi.org/10.1007/s10482-014-0325-y
  • Veyisoglu, A., Cetin, D., Inan Bektas, K., Guven, K. and Sahin, N. (2016). Streptomyces ovatisporus sp. nov., isolated from deep marine sediment. International Journal of Systematic and Evolutionary Microbiology, 66: 4856-4863. Doi: https://doi.org/10.1099/ijsem.0.001442
  • Veyisoglu, A., Carro, L., Cetin, D., Igual, J. M., Klenk, H. P. and Sahin, N. (2020). Micromonospora orduensis sp. nov., isolated from deep marine sediment. Antonie van Leeuwenhoek, 113(3): 397-405. Doi: https://doi.org/10.1007/s10482-019-01349-6
  • Williams, S. T. and Mayfield, C. I. (1971). Studies on the ecology of actinomycetes in soil III: the behaviour of neutrophilic streptomycetes in acid soil. Soil Biology and Biochemistry, 3(3): 197-208. Doi: https://doi.org/10.1016/0038-0717(71)90015-0
  • Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A. and Sackin, M. J. (1983). Numerical classification of Streptomyces and related genera. Journal of General Microbiology, 129: 1743-1813. Doi: https://doi.org/10.1099/00221287-129-6-1743
  • Xu, C., Wang, L., Cui, Q., Huang, Y., Lui, Z., Zheng, G. and Goodfellow, M. (2006). Neutrotolerant acidophilic Streptomyces species isolated from acidic soils in China: Streptomyces guanduensis sp. nov., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 56: 1109-1115. Doi: https://doi.org/10.1099/ijs.0.63959-0
  • Xue, L., Lin, C., Shen, G., Zhao, J., Chen, Q. and Xue, Q. (2013). Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Protection, 43: 231-240. Doi: https://doi.org/10.1016/j.cropro.2012.10.002
  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67: 1613-1617. Doi: https://doi.org/10.1099/ijsem.0.001755
  • Yuan, W. M. and Crawford, D. L. (1995). Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology, 61: 3119-3128. Doi: https://doi.org/10.1128/aem.61.8.3119-3128.1995
  • Zakalyukina, Y. V. and Zenova, G. M. (2007). Antagonistic activity of soil acidophilic actinomycetes. Biology Bulletin, 34: 329-332. Doi: https://doi.org/10.1134/S1062359007040036
  • Zenova, G. M., Manucharova, N. A. and Zvyagintsev, D. G. (2011). Extremophilic and extremotolerant actinomycetes in different soil types. Eurasian Soil Science, 44: 417-436. Doi: https://doi.org/10.1134/S1064229311040132

Details

Primary Language English
Subjects Ecology
Published Date September 2021
Journal Section Research Articles
Authors

Aysel VEYİSOĞLU (Primary Author)
SINOP UNIVERSITY
0000-0002-1406-5513
Türkiye


Demet TATAR
HİTİT ÜNİVERSİTESİ
0000-0002-9317-3263
Türkiye

Supporting Institution Hitit Üniversitesi
Project Number ODMYO19001.20.001
Thanks I would like to thank Prof. Dr Nevzat Şahin for supporting the study. The authors are grateful to Prof. Dr. Berna Tunalı for her assistance in the acquisition of fungal pathogens.
Publication Date September 15, 2021
Application Date June 21, 2021
Acceptance Date August 10, 2021
Published in Issue Year 2021, Volume 5, Issue 3

Cite

APA Veyisoğlu, A. & Tatar, D. (2021). Screening of Acidophilic Actinobacteria That Show Activity against Paddy Pest Fungi . International Journal of Agriculture Environment and Food Sciences , 5 (3) , 425-432 . DOI: 10.31015/jaefs.2021.3.22