Research Article
PDF Mendeley EndNote BibTex Cite

Poultry manure effects on yield and some agronomic components of Soybean (Glycine max L.) under Khost agro-ecological conditions, Afghanistan

Year 2022, Volume 6, Issue 1, 1 - 6, 15.03.2022
https://doi.org/10.31015/jaefs.2022.1.1

Abstract

Soybean [Glycine max (L.) Merrill], which has the highest protein content of all food crops, is the world’s leading source of protein and oil. Soybeans are commonly consumed by humans in the form of soymilk, soy protein, tofu, infant formula, miso, natto, soy flour, and soy sauce. They are a popular protein-rich food source in most Asian countries. Worldwide, approximately 85% of soybean's produce has been processed into soy food. While in developing countries like Afghanistan, limited farmers used inorganic fertilizers in soybean fields through the high cost, marketing problems and poor economic conditions. If we have alternative resources for soil fertility like organic manure, this problem can somewhat be solved. The objective of this study was to test the effects of different levels of poultry manure on the yield and yield components of the soybean crop. The field experiment was conducted in 2019 in Almara Village of Nadar Shah Kot District of Khost Province. Soybean variety LD04-13265 was grown with four levels of manure (0, 1, 2, and 4 tons ha-1) using Randomized Complete Block Design with three replicates. Results revealed that manure invariably influenced most parameters under study. The highest grain yield (1212.95 kg ha-1) was obtained with 4 tons ha-1 (T3) followed by T2 and T1 (1145.16 and 1138.24, respectively). Poultry manure also had positive effects on the agronomic characters. Plant height, number of branches, pods plant-1, seed pod-1 were among the most affected. Correlation analysis revealed significant positive correlations among the grain yield and yield components but non correlation was found for 100 seed weight with other observed parameters. As per the results of this research, 4 tons of poultry manure is the optimum amount to be used for soybean production.

References

  • Abbaspour, K. C., Vejdani, M, and Haghighat, S. (2000). SWAT-CUP Calibration and Uncertainty Programs for SWAT. Transactions of the American Society of Agricultural Engineers, 43(5), 1596–1602. Doi: https://doi.org/10.13031/2013.3000
  • bbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. Doi: https://doi.org/10.1016/j.jhydrol.2006.09.014
  • Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution, 7(7), 220–224. Doi: https://doi.org/10.1016/0169-5347(92)90048-G
  • Aksoy, E., Panagos, P., Montanarella, L., and Jones, A. (2010). Integration of the Soil Database of Turkey. In Earth. Doi: http://dx.doi.org/10.2788/77892
  • Aliye, A., Modibbo, N., Medugu, N., and Ayo, O. (2014). Impacts of Deforestation on Socio-Economic Development of Akwanga Nasarawa State. International Journal of Science, Environment and Technology, 3(2), 403–416. Retrieved from www.ijset.net
  • Amundson, R., Berhe, A., Hopmans, J., Olson, C., Sztein, A. E., and Sparks, D. (2015). Soil and human security in the 21st century. Science, 348(6235). Doi: https://doi.org/10.1126/science.1261071
  • Arnold, J., Allen, P., and Bernhardt, G. (1993). A comprehensive surface-groundwater flow model. Journal of Hydrology, 142(1–4), 47–69. Doi: https://doi.org/10.1016/0022-1694(93)90004-S
  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., and Griensven, A. Van. (2012). Swat: Model Use, Calibration, and Validation. 55(4), 1491–1508. Doi: http://dx.doi.org/10.13031/2013.42256
  • Atalay, I. (1986). Vegetation formations of Turkey. Travaux - Institut de Geographie de Reims, 65–66, 17–30. Doi: https://doi.org/10.3406/tigr.1986.1183
  • Avwunudiogba, A., and Hudson, P. F. (2014). A Review of Soil Erosion Models with Special Reference to the needs of Humid Tropical Mountainous Environments. European Journal of Sustainable Development, 3(4), 299–310. Doi: https://doi.org/10.14207/ejsd.2014.v3n4p299
  • Bettess, R., Fisher, K., Hardwick, M., Holmes, N., Mant, J., Sayers, P., Sear, D., and Thorne, C. (2011). Key Recommendations for Channel management (Issue Phase 2). Environment Agency, Bristol, UK. Retrieved from www.environment-agency.gov.uk
  • Bonan, G. B. (1999). Frost Followed the Plow: Impacts of Deforestation on the Climate of the United States. Ecological Applications, 9(4), 1305. Doi: https://doi.org/10.2307/2641398
  • Bredemeier, M. (2010). Forest, climate and water issues in Europe. Ecohydrology, 130(February), 126–130. Doi: https://doi.org/10.1002/eco
  • Brevik, E. C. (2006). Soil health and productivity. Soils, Plant Growth Crop Prod. Encyclopedia of Life Support Systems (EOLSS), I. Retrieved from https://www.eolss.net/sample-chapters/c10/E1-05A-04-00.pdf
  • Chrisphine, O., Maryanne, O., and Boitt, K. M. (2015). Assessment of Hydrological Impacts of Mau Forest, Kenya. Journal of Waste Water Treatment & Analysis, 07(01), 1–7. Doi: https://doi.org/10.4172/2157-7587.1000223
  • Citiroglu, H., Barut, I., and Zuran, A. (2011). Groundwater vulnerability assessment in the Loussi polje area, N Peloponessus: the PRESK method. In Advances in the Research of Aquatic Environment. Doi: https://doi.org/10.1007/978-3-642-24076-8_39
  • CLC. (2018). European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA), 1, 129. Retrieved from https://land.copernicus.eu/
  • Collins, A. L., and McGonigle, D. F. (2008). Monitoring and modelling diffuse pollution from agriculture for policy support: UK and European experience. Environmental Science and Policy, 11(2), 97–101. Doi: https://doi.org/10.1016/j.envsci.2008.01.001
  • Cullu, M. A., Gunal, H., Akca, E., and Kapur, S. (2018). Soil Geography. In Encyclopedia of Environmental Change (pp. 105–109). The Soils of Turkey. World Soils Book Series. Springer, Cham. Doi: https://doi.org/10.4135/9781446247501.n3605
  • De Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., and Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. Doi: https://doi.org/10.1016/j.earscirev.2013.08.014
  • Farley, K., Jobbágy, E., and Jackson, R. (2005). Effects of afforestation on water yield: A global synthesis with implications for policy. Global Change Biology, 11(10), 1565–1576. Doi: https://doi.org/10.1111/j.1365-2486.2005.01011.x
  • Gellis, A., Fitzpatrick, F., and Schubauer-Berigan, J. (2016). A Manual to Identify Sources of Fluvial Sediment. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R1(September), 106. Retrieved from https://nepis.epa.gov/Exe/ZyPDF.cgi/P100QVM1.PDF?Dockey=P100QVM1.PDF
  • Hargreaves, G. H., and Samani, Z. A. (1985). Reference Crop Evapotranspiration From Ambient Air Temperature. Applied Engineering in Agriculture. 1(2): 96-99. Doi: http://dx.doi.org/10.13031/2013.26773
  • Hassan, M. A., Roberge, L., Church, M., More, M., Donner, S. D., Leach, J., and Ali, K. F. (2017). What are the contemporary sources of sediment in the Mississippi River? Geophysical Research Letters, 44(17), 8919–8924. Doi: https://doi.org/10.1002/2017GL074046
  • Hughes, R., Kauffman, J., and Jarmaillo, V. (2000). Ecosystem-Scale Impacts of Deforestation and Land Use in a Humid Tropical Region of Mexico. Ecological Applications, 10(2), 515. Doi: https://doi.org/10.2307/2641111
  • Iwata, T., Nakano, S., and Inoue, M. (2003). Impacts of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecological Applications, 13(2), 461–473. Doi: https://doi.org/10.1890/1051-0761(2003)013[0461:IOPRDO]2.0.CO;2
  • Izquierdo, A. E., and Grau, H. R. (2009). Agriculture adjustment, land-use transition and protected areas in Northwestern Argentina. Journal of Environmental Management, 90(2), 858–865. Doi: https://doi.org/10.1016/j.jenvman.2008.02.013
  • Jenkins, A. P., Jupiter, S. D., Qauqau, I., and Atherton, J. (2007). The importance of ecosystem-based management for conserving aquatic migratory pathways on tropical high islands: a case study from Fiji. Aquatic Conservation: Marine and Freshwater Ecosystems, 656(October 2006), 636–656. Doi: https://doi.org/10.1002/aqc
  • Juárez-Orozco, S., Siebe, C., and Fernández, D. (2017). Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Tropical Conservation Science, 10. Doi: https://doi.org/10.1177/1940082917737207
  • Kük, M., and Burgess, P. (2010). The Pressures on, and the Responses to, the State of Soil and Water Resources of Turkey. Ankara Üniversitesi Çevrebilimleri Dergisi, March, 199–211. Doi: https://doi.org/10.1501/csaum_0000000036
  • Langdale, G. W., West, L. T., Bruce, R. R., Miller, W. P., & Thomas, A. W. (1992). Restoration of eroded soil with conservation tillage. Soil Technology, 5(1), 81–90. https://doi.org/10.1016/0933-3630(92)90009-P
  • Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S., and Wang, K. (2016). Potential and actual impacts of deforestation and afforestation on land surface temperature. Journal of Geophysical Research, 121(24), 14372–14386. Doi: https://doi.org/10.1002/2016JD024969
  • Maxwell, S. L., Fuller, R. A., Brooks, T. M., and Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536(7615), 143–145. https://doi.org/10.1038/536143a
  • Monteith, J. L. (1965). Evaporation and Environment. Symposia of the Society for Experimental Biology., 19, 205–234. Retrieved from https://repository.rothamsted.ac.uk/item/8v5v7
  • Moriasi, D. N., Arnold, J. G., M. W. Van Liew, R. L. Bingner, Harmel, R. D., and T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900. Retrieved from https://swat.tamu.edu/media/1312/moriasimodeleval.pdf
  • Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. Doi: https://doi.org/https://ui.adsabs.harvard.edu/link_gateway/1970JHyd...10..282N/doi:10.1016/0022-1694(70)90255-6
  • Neitsch, S., Arnold, J., Kiniry, J., and Williams, J. (2011). Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute, 1–647. Doi: https://doi.org/10.1016/j.scitotenv.2015.11.063
  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams., J. R. (2005). Soil and Water Assessment Tool User’s Manual Version 2005. Diffuse Pollution Conference Dublin, 494. Retrieved from http://swat.tamu.edu/media /1292/swat2005theory.pdf
  • Owens, P. N., Batalla, R. J., Collins, A. J., Gomez, B., Hicks, D. M., Horowitz, A. J., Kondolf, G. M., Marden, M., Page, M. J., Peacock, D. H., Petticrew, E. L., Salomons, W., & Trustrum, N. A. (2005). Fine-grained sediment in river systems: Environmental significance and management issues. River Research and Applications, 21(7), 693–717. Doi: https://doi.org/10.1002/rra.878
  • Pattanayak, S. K., and Wendland, K. J. (2007). Nature’s care: Diarrhea, watershed protection, and biodiversity conservation in Flores, Indonesia. Biodiversity and Conservation, 16(10), 2801–2819. Doi: https://doi.org/10.1007/s10531-007-9215-1
  • Pimentel, D., and Burgess, M. (2013). Soil erosion threatens food production. Agriculture (Switzerland), 3(3), 443–463. Doi: https://doi.org/10.3390/agriculture3030443
  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., and Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. Doi: https://doi.org/10.1126/science.267.5201.1117
  • Priestley, C. H. B., and Taylor, R. J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81–92. Doi: https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
  • Ritter, J. (2012). Wind Erosion - Causes and Effects. ProEnvironment/ProMediu, 12(38), 1–8. Retrieved from http://www.omafra.gov.on.ca/english/engineer/facts/12-053.htm
  • Rocha-Santos, L., Pessoa, M. S., Cassano, C. R., Talora, D. C., Orihuela, R. L. L., Mariano-Neto, E., Morante-Filho, J. C., Faria, D., & Cazetta, E. (2016). The shrinkage of a forest: Landscape-scale deforestation leading to overall changes in local forest structure. Biological Conservation, 196, 1–9. Doi: https://doi.org/10.1016/j.biocon.2016.01.028
  • Schüler, G. (2006). Identification of flood-generating forest areas and forestry measures for water retention. Forest Snow and Landscape Research, 80(1), 99–114. Retrieved from https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A15461
  • Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E., and Carrasco, L. R. (2018). Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nature Communications, 9(1). Doi: https://doi.org/10.1038/s41467-018-06579-2
  • USDA. (1972). USDA Soil Conservation Service. National Engineering Handbook Section 4 Hydrology, August, Chapters 4-10. Retrieved from https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=18389.wba
  • Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., and Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94(1–4), 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003
  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., and Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629–1633. Doi: https://doi.org/10.1126/science.1094875
  • Watson, R., Noble, R., Bolin, B., Ravindranath, N., Verardo, D., and Dokken, D. (2000). Land Use, Land-Use Change and Forestry (p. 20pp). Retrieved from https://archive.ipcc.ch/ipccreports/sres/land_use/index.php?idp=0
  • Wenger, A. S., Atkinson, S., Santini, T., Falinski, K., Hutley, N., Albert, S., Horning, N., Watson, J. E. M., Mumby, P. J., and Jupiter, S. D. (2018). Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands. Environmental Research Letters, 13(4). Doi: https://doi.org/10.1088/1748-9326/aab9eb
  • Wilk, J., Andersson, L., and Plermkamon, V. (2001). Hydrological impacts of forest conversion to agriculture in a large river basin in Northeast Thailand. Hydrological Processes, 15(14), 2729–2748. Doi: https://doi.org/10.1002/hyp.229
  • Williams, J., Karl G., and Bruce P. V. H. (1975). Use of the Modified Universal Soil Loss Equation for average annual sediment yield estimates on small rangeland drainage basins. Present and Prospective Technology for Predicting Sediment Yield and Sources. U.S. Dept. Agrie., pp 244-252. Retrieved from https://iahs.info/uploads/dms/6694.413-422-159-Jackson.pdf
  • WWF. (2017). Causes and effects of global forest fires. Retrieved from https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-Study-Forests-Ablaze.pdf
  • Yen, H., Ahmadi, M., White, M. J., Wang, X., and Arnold, J. G. (2014). C-SWAT: The Soil and Water Assessment Tool with consolidated input files in alleviating computational burden of recursive simulations. Computers and Geosciences, 72, 221–232. Doi: https://doi.org/10.1016/j.cageo.2014.07.017

Year 2022, Volume 6, Issue 1, 1 - 6, 15.03.2022
https://doi.org/10.31015/jaefs.2022.1.1

Abstract

References

  • Abbaspour, K. C., Vejdani, M, and Haghighat, S. (2000). SWAT-CUP Calibration and Uncertainty Programs for SWAT. Transactions of the American Society of Agricultural Engineers, 43(5), 1596–1602. Doi: https://doi.org/10.13031/2013.3000
  • bbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. Doi: https://doi.org/10.1016/j.jhydrol.2006.09.014
  • Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution, 7(7), 220–224. Doi: https://doi.org/10.1016/0169-5347(92)90048-G
  • Aksoy, E., Panagos, P., Montanarella, L., and Jones, A. (2010). Integration of the Soil Database of Turkey. In Earth. Doi: http://dx.doi.org/10.2788/77892
  • Aliye, A., Modibbo, N., Medugu, N., and Ayo, O. (2014). Impacts of Deforestation on Socio-Economic Development of Akwanga Nasarawa State. International Journal of Science, Environment and Technology, 3(2), 403–416. Retrieved from www.ijset.net
  • Amundson, R., Berhe, A., Hopmans, J., Olson, C., Sztein, A. E., and Sparks, D. (2015). Soil and human security in the 21st century. Science, 348(6235). Doi: https://doi.org/10.1126/science.1261071
  • Arnold, J., Allen, P., and Bernhardt, G. (1993). A comprehensive surface-groundwater flow model. Journal of Hydrology, 142(1–4), 47–69. Doi: https://doi.org/10.1016/0022-1694(93)90004-S
  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., and Griensven, A. Van. (2012). Swat: Model Use, Calibration, and Validation. 55(4), 1491–1508. Doi: http://dx.doi.org/10.13031/2013.42256
  • Atalay, I. (1986). Vegetation formations of Turkey. Travaux - Institut de Geographie de Reims, 65–66, 17–30. Doi: https://doi.org/10.3406/tigr.1986.1183
  • Avwunudiogba, A., and Hudson, P. F. (2014). A Review of Soil Erosion Models with Special Reference to the needs of Humid Tropical Mountainous Environments. European Journal of Sustainable Development, 3(4), 299–310. Doi: https://doi.org/10.14207/ejsd.2014.v3n4p299
  • Bettess, R., Fisher, K., Hardwick, M., Holmes, N., Mant, J., Sayers, P., Sear, D., and Thorne, C. (2011). Key Recommendations for Channel management (Issue Phase 2). Environment Agency, Bristol, UK. Retrieved from www.environment-agency.gov.uk
  • Bonan, G. B. (1999). Frost Followed the Plow: Impacts of Deforestation on the Climate of the United States. Ecological Applications, 9(4), 1305. Doi: https://doi.org/10.2307/2641398
  • Bredemeier, M. (2010). Forest, climate and water issues in Europe. Ecohydrology, 130(February), 126–130. Doi: https://doi.org/10.1002/eco
  • Brevik, E. C. (2006). Soil health and productivity. Soils, Plant Growth Crop Prod. Encyclopedia of Life Support Systems (EOLSS), I. Retrieved from https://www.eolss.net/sample-chapters/c10/E1-05A-04-00.pdf
  • Chrisphine, O., Maryanne, O., and Boitt, K. M. (2015). Assessment of Hydrological Impacts of Mau Forest, Kenya. Journal of Waste Water Treatment & Analysis, 07(01), 1–7. Doi: https://doi.org/10.4172/2157-7587.1000223
  • Citiroglu, H., Barut, I., and Zuran, A. (2011). Groundwater vulnerability assessment in the Loussi polje area, N Peloponessus: the PRESK method. In Advances in the Research of Aquatic Environment. Doi: https://doi.org/10.1007/978-3-642-24076-8_39
  • CLC. (2018). European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA), 1, 129. Retrieved from https://land.copernicus.eu/
  • Collins, A. L., and McGonigle, D. F. (2008). Monitoring and modelling diffuse pollution from agriculture for policy support: UK and European experience. Environmental Science and Policy, 11(2), 97–101. Doi: https://doi.org/10.1016/j.envsci.2008.01.001
  • Cullu, M. A., Gunal, H., Akca, E., and Kapur, S. (2018). Soil Geography. In Encyclopedia of Environmental Change (pp. 105–109). The Soils of Turkey. World Soils Book Series. Springer, Cham. Doi: https://doi.org/10.4135/9781446247501.n3605
  • De Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., and Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. Doi: https://doi.org/10.1016/j.earscirev.2013.08.014
  • Farley, K., Jobbágy, E., and Jackson, R. (2005). Effects of afforestation on water yield: A global synthesis with implications for policy. Global Change Biology, 11(10), 1565–1576. Doi: https://doi.org/10.1111/j.1365-2486.2005.01011.x
  • Gellis, A., Fitzpatrick, F., and Schubauer-Berigan, J. (2016). A Manual to Identify Sources of Fluvial Sediment. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R1(September), 106. Retrieved from https://nepis.epa.gov/Exe/ZyPDF.cgi/P100QVM1.PDF?Dockey=P100QVM1.PDF
  • Hargreaves, G. H., and Samani, Z. A. (1985). Reference Crop Evapotranspiration From Ambient Air Temperature. Applied Engineering in Agriculture. 1(2): 96-99. Doi: http://dx.doi.org/10.13031/2013.26773
  • Hassan, M. A., Roberge, L., Church, M., More, M., Donner, S. D., Leach, J., and Ali, K. F. (2017). What are the contemporary sources of sediment in the Mississippi River? Geophysical Research Letters, 44(17), 8919–8924. Doi: https://doi.org/10.1002/2017GL074046
  • Hughes, R., Kauffman, J., and Jarmaillo, V. (2000). Ecosystem-Scale Impacts of Deforestation and Land Use in a Humid Tropical Region of Mexico. Ecological Applications, 10(2), 515. Doi: https://doi.org/10.2307/2641111
  • Iwata, T., Nakano, S., and Inoue, M. (2003). Impacts of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecological Applications, 13(2), 461–473. Doi: https://doi.org/10.1890/1051-0761(2003)013[0461:IOPRDO]2.0.CO;2
  • Izquierdo, A. E., and Grau, H. R. (2009). Agriculture adjustment, land-use transition and protected areas in Northwestern Argentina. Journal of Environmental Management, 90(2), 858–865. Doi: https://doi.org/10.1016/j.jenvman.2008.02.013
  • Jenkins, A. P., Jupiter, S. D., Qauqau, I., and Atherton, J. (2007). The importance of ecosystem-based management for conserving aquatic migratory pathways on tropical high islands: a case study from Fiji. Aquatic Conservation: Marine and Freshwater Ecosystems, 656(October 2006), 636–656. Doi: https://doi.org/10.1002/aqc
  • Juárez-Orozco, S., Siebe, C., and Fernández, D. (2017). Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Tropical Conservation Science, 10. Doi: https://doi.org/10.1177/1940082917737207
  • Kük, M., and Burgess, P. (2010). The Pressures on, and the Responses to, the State of Soil and Water Resources of Turkey. Ankara Üniversitesi Çevrebilimleri Dergisi, March, 199–211. Doi: https://doi.org/10.1501/csaum_0000000036
  • Langdale, G. W., West, L. T., Bruce, R. R., Miller, W. P., & Thomas, A. W. (1992). Restoration of eroded soil with conservation tillage. Soil Technology, 5(1), 81–90. https://doi.org/10.1016/0933-3630(92)90009-P
  • Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S., and Wang, K. (2016). Potential and actual impacts of deforestation and afforestation on land surface temperature. Journal of Geophysical Research, 121(24), 14372–14386. Doi: https://doi.org/10.1002/2016JD024969
  • Maxwell, S. L., Fuller, R. A., Brooks, T. M., and Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536(7615), 143–145. https://doi.org/10.1038/536143a
  • Monteith, J. L. (1965). Evaporation and Environment. Symposia of the Society for Experimental Biology., 19, 205–234. Retrieved from https://repository.rothamsted.ac.uk/item/8v5v7
  • Moriasi, D. N., Arnold, J. G., M. W. Van Liew, R. L. Bingner, Harmel, R. D., and T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900. Retrieved from https://swat.tamu.edu/media/1312/moriasimodeleval.pdf
  • Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. Doi: https://doi.org/https://ui.adsabs.harvard.edu/link_gateway/1970JHyd...10..282N/doi:10.1016/0022-1694(70)90255-6
  • Neitsch, S., Arnold, J., Kiniry, J., and Williams, J. (2011). Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute, 1–647. Doi: https://doi.org/10.1016/j.scitotenv.2015.11.063
  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams., J. R. (2005). Soil and Water Assessment Tool User’s Manual Version 2005. Diffuse Pollution Conference Dublin, 494. Retrieved from http://swat.tamu.edu/media /1292/swat2005theory.pdf
  • Owens, P. N., Batalla, R. J., Collins, A. J., Gomez, B., Hicks, D. M., Horowitz, A. J., Kondolf, G. M., Marden, M., Page, M. J., Peacock, D. H., Petticrew, E. L., Salomons, W., & Trustrum, N. A. (2005). Fine-grained sediment in river systems: Environmental significance and management issues. River Research and Applications, 21(7), 693–717. Doi: https://doi.org/10.1002/rra.878
  • Pattanayak, S. K., and Wendland, K. J. (2007). Nature’s care: Diarrhea, watershed protection, and biodiversity conservation in Flores, Indonesia. Biodiversity and Conservation, 16(10), 2801–2819. Doi: https://doi.org/10.1007/s10531-007-9215-1
  • Pimentel, D., and Burgess, M. (2013). Soil erosion threatens food production. Agriculture (Switzerland), 3(3), 443–463. Doi: https://doi.org/10.3390/agriculture3030443
  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., and Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. Doi: https://doi.org/10.1126/science.267.5201.1117
  • Priestley, C. H. B., and Taylor, R. J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81–92. Doi: https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
  • Ritter, J. (2012). Wind Erosion - Causes and Effects. ProEnvironment/ProMediu, 12(38), 1–8. Retrieved from http://www.omafra.gov.on.ca/english/engineer/facts/12-053.htm
  • Rocha-Santos, L., Pessoa, M. S., Cassano, C. R., Talora, D. C., Orihuela, R. L. L., Mariano-Neto, E., Morante-Filho, J. C., Faria, D., & Cazetta, E. (2016). The shrinkage of a forest: Landscape-scale deforestation leading to overall changes in local forest structure. Biological Conservation, 196, 1–9. Doi: https://doi.org/10.1016/j.biocon.2016.01.028
  • Schüler, G. (2006). Identification of flood-generating forest areas and forestry measures for water retention. Forest Snow and Landscape Research, 80(1), 99–114. Retrieved from https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A15461
  • Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E., and Carrasco, L. R. (2018). Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nature Communications, 9(1). Doi: https://doi.org/10.1038/s41467-018-06579-2
  • USDA. (1972). USDA Soil Conservation Service. National Engineering Handbook Section 4 Hydrology, August, Chapters 4-10. Retrieved from https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=18389.wba
  • Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., and Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94(1–4), 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003
  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., and Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629–1633. Doi: https://doi.org/10.1126/science.1094875
  • Watson, R., Noble, R., Bolin, B., Ravindranath, N., Verardo, D., and Dokken, D. (2000). Land Use, Land-Use Change and Forestry (p. 20pp). Retrieved from https://archive.ipcc.ch/ipccreports/sres/land_use/index.php?idp=0
  • Wenger, A. S., Atkinson, S., Santini, T., Falinski, K., Hutley, N., Albert, S., Horning, N., Watson, J. E. M., Mumby, P. J., and Jupiter, S. D. (2018). Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands. Environmental Research Letters, 13(4). Doi: https://doi.org/10.1088/1748-9326/aab9eb
  • Wilk, J., Andersson, L., and Plermkamon, V. (2001). Hydrological impacts of forest conversion to agriculture in a large river basin in Northeast Thailand. Hydrological Processes, 15(14), 2729–2748. Doi: https://doi.org/10.1002/hyp.229
  • Williams, J., Karl G., and Bruce P. V. H. (1975). Use of the Modified Universal Soil Loss Equation for average annual sediment yield estimates on small rangeland drainage basins. Present and Prospective Technology for Predicting Sediment Yield and Sources. U.S. Dept. Agrie., pp 244-252. Retrieved from https://iahs.info/uploads/dms/6694.413-422-159-Jackson.pdf
  • WWF. (2017). Causes and effects of global forest fires. Retrieved from https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-Study-Forests-Ablaze.pdf
  • Yen, H., Ahmadi, M., White, M. J., Wang, X., and Arnold, J. G. (2014). C-SWAT: The Soil and Water Assessment Tool with consolidated input files in alleviating computational burden of recursive simulations. Computers and Geosciences, 72, 221–232. Doi: https://doi.org/10.1016/j.cageo.2014.07.017

Details

Primary Language English
Subjects Agronomy
Published Date March 2022
Journal Section Research Articles
Authors

Ahmad Yar AHMADİ (Primary Author)
Shaikh Zayed University
0000-0001-9487-200X
Afghanistan


Mohammad ARİEN This is me
Wardak University
0000-0003-4193-6465
Afghanistan

Publication Date March 15, 2022
Application Date December 22, 2020
Acceptance Date February 10, 2022
Published in Issue Year 2022, Volume 6, Issue 1

Cite

APA Ahmadi, A. Y. & Arien, M. (2022). Poultry manure effects on yield and some agronomic components of Soybean (Glycine max L.) under Khost agro-ecological conditions, Afghanistan . International Journal of Agriculture Environment and Food Sciences , 6 (1) , 1-6 . DOI: 10.31015/jaefs.2022.1.1


19514

19515

19516