Research Article
BibTex RIS Cite

Cytotoxic potential of selenium nanoparticles (SeNPs) derived from leaf extract of Mentha longifolia L.

Year 2024, Volume: 8 Issue: 1, 169 - 175, 25.03.2024
https://doi.org/10.31015/jaefs.2024.1.17

Abstract

The search for alternative methods in cancer treatments has been going on for many years. In the current study conducted for this purpose, selenium nanoparticles (ML-SeNPs) were produced from the aqueous leaf extract of Mentha longifolia L. easily and inexpensively, without harming the environment. The anticancer potential of ML-SeNPs on glioblastoma cell (U373), osteosarcoma cell (U2OS), and healthy retinal pigment epithelial cell (RPE-1) lines was determined by MTT (3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromid) test. For the test, ML-SeNPs were applied at 100, 300, and 600 µg/mL levels and interaction was provided for 24 and 48 hours. The survival rates (%) in RPE-1, U373, and U2OS cell lines in the 24-hour application were 107.49-98.89, 97.66-86.82, and 87.81-83.37, respectively. The viability rates (%) of the cells in 48 hours of application were 72.27-87.39, 68.17-73.48, and 81.00-84.67, respectively. In general, it was discovered that the cytotoxic effect of ML-SeNPs on RPE-1, U373, and U2OS cell lines was greater at low doses and increased over time. In-vivo studies that support the antiproliferative action of ML-SeNPs may boost the prospect of using them as therapeutic agents in potential cancer treatment procedures in the following years.

References

  • WHO (World Health Organization) (2022). Cancer. URL: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed date: June 6, 2023).
  • Sareen H, Ma Y, Becker TM, Roberts TL, de Souza P, Powter B. (2022). Molecular Biomarkers in Glioblastoma: A Systematic Review and Meta-Analysis. International Journal Moleculer Science,23(16), 8835. Doi: 10.3390/ijms23168835
  • Senhaji N, Squalli Houssaini A, Lamrabet S, Louati S, Bennis S. (2022). Molecular and Circulating Biomarkers in Patients with Glioblastoma. International Journal Moleculer Science,; 23(13), 7474. Doi: 10.3390/ijms23137474.
  • Ni S, Hong J, Li W, Ye M, Li J. (2022). Construction of a cuproptosis-related lncRNA signature for predicting prognosis and immune landscape in osteosarcoma patients. Cancer Medicine, 12(4), 5009-5024. doi: 10.1002/cam4.5214.
  • Ikram M, Javed B, Raja NI, Mashwani ZR. (2021). Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. International Journal Nanomedicine, 16: 249-268. doı: 10.2147/IJN.S295053
  • Ntafoulis I, Kleijn A, Ju J, Jimenez-Cowell K, Fabro F, Klein M, Chi Yen RT, Balver RK et al. (2023). Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers. British Journal of Cancer, 0:0. https://doi.org/10.1038/s41416-023-02402-y
  • Hatipoğlu, A., Baran, A., Keskin, C. et al. (2023). Green synthesis of silver nanoparticles based on the Raphanus sativus leaf aqueous extract and their toxicological/microbiological activities. Environmental Science Pollution Resulth,. https://doi.org/10.1007/s11356-023-26499-z
  • Baran, M.F.; Keskin, C.; Baran, A.; Eftekhari, A.; Omarova, S.; Khalilov, R.; Adican, M.T.; Rosić, G.; Selakovic, D.; Yıldıztekin, M.; et al. (2023). The Investigation of the Chemical Composition and Applicability of Gold Nanoparticles Synthesized with Amygdalus communis (Almond) Leaf Aqueous Extract as Antimicrobial and Anticancer Agents. Molecules , 28, 2428. https://doi.org/10.3390/molecules28062428
  • İpek, P., Baran, M. F., Yıldız, R., Hatipoğlu, A. (2023). Biosynthesis of silver nanoparticles from Arum dioscoridis plant leaf aqueous extract: anticancer and antimicrobial properties. International Journal of Agriculture Environment and Food Sciences, 7(2), 399-407. https://doi.org/10.31015/jaefs.2023.2.18
  • Yang Z, Liu Z, Zhu J, Xu J, Pu Y, Bao Y. (2022). Green synthesis and characterization of gold nanoparticles from Pholiota adiposa and their anticancer effects on hepatic carcinoma, Drug Delivery, 29(1), 997-1006.
  • Ashraf, H., Meer, B., Iqbal, J. et al. (2023). Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line. Journal Nanostructure in Chemistry, 13, 243–261https://doi.org/10.1007/s40097-021-00460-3
  • Hashem AH, Salem SS. (2022). Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnology Journal, 17(2), 2100432.
  • Aktepe, N., Baran, A., Atalar, M. N., Baran, M. F., Keskin, C., Düz, M. Z., Yavuz, Ömer, İrtegun Kandemir, S., and Kavak, D. E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 6(3), 685–700. https://doi.org/10.52520/masjaps.120
  • Gholami-Shabani M, Sotoodehnejadnematalahi F, Shams-Ghahfarokhi M, Eslamifar A, Razzaghi-Abyaneh M. (2023). Platinum Nanoparticles as Potent Anticancer and Antimicrobial Agent: Green Synthesis, Physical Characterization, and In-vitro Biological Activity. Journal Cluster Science, 34, 501–516.
  • Hussain A, Lakhan MN, Hanan A, Soomro İA, Ahmed M, Bibi F, Zehra İ. (2023). Recent progress on green synthesis of selenium nanoparticles – a review. Materials Today Sustainability,23,2589-2347, . https://doi.org/10.1016/j.mtsust.2023.100420Srivastava N & Mukhopadhyay M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering ,38,1723-1730. doi: 10.1007/s00449-015-1413-8
  • Shoeibi S, Mozdziak P, Golkar-Narenji A. Biogenesis of Selenium Nanoparticles Using Green Chemistry. Topic in Current Chemistry, 375(6), 88. https://doi.org/10.1007/s41061-017-0176-x
  • Pyrzynska K & Sentkowska A. (2021) Biosynthesis of selenium nanoparticles using plant extracts. Jornal of Nanostructure Chemistry, 12: 467-480. https://doi.org/10.1007/s40097-021-00435-4
  • Aktepe N, Erbay N, Baran A, Baran M. & Keskin C. (2022). Synthesis, characterization, and evaluation of the antimicrobial activities of silver nanoparticles from Cyclotrichium origanifolium L. International Journal of Agriculture Environment and Food Sciences, 6(3),426-434. doi: 10.31015/jaefs.2022.3.12
  • Hatipoglu A. (2022). Green biosynthesis of silver nanoparticles using Prunus cerasifera pissardii nigra leaf and their antimicrobial activities against some food pathogens. Czech Journal of Food Sciences40(5):383-391. doi: 10.17221/156/2021-CJFS.
  • Baran, A, Hatipoğlu, A., Baran, M.F. & Aktepe, N. (2021). Alıç (Crataegus monogyna) Meyve Özütünden Altın Nanopartiküllerin Sentezlenmesi ve Antimikrobiyal Aktivitelerinin Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (32), 974-978. (DOI: 10.31590/ejosat.1040122)
  • Saranya, T., Ramya, S., Kavithaa, K. et al. (2023). Green Synthesis of Selenium Nanoparticles Using Solanum nigrum Fruit Extract and its Anti-cancer Efficacy Against Triple Negative Breast Cancer. Journal Cluster Science, 34, 1709–1719 https://doi.org/10.1007/s10876-022-02334-2
  • Rajasekar, S., & Kuppusamy, S. (2021). Eco-Friendly Formulation of Selenium Nanoparticles and Its Functional Characterization against Breast Cancer and Normal Cells. Journal of Cluster Science, 32(4), 907-915. https://doi.org/10.1007/s10876-020-01856-x
  • Sonkusre, P., & Cameotra, S. S. (2017). Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. Journal of Nanobiotechnology, 15(1), 43. https://doi.org/10.1186/s12951-017-0276-3
  • Varlamova, E. G., Goltyaev, M. V., Mal’tseva, V. N., Turovsky, E. A., Sarimov, R. M., Simakin, A. V., & Gudkov, S. V. (2021). Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. International journal of molecular sciences, 22(15), 7798.
  • Baran, M.F., Keskin, C., Baran, A. et al. (2023). Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L. (Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-023-04366-8
  • Mohammad Hosein F, Roodabeh B, Ali G, Fatemeh F, Fariba N. (2017). Pharmacological activity of Mentha longifolia and its phytoconstituents. Journal of Traditional Chinese Medicine. 37(5),710-720. doi.org/10.1016/S0254-6272(17)30327-8.
  • İpek, P., Baran, M.F., Baran, A. et al. (2023). Green synthesis and evaluation of antipathogenic, antioxidant, and anticholinesterase activities of gold nanoparticles (Au NPs) from Allium cepa L. peel aqueous extract. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-023-04362-y
  • Gharib FA, Mansour KH, Ahmed EZ, Galal TM. (2020) Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint (Mentha longifolia L.) in the Egyptian watercourses. International Journal of Phytoremediation 23(6), 641-651. DOI: 10.1080/15226514.2020.1847035.
  • Patonay K, Szalontai H, Radácsi P, Zámboriné-Németh É. (2021). Chemotypes and Their Stability in Mentha longifolia (L.)L.A Comprehensive Study of Five Accessions. Plants, 10(11), 2478. DOI: 10.3390/plants10112478
  • Bahadori MB, Zengin G, Bahadori S, Dinparast L, Movahhedin N. (2018). Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). International Journal of Food Properties 21(1), 183-193. https://doi.org/10.1080/10942912.2018.1440238
  • Saeidi S, Hassanpour K, Ghamgosha M, Heiat M, Taheri RA, Mirhosseini A, Farnoosh G. (2014). Antibacterial activity of ethyl acetate and aqueous extracts of Mentha longifolia L. and hydroalcoholic extract of Zataria multiflora Boiss. plants against important human pathogens. Asian Pacific Journal of Tropical Medicine, ; 7(Suppl): S-186-S189. DOI: 10.1016/S1995-7645(14)60229-7
  • Atalar, M. N., Baran, A., Hatipoğlu, A., Baran, M., Keskin, C., Yavuz, Ö. (2021). The Characterization of Silver Nanoparticles Synthesized From Prunus spinosa Fruit and Determination of Antimicrobial Effects on Some Food Pathogens. Avrupa Bilim ve Teknoloji Dergisi(32), 298-305. https://doi.org/10.31590/ejosat.1040082
  • Anwar F, Alkharfy KM, Najeeb-ur-Rehman, Adam EHK, Gilani E-H. ( 2017). Chemo-geographical Variations in the Composition of Volatiles and the Biological Attributes of Mentha longifolia (L.) Essential Oils from Saudi Arabia International Journal of Pharmacology 13(5): 408-424. DOI: 10.3923/ijp.2017.408.424
  • Mokaberinejad R, Zafarghandi N, Bioos S, Dabaghian FH, Naseri M, Kamalinejad M, Amin G, Ghobadi A et al. (2012.) Mentha longifolia syrup in secondary amenorrhea: a double-blind, placebo-controlled, randomized trials. DARU Journal of Pharmaceutical Sciences, 20(1): 97. DOI: 10.1186/2008-2231-20-97
  • Ali HM, Elgat WAAA, EL-Hefny M, Salem MZM, Taha AS, Al Farraj DA, Elshisk MS, Hatamleh AA et al. (2021). New Approach for Using of Mentha longifolia L. and Citrus reticulata L. Essential Oils as Wood-Biofungicides: GC-MS, SEM, and MNDO Quantum Chemical Studies. Materials, 14(6), 1361. DOI: 10.3390/ma14061361
  • Irtegun Kandemir S, Ipek P. (2023). Antiproliferative effect of Potentilla fulgens on glioblastoma cancer cells through downregulation of Akt/mTOR signaling pathway. Journal of Cancer Research and Therapeutics, 19(7), 1818-1824, DOI: 10.4103/jcrt.jcrt_1886_21.
  • Gharbavi M, Mousavi M, Pour-Karim M, Tavakolizadeh M, Sharafi A. (2022). Biogenic and facile synthesis of selenium nanoparticles using Vaccinium arctostaphylos L. fruit extract and anticancer activity against in vitro model of breast cancer. Cell Biology Journal, 46(10), 1612-1624. https://doi.org/10.1021/acsomega.9b03172
  • Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, Chopade BA. (2017). Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. International Journal of Nanomedicine 12: 6841-6855. doi: 10.2147/IJN.S139212
  • Cui D, Liang T, Sun L, Meng L, Yang C, Wang L, Liang T, Qingshan L. (2018). Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharmaceutical Biology, 56(1), 528-534. DOI: 10.1080/13880209.2018.1510974.
  • Cittrarasu, V., Kaliannan, D., Dharman, K. et al. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific Reports, 11, 1032 https://doi.org/10.1038/s41598-020-80327-9.
Year 2024, Volume: 8 Issue: 1, 169 - 175, 25.03.2024
https://doi.org/10.31015/jaefs.2024.1.17

Abstract

References

  • WHO (World Health Organization) (2022). Cancer. URL: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed date: June 6, 2023).
  • Sareen H, Ma Y, Becker TM, Roberts TL, de Souza P, Powter B. (2022). Molecular Biomarkers in Glioblastoma: A Systematic Review and Meta-Analysis. International Journal Moleculer Science,23(16), 8835. Doi: 10.3390/ijms23168835
  • Senhaji N, Squalli Houssaini A, Lamrabet S, Louati S, Bennis S. (2022). Molecular and Circulating Biomarkers in Patients with Glioblastoma. International Journal Moleculer Science,; 23(13), 7474. Doi: 10.3390/ijms23137474.
  • Ni S, Hong J, Li W, Ye M, Li J. (2022). Construction of a cuproptosis-related lncRNA signature for predicting prognosis and immune landscape in osteosarcoma patients. Cancer Medicine, 12(4), 5009-5024. doi: 10.1002/cam4.5214.
  • Ikram M, Javed B, Raja NI, Mashwani ZR. (2021). Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. International Journal Nanomedicine, 16: 249-268. doı: 10.2147/IJN.S295053
  • Ntafoulis I, Kleijn A, Ju J, Jimenez-Cowell K, Fabro F, Klein M, Chi Yen RT, Balver RK et al. (2023). Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers. British Journal of Cancer, 0:0. https://doi.org/10.1038/s41416-023-02402-y
  • Hatipoğlu, A., Baran, A., Keskin, C. et al. (2023). Green synthesis of silver nanoparticles based on the Raphanus sativus leaf aqueous extract and their toxicological/microbiological activities. Environmental Science Pollution Resulth,. https://doi.org/10.1007/s11356-023-26499-z
  • Baran, M.F.; Keskin, C.; Baran, A.; Eftekhari, A.; Omarova, S.; Khalilov, R.; Adican, M.T.; Rosić, G.; Selakovic, D.; Yıldıztekin, M.; et al. (2023). The Investigation of the Chemical Composition and Applicability of Gold Nanoparticles Synthesized with Amygdalus communis (Almond) Leaf Aqueous Extract as Antimicrobial and Anticancer Agents. Molecules , 28, 2428. https://doi.org/10.3390/molecules28062428
  • İpek, P., Baran, M. F., Yıldız, R., Hatipoğlu, A. (2023). Biosynthesis of silver nanoparticles from Arum dioscoridis plant leaf aqueous extract: anticancer and antimicrobial properties. International Journal of Agriculture Environment and Food Sciences, 7(2), 399-407. https://doi.org/10.31015/jaefs.2023.2.18
  • Yang Z, Liu Z, Zhu J, Xu J, Pu Y, Bao Y. (2022). Green synthesis and characterization of gold nanoparticles from Pholiota adiposa and their anticancer effects on hepatic carcinoma, Drug Delivery, 29(1), 997-1006.
  • Ashraf, H., Meer, B., Iqbal, J. et al. (2023). Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line. Journal Nanostructure in Chemistry, 13, 243–261https://doi.org/10.1007/s40097-021-00460-3
  • Hashem AH, Salem SS. (2022). Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnology Journal, 17(2), 2100432.
  • Aktepe, N., Baran, A., Atalar, M. N., Baran, M. F., Keskin, C., Düz, M. Z., Yavuz, Ömer, İrtegun Kandemir, S., and Kavak, D. E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 6(3), 685–700. https://doi.org/10.52520/masjaps.120
  • Gholami-Shabani M, Sotoodehnejadnematalahi F, Shams-Ghahfarokhi M, Eslamifar A, Razzaghi-Abyaneh M. (2023). Platinum Nanoparticles as Potent Anticancer and Antimicrobial Agent: Green Synthesis, Physical Characterization, and In-vitro Biological Activity. Journal Cluster Science, 34, 501–516.
  • Hussain A, Lakhan MN, Hanan A, Soomro İA, Ahmed M, Bibi F, Zehra İ. (2023). Recent progress on green synthesis of selenium nanoparticles – a review. Materials Today Sustainability,23,2589-2347, . https://doi.org/10.1016/j.mtsust.2023.100420Srivastava N & Mukhopadhyay M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering ,38,1723-1730. doi: 10.1007/s00449-015-1413-8
  • Shoeibi S, Mozdziak P, Golkar-Narenji A. Biogenesis of Selenium Nanoparticles Using Green Chemistry. Topic in Current Chemistry, 375(6), 88. https://doi.org/10.1007/s41061-017-0176-x
  • Pyrzynska K & Sentkowska A. (2021) Biosynthesis of selenium nanoparticles using plant extracts. Jornal of Nanostructure Chemistry, 12: 467-480. https://doi.org/10.1007/s40097-021-00435-4
  • Aktepe N, Erbay N, Baran A, Baran M. & Keskin C. (2022). Synthesis, characterization, and evaluation of the antimicrobial activities of silver nanoparticles from Cyclotrichium origanifolium L. International Journal of Agriculture Environment and Food Sciences, 6(3),426-434. doi: 10.31015/jaefs.2022.3.12
  • Hatipoglu A. (2022). Green biosynthesis of silver nanoparticles using Prunus cerasifera pissardii nigra leaf and their antimicrobial activities against some food pathogens. Czech Journal of Food Sciences40(5):383-391. doi: 10.17221/156/2021-CJFS.
  • Baran, A, Hatipoğlu, A., Baran, M.F. & Aktepe, N. (2021). Alıç (Crataegus monogyna) Meyve Özütünden Altın Nanopartiküllerin Sentezlenmesi ve Antimikrobiyal Aktivitelerinin Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (32), 974-978. (DOI: 10.31590/ejosat.1040122)
  • Saranya, T., Ramya, S., Kavithaa, K. et al. (2023). Green Synthesis of Selenium Nanoparticles Using Solanum nigrum Fruit Extract and its Anti-cancer Efficacy Against Triple Negative Breast Cancer. Journal Cluster Science, 34, 1709–1719 https://doi.org/10.1007/s10876-022-02334-2
  • Rajasekar, S., & Kuppusamy, S. (2021). Eco-Friendly Formulation of Selenium Nanoparticles and Its Functional Characterization against Breast Cancer and Normal Cells. Journal of Cluster Science, 32(4), 907-915. https://doi.org/10.1007/s10876-020-01856-x
  • Sonkusre, P., & Cameotra, S. S. (2017). Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. Journal of Nanobiotechnology, 15(1), 43. https://doi.org/10.1186/s12951-017-0276-3
  • Varlamova, E. G., Goltyaev, M. V., Mal’tseva, V. N., Turovsky, E. A., Sarimov, R. M., Simakin, A. V., & Gudkov, S. V. (2021). Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. International journal of molecular sciences, 22(15), 7798.
  • Baran, M.F., Keskin, C., Baran, A. et al. (2023). Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L. (Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-023-04366-8
  • Mohammad Hosein F, Roodabeh B, Ali G, Fatemeh F, Fariba N. (2017). Pharmacological activity of Mentha longifolia and its phytoconstituents. Journal of Traditional Chinese Medicine. 37(5),710-720. doi.org/10.1016/S0254-6272(17)30327-8.
  • İpek, P., Baran, M.F., Baran, A. et al. (2023). Green synthesis and evaluation of antipathogenic, antioxidant, and anticholinesterase activities of gold nanoparticles (Au NPs) from Allium cepa L. peel aqueous extract. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-023-04362-y
  • Gharib FA, Mansour KH, Ahmed EZ, Galal TM. (2020) Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint (Mentha longifolia L.) in the Egyptian watercourses. International Journal of Phytoremediation 23(6), 641-651. DOI: 10.1080/15226514.2020.1847035.
  • Patonay K, Szalontai H, Radácsi P, Zámboriné-Németh É. (2021). Chemotypes and Their Stability in Mentha longifolia (L.)L.A Comprehensive Study of Five Accessions. Plants, 10(11), 2478. DOI: 10.3390/plants10112478
  • Bahadori MB, Zengin G, Bahadori S, Dinparast L, Movahhedin N. (2018). Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). International Journal of Food Properties 21(1), 183-193. https://doi.org/10.1080/10942912.2018.1440238
  • Saeidi S, Hassanpour K, Ghamgosha M, Heiat M, Taheri RA, Mirhosseini A, Farnoosh G. (2014). Antibacterial activity of ethyl acetate and aqueous extracts of Mentha longifolia L. and hydroalcoholic extract of Zataria multiflora Boiss. plants against important human pathogens. Asian Pacific Journal of Tropical Medicine, ; 7(Suppl): S-186-S189. DOI: 10.1016/S1995-7645(14)60229-7
  • Atalar, M. N., Baran, A., Hatipoğlu, A., Baran, M., Keskin, C., Yavuz, Ö. (2021). The Characterization of Silver Nanoparticles Synthesized From Prunus spinosa Fruit and Determination of Antimicrobial Effects on Some Food Pathogens. Avrupa Bilim ve Teknoloji Dergisi(32), 298-305. https://doi.org/10.31590/ejosat.1040082
  • Anwar F, Alkharfy KM, Najeeb-ur-Rehman, Adam EHK, Gilani E-H. ( 2017). Chemo-geographical Variations in the Composition of Volatiles and the Biological Attributes of Mentha longifolia (L.) Essential Oils from Saudi Arabia International Journal of Pharmacology 13(5): 408-424. DOI: 10.3923/ijp.2017.408.424
  • Mokaberinejad R, Zafarghandi N, Bioos S, Dabaghian FH, Naseri M, Kamalinejad M, Amin G, Ghobadi A et al. (2012.) Mentha longifolia syrup in secondary amenorrhea: a double-blind, placebo-controlled, randomized trials. DARU Journal of Pharmaceutical Sciences, 20(1): 97. DOI: 10.1186/2008-2231-20-97
  • Ali HM, Elgat WAAA, EL-Hefny M, Salem MZM, Taha AS, Al Farraj DA, Elshisk MS, Hatamleh AA et al. (2021). New Approach for Using of Mentha longifolia L. and Citrus reticulata L. Essential Oils as Wood-Biofungicides: GC-MS, SEM, and MNDO Quantum Chemical Studies. Materials, 14(6), 1361. DOI: 10.3390/ma14061361
  • Irtegun Kandemir S, Ipek P. (2023). Antiproliferative effect of Potentilla fulgens on glioblastoma cancer cells through downregulation of Akt/mTOR signaling pathway. Journal of Cancer Research and Therapeutics, 19(7), 1818-1824, DOI: 10.4103/jcrt.jcrt_1886_21.
  • Gharbavi M, Mousavi M, Pour-Karim M, Tavakolizadeh M, Sharafi A. (2022). Biogenic and facile synthesis of selenium nanoparticles using Vaccinium arctostaphylos L. fruit extract and anticancer activity against in vitro model of breast cancer. Cell Biology Journal, 46(10), 1612-1624. https://doi.org/10.1021/acsomega.9b03172
  • Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, Chopade BA. (2017). Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. International Journal of Nanomedicine 12: 6841-6855. doi: 10.2147/IJN.S139212
  • Cui D, Liang T, Sun L, Meng L, Yang C, Wang L, Liang T, Qingshan L. (2018). Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharmaceutical Biology, 56(1), 528-534. DOI: 10.1080/13880209.2018.1510974.
  • Cittrarasu, V., Kaliannan, D., Dharman, K. et al. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific Reports, 11, 1032 https://doi.org/10.1038/s41598-020-80327-9.
There are 40 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Plant Biotechnology
Journal Section Research Articles
Authors

Polat İpek 0000-0003-1756-9757

Ayşe Baran 0000-0002-2317-0489

Abdülkerim Hatipoğlu 0000-0002-1487-1953

Mehmet Fırat Baran 0000-0001-8133-6670

Publication Date March 25, 2024
Submission Date February 24, 2024
Acceptance Date March 11, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA İpek, P., Baran, A., Hatipoğlu, A., Baran, M. F. (2024). Cytotoxic potential of selenium nanoparticles (SeNPs) derived from leaf extract of Mentha longifolia L. International Journal of Agriculture Environment and Food Sciences, 8(1), 169-175. https://doi.org/10.31015/jaefs.2024.1.17


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27