This study focuses on the use of deep learning and machine learning models to forecast cow cheese production in Turkey. In particular, our research utilizes the LSTM (long short-term memory) model to forecast cow cheese production for the next 12 months by extensively utilizing deep learning and machine learning techniques that have not been applied in this field before. In addition to LSTM, models such as GRU (Gated Recurrent Unit), MLP (Multi-Layer Perceptron), SVR (Support Vector Regression), and KNN (K-Nearest Neighbors) were also tested, and their performances were compared using RMSE (Root Mean Square Error), MSE (Mean Squared Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), and (Coefficient of Determination) metrics. The findings revealed that the LSTM model performed significantly better than the other models in terms of RMSE, MSE, MAE, and MAPE values. This result indicates that the LSTM model provides high accuracy and reliability in forecasting cow cheese production. This achievement of the model offers important applications in areas such as supply chain management, inventory optimization, and demand forecasting in the dairy industry.
Primary Language | English |
---|---|
Subjects | Zootechny (Other) |
Journal Section | Research Articles |
Authors | |
Early Pub Date | June 11, 2024 |
Publication Date | June 27, 2024 |
Submission Date | November 16, 2023 |
Acceptance Date | May 25, 2024 |
Published in Issue | Year 2024 Volume: 8 Issue: 2 |
The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences.
Web: dergipark.org.tr/jaefs E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27