Research Article
BibTex RIS Cite

Morphological and agronomical characterization of beef type tomato hybrids

Year 2024, Volume: 8 Issue: 2, 430 - 445, 27.06.2024
https://doi.org/10.31015/jaefs.2024.2.17

Abstract

Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops and agro-morphological characterization has a key role in the development of new varieties. In this study, 228 samples of the tomato hybrid type “Beef” (Solanum lycopersicum L.) were characterized by comparing with 11 standard varieties based on 24 quantitative traits and 2 qualitative traits to reveal the phenotypic diversity by using conventional descriptors proposed by IPGRI (1996) and UPOV (2011). A significant level of variability was found in most of the traits studied among the genotypes in two locations. A high level of broad-sense heritability (H2) was detected for many traits such as the number of fruits, firmness, immature fruit color, stem length up to the first inflorescence, total height, and number of days to the first flowering in both locations. There was a highly significant positive correlation among the color values (L*, a*, b*, c*, h*) but no positive correlation between a* and h*. Number of locule had a positive correlation with fruit width and fruit weight, and a positive correlation was determined between fruit length and pericarp thickness in both locations. While fruit weight had a highly significant negative correlation with the number of fruits and number of flowers, there was a highly significant negative correlation between the number of locules and the fruit length-to-width ratio in both locations. Results of PCA showed that PC1 and PC2 accounted for around 15.6% and 13.7% of total variation and 13.8% and 11.8% of total variation for Location 1 and Location 2, respectively. The first five principal components accounted for around 54.2% of the total variation for Location 1 and 48.2% of the total variation for Location 2. Cluster analysis grouped the 239 genotypes under six cluster groups for Location 1 and seven cluster groups for Location 2. Results of the cluster analysis revealed that Cluster 3 for Location 1 and Cluster 2 for Location 2 had prominent genotypes for some of the agronomically important traits like yield. The results showed that present phenotypic diversity could be useful in the selection of best-performing genotypes, which would be important candidates for the beef red tomato market in the spring season.

Supporting Institution

This study was financially supported by Enza Zaden Tarim.

References

  • Avdikos, I. D., Tsivelika, N., Gallidou, A., Koutsika-Sotiriou, M., & Traka-Mavrona, E. (2011). The exploitation of heterosis through recurrent selection scheme applied in segregating generations of a tomato breeding program. Scientia Horticultural, 130(4), 701-707. https://doi.org/10.1016/j.scienta.2011.07.026
  • Aravind J., Mukesh SS., Wankhede D.P. and Kaur V. (2019) augmentedRCBD: Analysis of augmented randomised complete block designs. R package version 0.1.1.9000.
  • Burton, G. W. (1951). Quantitative inheritance in pearl millet (Pennisetum glaucum) 1. Agronomy Journal, 43(9), 409-417. https://doi.org/10.2134/agronj1951.00021962004300090001x
  • Burton, G. W. (1952, August). Qualitative inheritance in grasses. Vol. 1. In Proceedings of the 6th International Grassland Congress, Pennsylvania State College (pp. 17-23).
  • Charles, W. B., & Harris, R. E. (1972). Tomato fruit set at high and low temperatures. Canadian Journal of Plant Science, 52(4), 497-506. https://doi.org/10.4141/cjps72-080
  • Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. https://doi.org/10.1590/0103-9016-2014-0322
  • Davies, J. N., Hobson, G. E., & McGlasson, W. B. (1981). The constituents of tomato fruit—the influence of environment, nutrition, and genotype. Critical Reviews in Food Science & Nutrition, 15(3), 205-280. https://doi.org/10.1080/10408398109527317
  • de Koning, A. N. (1994). Development and dry matter distribution in glasshouse tomato: a quantitative approach. Wageningen University and Research.
  • El-Gabry, M. A. H., Solieman, T. I. H., & Abido, A. I. A. (2014). Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Scientia Horticulturae, 167, 153-157. https://doi.org/10.1016/j.scienta.2014.01.010
  • FAOSTAT, 2021, Tomato data report. Retrieved in January, 29, 2024 from https://www.fao.org/faostat/en/#data
  • Federer, W. T., & Raghavarao, D. (1975). On augmented designs. Biometrics, 29-35. https://doi.org/10.2307/2529707
  • Federer, W. T., & Searle, S. R. (1976). Model Considerations and Variance Component Estimation in Augmented Completely Randomized and Randomized Complete Blocks Designs-Preliminary Version.
  • Figàs, M. R., Prohens, J., Raigón, M. D., Fernández-de-Córdova, P., Fita, A., & Soler, S. (2015). Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool tomato analyzer. Genetic Resources and Crop Evolution, 62(2), 189-204. https://dx.doi.org/10.1007/s10722-014-0142-1
  • Gosselin, A., & Trudel, M. J. (1984). Interactions between root-zone temperature and light levels on growth, development and photosynthesis of Lycopersicon esculentum Mill. cultivar ‘Vendor’. Scientia Horticulture, 23(4), 313-321. https://doi.org/10.1016/0304-4238(84)90027-X
  • Hanson, P. M., Chen, J. T., & Kuo, G. (2002). Gene action and heritability of high-temperature fruit set in tomato line CL5915. HortScience, 37(1), 172-175. https://doi.org/10.21273/HORTSCI.37.1.172
  • IPGRI (1996) Descriptors for tomato (Lycopersicon spp.). International Plant Genetic Resources Institute, Rome.
  • Jenkins, J. A. (1948). The origin of the cultivated tomato. Economic Botany, 2(4), 379-392.
  • Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x
  • Lush, J. L. (1940). Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. Journal of Animal Science, 1940(1), 293-301. https://doi.org/10.2527/jas1940.19401293x
  • Ortiz, R., & Izquierdo, J. (1994). Yield stability differences among tomato genotypes grown in Latin America and the Caribbean. HortScience, 29(10), 1175-1177. https://doi.org/10.21273/HORTSCI.29.10.1175
  • Peralta, I. E., Spooner, D. M., & Knapp, S. (2008). Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany Monographs, 84.
  • Picken, A. J. F. (1984). A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal of Horticultural Science, 59(1), 1-13. https://doi.org/10.1080/00221589.1984.11515163
  • Prohens-Tomás, J. and Nuez, F. (Eds.)., 2007, Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae (Vol. 2). Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74110-9
  • Renna, M., D’Imperio, M., Gonnella, M., Durante, M., Parente, A., Mita, G., & Serio, F. (2019). Morphological and chemical profile of three tomato (Solanum lycopersicum L.) landraces of a semi-arid Mediterranean environment. Plants, 8(8), 273. https://doi.org/10.3390/plants8080273
  • Sainju, U. M., Dris, R., & Singh, B. (2003). Mineral nutrition of tomato. Food, Agriculture & Environment, 1(2), 176-183.
  • Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97(5), 731-738. https://doi.org/10.1093/aob/mcl037
  • UPOV (2011) International Union for The Protection of New Varieties of Plants. Retrieved in January, 29, 2024 from https://www.upov.int/databases/en/
  • Wang, S. S., Li, Y. L., & Wen, X. Z. (2017). Effect of increasing humidity on flowering, fruit-setting and pollen characteristics of tomato under heat stress. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1227 (pp. 305-312). 10.17660/ActaHortic.2018.1227.37
Year 2024, Volume: 8 Issue: 2, 430 - 445, 27.06.2024
https://doi.org/10.31015/jaefs.2024.2.17

Abstract

References

  • Avdikos, I. D., Tsivelika, N., Gallidou, A., Koutsika-Sotiriou, M., & Traka-Mavrona, E. (2011). The exploitation of heterosis through recurrent selection scheme applied in segregating generations of a tomato breeding program. Scientia Horticultural, 130(4), 701-707. https://doi.org/10.1016/j.scienta.2011.07.026
  • Aravind J., Mukesh SS., Wankhede D.P. and Kaur V. (2019) augmentedRCBD: Analysis of augmented randomised complete block designs. R package version 0.1.1.9000.
  • Burton, G. W. (1951). Quantitative inheritance in pearl millet (Pennisetum glaucum) 1. Agronomy Journal, 43(9), 409-417. https://doi.org/10.2134/agronj1951.00021962004300090001x
  • Burton, G. W. (1952, August). Qualitative inheritance in grasses. Vol. 1. In Proceedings of the 6th International Grassland Congress, Pennsylvania State College (pp. 17-23).
  • Charles, W. B., & Harris, R. E. (1972). Tomato fruit set at high and low temperatures. Canadian Journal of Plant Science, 52(4), 497-506. https://doi.org/10.4141/cjps72-080
  • Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. https://doi.org/10.1590/0103-9016-2014-0322
  • Davies, J. N., Hobson, G. E., & McGlasson, W. B. (1981). The constituents of tomato fruit—the influence of environment, nutrition, and genotype. Critical Reviews in Food Science & Nutrition, 15(3), 205-280. https://doi.org/10.1080/10408398109527317
  • de Koning, A. N. (1994). Development and dry matter distribution in glasshouse tomato: a quantitative approach. Wageningen University and Research.
  • El-Gabry, M. A. H., Solieman, T. I. H., & Abido, A. I. A. (2014). Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Scientia Horticulturae, 167, 153-157. https://doi.org/10.1016/j.scienta.2014.01.010
  • FAOSTAT, 2021, Tomato data report. Retrieved in January, 29, 2024 from https://www.fao.org/faostat/en/#data
  • Federer, W. T., & Raghavarao, D. (1975). On augmented designs. Biometrics, 29-35. https://doi.org/10.2307/2529707
  • Federer, W. T., & Searle, S. R. (1976). Model Considerations and Variance Component Estimation in Augmented Completely Randomized and Randomized Complete Blocks Designs-Preliminary Version.
  • Figàs, M. R., Prohens, J., Raigón, M. D., Fernández-de-Córdova, P., Fita, A., & Soler, S. (2015). Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool tomato analyzer. Genetic Resources and Crop Evolution, 62(2), 189-204. https://dx.doi.org/10.1007/s10722-014-0142-1
  • Gosselin, A., & Trudel, M. J. (1984). Interactions between root-zone temperature and light levels on growth, development and photosynthesis of Lycopersicon esculentum Mill. cultivar ‘Vendor’. Scientia Horticulture, 23(4), 313-321. https://doi.org/10.1016/0304-4238(84)90027-X
  • Hanson, P. M., Chen, J. T., & Kuo, G. (2002). Gene action and heritability of high-temperature fruit set in tomato line CL5915. HortScience, 37(1), 172-175. https://doi.org/10.21273/HORTSCI.37.1.172
  • IPGRI (1996) Descriptors for tomato (Lycopersicon spp.). International Plant Genetic Resources Institute, Rome.
  • Jenkins, J. A. (1948). The origin of the cultivated tomato. Economic Botany, 2(4), 379-392.
  • Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x
  • Lush, J. L. (1940). Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. Journal of Animal Science, 1940(1), 293-301. https://doi.org/10.2527/jas1940.19401293x
  • Ortiz, R., & Izquierdo, J. (1994). Yield stability differences among tomato genotypes grown in Latin America and the Caribbean. HortScience, 29(10), 1175-1177. https://doi.org/10.21273/HORTSCI.29.10.1175
  • Peralta, I. E., Spooner, D. M., & Knapp, S. (2008). Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany Monographs, 84.
  • Picken, A. J. F. (1984). A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal of Horticultural Science, 59(1), 1-13. https://doi.org/10.1080/00221589.1984.11515163
  • Prohens-Tomás, J. and Nuez, F. (Eds.)., 2007, Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae (Vol. 2). Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74110-9
  • Renna, M., D’Imperio, M., Gonnella, M., Durante, M., Parente, A., Mita, G., & Serio, F. (2019). Morphological and chemical profile of three tomato (Solanum lycopersicum L.) landraces of a semi-arid Mediterranean environment. Plants, 8(8), 273. https://doi.org/10.3390/plants8080273
  • Sainju, U. M., Dris, R., & Singh, B. (2003). Mineral nutrition of tomato. Food, Agriculture & Environment, 1(2), 176-183.
  • Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97(5), 731-738. https://doi.org/10.1093/aob/mcl037
  • UPOV (2011) International Union for The Protection of New Varieties of Plants. Retrieved in January, 29, 2024 from https://www.upov.int/databases/en/
  • Wang, S. S., Li, Y. L., & Wen, X. Z. (2017). Effect of increasing humidity on flowering, fruit-setting and pollen characteristics of tomato under heat stress. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1227 (pp. 305-312). 10.17660/ActaHortic.2018.1227.37
There are 28 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment
Journal Section Research Articles
Authors

Ali Ünal 0000-0001-6660-0752

M. Onur Özbaş 0009-0009-8533-6737

Duygu Arslan This is me 0009-0009-3477-2109

Hülya İlbi 0000-0002-7691-7996

Early Pub Date June 26, 2024
Publication Date June 27, 2024
Submission Date April 5, 2024
Acceptance Date June 3, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Ünal, A., Özbaş, M. O., Arslan, D., İlbi, H. (2024). Morphological and agronomical characterization of beef type tomato hybrids. International Journal of Agriculture Environment and Food Sciences, 8(2), 430-445. https://doi.org/10.31015/jaefs.2024.2.17
AMA Ünal A, Özbaş MO, Arslan D, İlbi H. Morphological and agronomical characterization of beef type tomato hybrids. int. j. agric. environ. food sci. June 2024;8(2):430-445. doi:10.31015/jaefs.2024.2.17
Chicago Ünal, Ali, M. Onur Özbaş, Duygu Arslan, and Hülya İlbi. “Morphological and Agronomical Characterization of Beef Type Tomato Hybrids”. International Journal of Agriculture Environment and Food Sciences 8, no. 2 (June 2024): 430-45. https://doi.org/10.31015/jaefs.2024.2.17.
EndNote Ünal A, Özbaş MO, Arslan D, İlbi H (June 1, 2024) Morphological and agronomical characterization of beef type tomato hybrids. International Journal of Agriculture Environment and Food Sciences 8 2 430–445.
IEEE A. Ünal, M. O. Özbaş, D. Arslan, and H. İlbi, “Morphological and agronomical characterization of beef type tomato hybrids”, int. j. agric. environ. food sci., vol. 8, no. 2, pp. 430–445, 2024, doi: 10.31015/jaefs.2024.2.17.
ISNAD Ünal, Ali et al. “Morphological and Agronomical Characterization of Beef Type Tomato Hybrids”. International Journal of Agriculture Environment and Food Sciences 8/2 (June 2024), 430-445. https://doi.org/10.31015/jaefs.2024.2.17.
JAMA Ünal A, Özbaş MO, Arslan D, İlbi H. Morphological and agronomical characterization of beef type tomato hybrids. int. j. agric. environ. food sci. 2024;8:430–445.
MLA Ünal, Ali et al. “Morphological and Agronomical Characterization of Beef Type Tomato Hybrids”. International Journal of Agriculture Environment and Food Sciences, vol. 8, no. 2, 2024, pp. 430-45, doi:10.31015/jaefs.2024.2.17.
Vancouver Ünal A, Özbaş MO, Arslan D, İlbi H. Morphological and agronomical characterization of beef type tomato hybrids. int. j. agric. environ. food sci. 2024;8(2):430-45.


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27