Araştırma Makalesi
BibTex RIS Kaynak Göster

Oreochromis niloticus'un Karaciğerinde Fungisit Propiconazole'un Oksidatif Stres Parametreleri ve Antioksidan Sistem Enzimleri Üzerine Etkileri

Yıl 2019, , 43 - 47, 30.04.2019
https://doi.org/10.35229/jaes.532079

Öz

Bu
Araştırmada, fungisit propiconazole’un 0.5 ppb ve 2.5 ppb derişim etkilerinde 7
gün ve 28 gün sürelerde Oreochromis
niloticus
’un karaciğer dokusunda, süperoksit dismutaz (SOD), katalaz (CAT),
glutatyon peroksidaz (GPx) ve glutatyon S transferaz (GST) antioksidan sistem
enzim aktiviteleri ve oksidatif stres parametreleri glutatyon (GSH) ve
tiyobarbitürik asit reaktif maddeleri (TBARS) miktarlarındaki değişimler
spektrofotometrik yöntemlerle belirlenmiştir.

Çalışmamızda
karaciğer dokusunda GSH miktarı ve GSH-bağımlı GPx ve GST aktivitesi 7. günde
artarken; 28. günde GSH miktarında azalma ve GST aktivitelerinde artış
belirlenmiştir. SOD ve CAT aktiviteleri 7. günde artarken 28. günde azalmıştır.
TBARS düzeylerinde propiconazole etkisinde süreye ve derişime bağlı olarak
artış göstermektedir.





Çalışma
sonuçlarına göre propiconazole etkisinde O.
niloticus
’da antioksidan sistem enzim aktivitelerinde ve oksidatif stres
parametrelerindeki değişimler propiconazole’un hepatotoksik etkiye neden olduğu
belirlenmiştir.

Kaynakça

  • Atamaniuk, T.M., Kubrak, O.I., Husak, V.V., Storey, K. B., Lushchak V.I. (2013). The Mancozeb-Containing Carbamate Fungicide Tattoo Induces Mild Oxidative Stress in Goldfish Brain, Liver, and Kidney. Environ Toxicol 29: 1227–1235.
  • Bagnyukova, T.V., Vasylkiv, O.Y., Storey, K.B., Lushchak, V.I. (2005). Catalase inhibitionby amino triazole induces oxidative stress in goldfish brain. Brain Res. 1052,180–186.
  • Battaglin, W.A., Sandstrom, M.W., Kuivila, K.M., Kolpin, D.W., Meyer, M.T. (2011). Occurrence of azoxystrobin, propiconazole, and selected other fungicides in USstreams, 2005–2006. Water Air Soil Pollut. 218, 307–322.
  • Beutler, E. (1975). Red Cell Metabolism. A Manual of Biochemical Methods. Grune and Stration, New York, London, 67-69.
  • Beutler, E. (1984). Red Cell Metabolism: A Manual of Biochemical Methods, 2nd edition. Grune and Starton, New York, 160s.
  • Bordagaray, A., Garcia-Arrona, R., Millán, E. (2011). Optimization of solid-phase micro extraction procedure coupled to GC-ECD for triazole fungicides determination in juice samples. Food Anal. Methods, 4, 293–299.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • Calabrese, V., Bates, T.E., Stella, A.M.G. (2000). NO synthase and NO dependent signal pathways in brain aging and neurodegenerative disorders; the role of oxidant/antioxidant balance. Neurochem Res, 25: 1315–1341.
  • Chen, P.J., Moore, T., Nesnow, S. (2008). Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes. Toxicol Vitro, 22, 1476–1483.
  • Gate L., Paul J., Ba G.N., Tew K.D., Tapiero H. (1999). Oxidative stress induced in pathologies: the role of antioxidants. Biomedicine and Pharmacotherapy, 53, 169–180.
  • Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249: 7130-7139.
  • Hayes, J.D., Flanagan, J.U., Jowsey, I.R. (2005). Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45, 51–88.
  • Hermes-Lima, M. (2004). Oxidative stress and medical sciences. In: Storey KB, editor. Functional Metabolism: Regulation and Adaptation. New York: Wiley. Pp 269–282.
  • Kinnear, P.R., Gray, C.D. (1995). SPSS for Windows Made Simple. Lawrence Erlbaum Associates, East Sussex, UK, 275s.
  • Konwick, B.J., Garrison, A.W., Avant, J.K., Fisk, A.T. (2006). Bioaccumulation andbiotransformation of chiral trizole fungicides in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 80, 372–381.
  • Li Z. H., Velisek J., Zlabek V., Grabic R., Machova J., Kolarova J., Randak T. (2010b). Hepatic antioxidant status and hematological parameters in rainbow trout, Oncorhynchus mykiss, after chronic exposure to carbamazepine. Chemico-Biological Interactions, 183, 98-104.
  • Li Z. H., Zlabek V., Velisek J., Grabic R., Machova J., Randak T. (2010f). Physiological condition status and muscle-based biomarkers in rainbow trout (Oncorhynchus mykiss), after long-term exposure to carbamazepine. Journal of Applied Toxicology, 30, 197–203.
  • Li, Z. H., Randak, T. (2009). Residual pharmaceutically active compounds (PhACs) in aquatic environment—Status, toxicity and kinetics: A review. Vet. Med., 52, 295–314.
  • Li, Z. H., Velisek, J., Grabic, R., Li, P., Kolarova, J., Randak, T. (2010a). Use of hematological and plasma biochemical parameters to assess the chronic effects of a fungicide propiconazole on a freshwater teleost. Chemosphere 83, 572-578.
  • Li, Z. H., Zlabek, V., Grabic, R., Li, P., Randak, T. (2010g). Modulation of glutathione related antioxidant defense system of fish chronically treated by the fungicide propiconazole. Comp. Biochem. Phys. C 152, 392–398.
  • Li, Z.H., Zlabek, V., Velisek, J., Grabic, R., Machova, J., Kolarova, J., Li, P., Randak, T. (2011). Antioxidant responses and plasma biochemical characteristics in the freshwater rainbow trout, Oncorhynchus mykiss, after acute exposure to the fungicide propiconazole. J. Anim. Sci., 56, 61–69.
  • Lushchak, V.I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 101: 13–30.
  • Lushchak, V.I., Bagnyukova, T.V., Husak, V.V., Luzhna, L.I., Lushchak, O.V., Storey, K. B. (2005). Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int. J. Biochem. Cell Biol. 37, 1670–1680.
  • McCord, J.M., Fridovich, I. (1969). Superoxide Dismutase; an Enzymatic Function for Erythrocuprein (Hemocuprein). The Journal of Biochemistry, 244: 6049-6053.
  • Nordberg J., Arner E.S.J. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Research Biology and Medicine, 31, 1287–1312.
  • Ohkawa, H., Ohishi, N., Tagi, K. (1979). Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Analytical Chemistry, 95: 351-358.
  • Pena-Llopis, S., Ferrando, M.D., Pena, J.B. (2003). Fish tolerance to organophosphate induced oxidative stress is, dependent on the glutathione metabolism and enhanced by N-acetylcysteine. Aquat. Toxicol. 65, 337–360.
  • Sturve J., Almroth B.C., Forlin L. (2008). Oxidative stress in rainbow trout (Oncorhynchus mykiss) exposed to sewage treatment plant effluent. Ecotoxicology and Environmental Safety, 70, 446–452.
  • Torres, C.M., Pico, Y., Manes, J. (1997). Comparison of octadecylsilica and graphitized carbon black as materials for solid-phase extraction of fungicide and insecticide residues from fruit and vegetables. J. Chromatography A 778, 127–137.
  • Van de Steene, J.C., Lambert, W.E. (2008). Validation of a solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometric method for the determination of nine basic pharmaceuticals in wastewater and surface water samples. J. Chromatogr A., 1182, 153–160.
  • van der Oost, R., Beyer, J., Vermeulen, N.P.E. (2003). Fish bioaccumulation andbiomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol., 13, 57–149.
  • Verma, R.S., Mhta, A., Srivastava, N. (2007). In vivo chlorpyrifos induced oxidative stress: attenuation by antioxidant vitamins. Pest. Biochem. Physiol., 88, 191–196.
  • Zhang X., Yang F., Zhang X., Xu Y., Liao T., Song S., Wang H. (2008a). Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquatic Toxicology, 86, 4–11.
  • Zhang, J.F., Shen, H., Wang, X.R., Wu, J.C., Xue, Y.Q. (2004). Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere, 55, 167–174.
  • Kubrak, O. I., Atamaniuk, T. M., Husak, V. V., Drohomyretska, I. Z., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2012). Oxidative stress responses in blood and gills of Carassius auratus exposed to the mancozeb-containing carbamate fungicide Tattoo. Ecotoxicology and environmental safety, 85, 37-43.
  • Tabassum, H., Dawood, A. Q., Sharma, P., Khan, J., Raisuddin, S., & Parvez, S. (2016). Multi-organ toxicological impact of fungicide propiconazole on biochemical and histological profile of freshwater fish Channa punctata Bloch. Ecological indicators, 63, 359-365.

Effects of Fungicide Propiconazole on Oxidative Stress Parameters and Antioxidant System enzymes in liver of Oreochromis niloticus

Yıl 2019, , 43 - 47, 30.04.2019
https://doi.org/10.35229/jaes.532079

Öz

In
this research, 0.5 ppb and 2.5 ppb effect of fungicide propiconazole in 7 days
and 28 days periods in liver tissue of Oreochromis
niloticus
, superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPx) and glutathione S
transferase (GST) antioxidant system enzyme activities and oxidative stress
parameters glutathione (GSH) and thiobarbituric acid reagents (TBARS) were
determined by spectrophotometric methods.



In
our study, GSH levels and GSH-dependent GPx and GST activity increased in 7
days. In 28 days, decrease in GSH and increase in GST activities were
determined. SOD and CAT activities increased in 7 days and decreased in 28
days. In TBARS levels, the time and concentrations -related increase in the
effect of propiconazole



According
to the results of the study; The effect of propiconazole on antioxidant enzyme
activity and oxidative stress parameters in O.
niloticus
was determined to cause hepatotoxic effect.

Kaynakça

  • Atamaniuk, T.M., Kubrak, O.I., Husak, V.V., Storey, K. B., Lushchak V.I. (2013). The Mancozeb-Containing Carbamate Fungicide Tattoo Induces Mild Oxidative Stress in Goldfish Brain, Liver, and Kidney. Environ Toxicol 29: 1227–1235.
  • Bagnyukova, T.V., Vasylkiv, O.Y., Storey, K.B., Lushchak, V.I. (2005). Catalase inhibitionby amino triazole induces oxidative stress in goldfish brain. Brain Res. 1052,180–186.
  • Battaglin, W.A., Sandstrom, M.W., Kuivila, K.M., Kolpin, D.W., Meyer, M.T. (2011). Occurrence of azoxystrobin, propiconazole, and selected other fungicides in USstreams, 2005–2006. Water Air Soil Pollut. 218, 307–322.
  • Beutler, E. (1975). Red Cell Metabolism. A Manual of Biochemical Methods. Grune and Stration, New York, London, 67-69.
  • Beutler, E. (1984). Red Cell Metabolism: A Manual of Biochemical Methods, 2nd edition. Grune and Starton, New York, 160s.
  • Bordagaray, A., Garcia-Arrona, R., Millán, E. (2011). Optimization of solid-phase micro extraction procedure coupled to GC-ECD for triazole fungicides determination in juice samples. Food Anal. Methods, 4, 293–299.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • Calabrese, V., Bates, T.E., Stella, A.M.G. (2000). NO synthase and NO dependent signal pathways in brain aging and neurodegenerative disorders; the role of oxidant/antioxidant balance. Neurochem Res, 25: 1315–1341.
  • Chen, P.J., Moore, T., Nesnow, S. (2008). Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes. Toxicol Vitro, 22, 1476–1483.
  • Gate L., Paul J., Ba G.N., Tew K.D., Tapiero H. (1999). Oxidative stress induced in pathologies: the role of antioxidants. Biomedicine and Pharmacotherapy, 53, 169–180.
  • Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249: 7130-7139.
  • Hayes, J.D., Flanagan, J.U., Jowsey, I.R. (2005). Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45, 51–88.
  • Hermes-Lima, M. (2004). Oxidative stress and medical sciences. In: Storey KB, editor. Functional Metabolism: Regulation and Adaptation. New York: Wiley. Pp 269–282.
  • Kinnear, P.R., Gray, C.D. (1995). SPSS for Windows Made Simple. Lawrence Erlbaum Associates, East Sussex, UK, 275s.
  • Konwick, B.J., Garrison, A.W., Avant, J.K., Fisk, A.T. (2006). Bioaccumulation andbiotransformation of chiral trizole fungicides in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 80, 372–381.
  • Li Z. H., Velisek J., Zlabek V., Grabic R., Machova J., Kolarova J., Randak T. (2010b). Hepatic antioxidant status and hematological parameters in rainbow trout, Oncorhynchus mykiss, after chronic exposure to carbamazepine. Chemico-Biological Interactions, 183, 98-104.
  • Li Z. H., Zlabek V., Velisek J., Grabic R., Machova J., Randak T. (2010f). Physiological condition status and muscle-based biomarkers in rainbow trout (Oncorhynchus mykiss), after long-term exposure to carbamazepine. Journal of Applied Toxicology, 30, 197–203.
  • Li, Z. H., Randak, T. (2009). Residual pharmaceutically active compounds (PhACs) in aquatic environment—Status, toxicity and kinetics: A review. Vet. Med., 52, 295–314.
  • Li, Z. H., Velisek, J., Grabic, R., Li, P., Kolarova, J., Randak, T. (2010a). Use of hematological and plasma biochemical parameters to assess the chronic effects of a fungicide propiconazole on a freshwater teleost. Chemosphere 83, 572-578.
  • Li, Z. H., Zlabek, V., Grabic, R., Li, P., Randak, T. (2010g). Modulation of glutathione related antioxidant defense system of fish chronically treated by the fungicide propiconazole. Comp. Biochem. Phys. C 152, 392–398.
  • Li, Z.H., Zlabek, V., Velisek, J., Grabic, R., Machova, J., Kolarova, J., Li, P., Randak, T. (2011). Antioxidant responses and plasma biochemical characteristics in the freshwater rainbow trout, Oncorhynchus mykiss, after acute exposure to the fungicide propiconazole. J. Anim. Sci., 56, 61–69.
  • Lushchak, V.I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 101: 13–30.
  • Lushchak, V.I., Bagnyukova, T.V., Husak, V.V., Luzhna, L.I., Lushchak, O.V., Storey, K. B. (2005). Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int. J. Biochem. Cell Biol. 37, 1670–1680.
  • McCord, J.M., Fridovich, I. (1969). Superoxide Dismutase; an Enzymatic Function for Erythrocuprein (Hemocuprein). The Journal of Biochemistry, 244: 6049-6053.
  • Nordberg J., Arner E.S.J. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Research Biology and Medicine, 31, 1287–1312.
  • Ohkawa, H., Ohishi, N., Tagi, K. (1979). Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Analytical Chemistry, 95: 351-358.
  • Pena-Llopis, S., Ferrando, M.D., Pena, J.B. (2003). Fish tolerance to organophosphate induced oxidative stress is, dependent on the glutathione metabolism and enhanced by N-acetylcysteine. Aquat. Toxicol. 65, 337–360.
  • Sturve J., Almroth B.C., Forlin L. (2008). Oxidative stress in rainbow trout (Oncorhynchus mykiss) exposed to sewage treatment plant effluent. Ecotoxicology and Environmental Safety, 70, 446–452.
  • Torres, C.M., Pico, Y., Manes, J. (1997). Comparison of octadecylsilica and graphitized carbon black as materials for solid-phase extraction of fungicide and insecticide residues from fruit and vegetables. J. Chromatography A 778, 127–137.
  • Van de Steene, J.C., Lambert, W.E. (2008). Validation of a solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometric method for the determination of nine basic pharmaceuticals in wastewater and surface water samples. J. Chromatogr A., 1182, 153–160.
  • van der Oost, R., Beyer, J., Vermeulen, N.P.E. (2003). Fish bioaccumulation andbiomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol., 13, 57–149.
  • Verma, R.S., Mhta, A., Srivastava, N. (2007). In vivo chlorpyrifos induced oxidative stress: attenuation by antioxidant vitamins. Pest. Biochem. Physiol., 88, 191–196.
  • Zhang X., Yang F., Zhang X., Xu Y., Liao T., Song S., Wang H. (2008a). Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquatic Toxicology, 86, 4–11.
  • Zhang, J.F., Shen, H., Wang, X.R., Wu, J.C., Xue, Y.Q. (2004). Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere, 55, 167–174.
  • Kubrak, O. I., Atamaniuk, T. M., Husak, V. V., Drohomyretska, I. Z., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2012). Oxidative stress responses in blood and gills of Carassius auratus exposed to the mancozeb-containing carbamate fungicide Tattoo. Ecotoxicology and environmental safety, 85, 37-43.
  • Tabassum, H., Dawood, A. Q., Sharma, P., Khan, J., Raisuddin, S., & Parvez, S. (2016). Multi-organ toxicological impact of fungicide propiconazole on biochemical and histological profile of freshwater fish Channa punctata Bloch. Ecological indicators, 63, 359-365.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ozge Temiz 0000-0003-0668-5744

Yayımlanma Tarihi 30 Nisan 2019
Gönderilme Tarihi 25 Şubat 2019
Kabul Tarihi 23 Mart 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Temiz, O. (2019). Oreochromis niloticus’un Karaciğerinde Fungisit Propiconazole’un Oksidatif Stres Parametreleri ve Antioksidan Sistem Enzimleri Üzerine Etkileri. Journal of Anatolian Environmental and Animal Sciences, 4(1), 43-47. https://doi.org/10.35229/jaes.532079


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS