Derleme
BibTex RIS Kaynak Göster

Tehlikeli Atık Sınıfında Olan Elektrik Ark Fırını Baca Tozlarından Hidrometalurjik Yöntemler Kullanılarak Çinkonun Geri Kazanılması: Güncel Değerlendirmeler

Yıl 2020, , 274 - 282, 30.09.2020
https://doi.org/10.35229/jaes.726394

Öz

Çelik üretiminde birincil hammadde kaynağı olarak demir cevheri kullanılırken; ikincil hammadde kaynağı ise çelik hurdalarıdır. Ülkemizde çelik üretiminin % 80’i hammadde olarak çelik hurdalarının kullanıldığı Elektrik Ark Fırınlarında (EAF) gerçekleştirilmektedir. EAF’de çelik üretimi sırasında 1 ton çelik başına hurda bileşimine bağlı olarak % 25-45 Zn içeren 14-20 kg baca tozu oluşmaktadır. Oluşan baca tozu önemli miktarda çinko, demir ve kurşun içerdiğinden tehlikeli atık olarak sınıflandırılmaktadır. EAF baca tozunun hem yüksek miktarda Zn içermesi hem de tehlikeli atık olarak sınıflandırılmasından dolayı son yıllarda EAF baca tozundan Zn kazanımı ile ilgili çalışmalar yoğunluk kazanmıştır. Bu nedenle son yıllarda EAF baca tozundan çinko kazanımı için hidrometalurjik uygulamalar yoğun bir şekilde araştırılmaktadır. Hidrometalurjik yöntemlerde amaç, asidik veya bazik çözeltiler kullanarak çinkoyu çözeltiye almak ve sonrasında liç çözeltisinden solvent ekstraksiyon veya elektroliz ile Zn’yi kazanmaktır. Bu çalışmanın amacı EAF baca tozundan hidrometalurjik yöntemlerle Zn kazanımı ile ilgili günümüze kadar gerçekleştirilen çalışmaların incelenmesi ve derlenerek sunulmasıdır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

118M376

Teşekkür

Yazarlar, bu makalenin hazırlanmasına temel olan araştırma projesine (Proje No: 118M376) verdiği destekten dolayı Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (TÜBİTAK) teşekkür ederler

Kaynakça

  • Abdel Basir, S.M. & Rabah, M.A., (1999). Hydrometallurgical recovery of metal values from brass smelting slag, Hydrometallurgy, 53, 31-44.
  • Agatzini-Leonardou, S., Zafiratos, I.G. & Oustadakis, P., (2000). Process for the removal of aluminium and/or chromium from nickel and/or cobalt sulphate solutions at atmospheric pressure, Greek Patent: GR1003419. Antrekowitsch, J. & Antrekowitsch, H., (2001). Hydrometallurgically recovering zinc from elektric arc furnace dust, The Journal of The Minerals, Metals & Materials Society, 53 (12), 26-28.
  • Caravaca, C. & Alguacil, F.J., (1991). Study of the ZnSO4-Cyanex 302 extraction equilibrium system, Hydrometallurgy, 27, 327-338.
  • Caravaca, C., Cobo, A. & Alguacıl, F.J., (1994). Considerations about the recycling of EAF flue dusts as source for the recovery of valuable metals by hydrometallurgical processes, Conservation and Recycling, 10, 35-41.
  • Cole, P.M. & Sole, K.C., (2003). Zinc solvent extraction in the process industries, Mineral Processing & Extractive Metallurgy Review, 24(2), 91-137.
  • Diaz, G. & Martin, D., (1994). Modified zincex process: The clean, safe and profitable solution to zinc secondaries treatment, Resources, Conservation and Recycling, 10, 43-57.
  • Dreisinger, D., (1990). A challenge for the 1990s: the hydrometallugical treatment of waste and residues, JOM, 42(1), 27-27.
  • Dreisinger, D.B., Peters, E. & Morgan, G., (1990). The hydrometallurgical treatment of carbon steel electric arc furnace dusts by the UBC-Chaparral process, Hydrometallurgy, 25, 137-152.
  • [30] Dutra, A.J.B., Paiva, P.R.P. & Tavares, L.M., (2006). Alkaline leaching of zinc from electric arc furnace steel dust, Minerals Engineering, 19, 478-485.
  • Halli P., Hamuyuni J., Leikola M. & Lundström M., (2018). Developing a sustainable solution for recycling electric arc furnace dust via organic acid leaching. Minerals Engineering, 124, 1-9.
  • Havlik, T., Friedrich, B. & Stopic, S., (2004). Pressure leaching of EAF dust with sulphuric acid, World of Metallurgy-Erzmetall, 57, 113-120. Havlik, T., Souza, B.V., Bernardes, A.M., Schneider, I.A.H. & Miskufova, A., (2006). Hydrometallurgical processing of carbon steel EAF dust, Journal of Hazardous Materials, 135, 311-318.
  • Havlik, T., Turzakova, M., Stopic, S. & Friedrich, B., (2005). Atmospheric leaching of EAF dust with diluted sulphuric acid, Hydrometallurgy, 77, 41-50.
  • Jha M.K., Kumar V. & Singh R.J., (2001). Review of hydrometallurgical recovery of zinc from industrial wastes, Conservation and Recycling 33, 1-22.
  • Karavasteva, M., (1994). The electro deposition of metal impurities during the zinc electrowinning at high current density in the presence of some surfactants, Hydrometallurgy, 35(3), 391-396.
  • Khattaba R.M., El-Sayed Selemanb M.M. & Zawraha M.F., (2017). Assessment of electric arc furnace dust: Powder characterization and its sinterability as ceramic product, Ceramics International, 43,12939-12947.
  • Langova, S., Lesko, J. & Matysek, D., (2009). Selective leaching of zinc from zinc ferrite with hydrochloric acid, Hydrometallurgy, 95, 179-182.
  • Miki, T., Fujimoto, R.C. & Maruyama, K., (2016). Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution, Journal of Hazardous Materials, 302, 90-96.
  • Montenegro, V., Agatzini-Leonardou, S., Oustadakis, P. & Tsakiridis, P., (2016). Hydrometallurgical treatment of EAF dust by direct sulphuric acid leaching at atmospheric pressure, Waste Biomass Valorization, 7, 1531-1548
  • Mukongo, T., Maweja, K., Ngalu, B., Mutombo, I. & Tshilombo, K., (2009). Zinc recovery from the water-jacket furnace flue dusts by leaching and electrowinning in a SEC-CCS cell, Hydrometallurgy, 97 (1-2), 53-60.
  • Muresan, L., Maurin, G., Oniciu, L. & Avram, S., (1996). Effects of additives on zinc electrowinning from industrial waste products, Hydrometallurgy, 40 (3), 335-342.
  • Nakamura, T., Shibata, E., T. Takasu, T. &, Itou, H., (2008). Basic Consideration on EAF Dust Treatment Using Hydrometallurgical Processes, Resources Processing, 55,144-148.
  • Oustadakis, P., Tsakiridis, P.E., Katsiapi, A. & Agatzini-Leonardou, S., (2010). Hydrometallurgical process for Zn recovery from elektric arc furnace dust (EAFD) Part1: Characterization and leaching by diluted sulphuric acid, Journal of Hazardous Materials, 179, 1-7.
  • Oustadakis, P., Tsakiridis, P.E., Katsiapi, A. & Agatzini-Leonardou, S., (2010). Hydrometallurgical process for Zn recovery from elektric arc furnace dust (EAFD) Part 2: Downstream processing and zinc recovery by electrowinning, Journal Of Hazardous Materials, 179, 1-7.
  • Orhan, G., (2005). Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium, Hydrometallurgy, 78, 236-245.
  • Pelino M., Karamanov A., Pisciella P., Crisucci S. & Zonetti D., (2002). Vitrification of electric arc furnace dusts. Waste Manag., 22, 945-949.
  • Peng, N., Peng, B., Liu, H., Lin, D.H. & Xue, K., (2017). Leaching kinetics modelling of reductively roasted zinc calcine, Canadian Metall Quartarly, 3, 301-307,
  • Pickles C.A., (2009). Thermodynamic analysis of the selective chlorination of electric arc furnace dust, Journal of Hazardous Materials, 166, 1030-1042.
  • Piret, N.L. & Castle, J.F., (1990). Review of secondary zinc treatment process options, Recycling of Metalliferous Materials Conference, 23-25 April 1990, Birmingham, UK,181-219.
  • Polsilapa S., Wangyao P., (2007). Glassification of Electric Arc Furnace Dust by Using Fly Ash or Bagasse Ash, Journal of Metals, Materials and Minerals. 17 (1), 67-73. Recendiz, A., Gonzalez, I. & Nava, J.L., (2007). Current efficiency studies of the zinc electrowinning process on aluminum rotating cylinder electrode (RCE) in sulfuric acid medium: Influence of different additives, Electrochimica Acta, 52 (24), 6880-6887.
  • Shawabkey, R.A., (2010). Hydrometallurgical extraction of zinc from Jordanian elektric arc furnace dust, Hydrometallurgy, 104, 61-65.
  • Taha M.A., Nassar A.H. & Zawrah M.F., (2017). Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying, Ceram. Int., 43 (4), 3576-3582. Wadhawan, A.C., (1998). An overview of major non-ferrous minerals and metals in India, Metal News, 1 (5), 4-11
  • Wannakamb S., Manuskijsamrun S. & Buggakupta W., (2013). The use of electric arc furnace dust from steel recycling in ceramic glaze. Suranaree J. Sci. Technol., 20 (4), 329-337.
  • Wheatley, B.I. & Pooley, E.D., (1990). Production of zinc powder from arc and smelter flue dusts, Recycling of Metalliferous Materials Conference, 23-25 April 1990, Birmingham, UK, 291-299 Wolski, W. & Koztowska, I.O., (1971). Dissolutions velocity of zinc ferrite in Acids, Japan Society of Powder and Powder Metallurgy, 18, 8-18.
  • Xanthopoulos, P., Agatzini-Leonardou, S., Oustadakis, P., &Tsakiridis, P.E., (2017). Zinc recovery from purified electric arc furnace dust leach liquors by chemical precipitation, Journal of Environmental Chemical Engineering, 5, 3550-3559.
  • Yan, H., Chai, L., Peng, B., Li, M., Peng, N. & Hou, D., (2014). A Novel method to recover zinc and iron from zinc leaching residue, Minerals Engineering, 55, 103-110.
  • Youcai, Z. & Stanforth, R., (2000). Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium, Journal of Hazerdous Materials, 80, 223-240.
  • Zhanga, C., Wanga, J., Baia, J. & Zhaob, Y., (2012). Recovering of zinc from solid waste bearing sphalerite or zinc ferrite by mechano-chemical extraction in alkaline solution, Procedia Environmental Sciences, 16, 786-790.
  • Zhang C., Zhuang L., Wang J., Bai J. & Yuan W., (2016). Extraction of zinc from zinc ferrites by alkaline leaching: enhancing recovery by mechanochemical reduction with metallic iron, J. S. Afr. Inst. Min. Metall. 116 (12), 1111-1114.

Recovery of Zinc from Electric Arc Furnace Flue Powders in the Hazardous Waste Class by Using Hydrometallurgical Methods: Current Evaluations

Yıl 2020, , 274 - 282, 30.09.2020
https://doi.org/10.35229/jaes.726394

Öz

While iron ore is used as the primary raw material source in steel production; The secondary raw material source is steel scraps. 80% of steel production in our country is carried out in Electric Arc Furnaces (EAF), where steel scraps are used as raw materials. During steel production at EAF, 14-20 kg of flue dust containing 25-45% Zn is generated per 1 ton of steel, depending on the scrap composition. The flue dust formed is classified as hazardous waste because it contains significant amounts of zinc, iron and lead. Due to the fact that EAF flue dust contains both high amounts of Zn and is classified as hazardous waste, studies on Zn recovery from EAF flue dust have intensified in recent years. For this reason, hydrometallurgical applications for zinc recovery from EAF flue dust have been extensively investigated in recent years. In hydrometallurgical methods, the purpose is to take zinc into solution using acidic or basic solutions and then to gain Zn from the leach solution by solvent extraction or electrolysis. The aim of this study is to examine and compile the studies on Zn recovery from EAF flue dust by hydrometallurgical methods.

Proje Numarası

118M376

Kaynakça

  • Abdel Basir, S.M. & Rabah, M.A., (1999). Hydrometallurgical recovery of metal values from brass smelting slag, Hydrometallurgy, 53, 31-44.
  • Agatzini-Leonardou, S., Zafiratos, I.G. & Oustadakis, P., (2000). Process for the removal of aluminium and/or chromium from nickel and/or cobalt sulphate solutions at atmospheric pressure, Greek Patent: GR1003419. Antrekowitsch, J. & Antrekowitsch, H., (2001). Hydrometallurgically recovering zinc from elektric arc furnace dust, The Journal of The Minerals, Metals & Materials Society, 53 (12), 26-28.
  • Caravaca, C. & Alguacil, F.J., (1991). Study of the ZnSO4-Cyanex 302 extraction equilibrium system, Hydrometallurgy, 27, 327-338.
  • Caravaca, C., Cobo, A. & Alguacıl, F.J., (1994). Considerations about the recycling of EAF flue dusts as source for the recovery of valuable metals by hydrometallurgical processes, Conservation and Recycling, 10, 35-41.
  • Cole, P.M. & Sole, K.C., (2003). Zinc solvent extraction in the process industries, Mineral Processing & Extractive Metallurgy Review, 24(2), 91-137.
  • Diaz, G. & Martin, D., (1994). Modified zincex process: The clean, safe and profitable solution to zinc secondaries treatment, Resources, Conservation and Recycling, 10, 43-57.
  • Dreisinger, D., (1990). A challenge for the 1990s: the hydrometallugical treatment of waste and residues, JOM, 42(1), 27-27.
  • Dreisinger, D.B., Peters, E. & Morgan, G., (1990). The hydrometallurgical treatment of carbon steel electric arc furnace dusts by the UBC-Chaparral process, Hydrometallurgy, 25, 137-152.
  • [30] Dutra, A.J.B., Paiva, P.R.P. & Tavares, L.M., (2006). Alkaline leaching of zinc from electric arc furnace steel dust, Minerals Engineering, 19, 478-485.
  • Halli P., Hamuyuni J., Leikola M. & Lundström M., (2018). Developing a sustainable solution for recycling electric arc furnace dust via organic acid leaching. Minerals Engineering, 124, 1-9.
  • Havlik, T., Friedrich, B. & Stopic, S., (2004). Pressure leaching of EAF dust with sulphuric acid, World of Metallurgy-Erzmetall, 57, 113-120. Havlik, T., Souza, B.V., Bernardes, A.M., Schneider, I.A.H. & Miskufova, A., (2006). Hydrometallurgical processing of carbon steel EAF dust, Journal of Hazardous Materials, 135, 311-318.
  • Havlik, T., Turzakova, M., Stopic, S. & Friedrich, B., (2005). Atmospheric leaching of EAF dust with diluted sulphuric acid, Hydrometallurgy, 77, 41-50.
  • Jha M.K., Kumar V. & Singh R.J., (2001). Review of hydrometallurgical recovery of zinc from industrial wastes, Conservation and Recycling 33, 1-22.
  • Karavasteva, M., (1994). The electro deposition of metal impurities during the zinc electrowinning at high current density in the presence of some surfactants, Hydrometallurgy, 35(3), 391-396.
  • Khattaba R.M., El-Sayed Selemanb M.M. & Zawraha M.F., (2017). Assessment of electric arc furnace dust: Powder characterization and its sinterability as ceramic product, Ceramics International, 43,12939-12947.
  • Langova, S., Lesko, J. & Matysek, D., (2009). Selective leaching of zinc from zinc ferrite with hydrochloric acid, Hydrometallurgy, 95, 179-182.
  • Miki, T., Fujimoto, R.C. & Maruyama, K., (2016). Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution, Journal of Hazardous Materials, 302, 90-96.
  • Montenegro, V., Agatzini-Leonardou, S., Oustadakis, P. & Tsakiridis, P., (2016). Hydrometallurgical treatment of EAF dust by direct sulphuric acid leaching at atmospheric pressure, Waste Biomass Valorization, 7, 1531-1548
  • Mukongo, T., Maweja, K., Ngalu, B., Mutombo, I. & Tshilombo, K., (2009). Zinc recovery from the water-jacket furnace flue dusts by leaching and electrowinning in a SEC-CCS cell, Hydrometallurgy, 97 (1-2), 53-60.
  • Muresan, L., Maurin, G., Oniciu, L. & Avram, S., (1996). Effects of additives on zinc electrowinning from industrial waste products, Hydrometallurgy, 40 (3), 335-342.
  • Nakamura, T., Shibata, E., T. Takasu, T. &, Itou, H., (2008). Basic Consideration on EAF Dust Treatment Using Hydrometallurgical Processes, Resources Processing, 55,144-148.
  • Oustadakis, P., Tsakiridis, P.E., Katsiapi, A. & Agatzini-Leonardou, S., (2010). Hydrometallurgical process for Zn recovery from elektric arc furnace dust (EAFD) Part1: Characterization and leaching by diluted sulphuric acid, Journal of Hazardous Materials, 179, 1-7.
  • Oustadakis, P., Tsakiridis, P.E., Katsiapi, A. & Agatzini-Leonardou, S., (2010). Hydrometallurgical process for Zn recovery from elektric arc furnace dust (EAFD) Part 2: Downstream processing and zinc recovery by electrowinning, Journal Of Hazardous Materials, 179, 1-7.
  • Orhan, G., (2005). Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium, Hydrometallurgy, 78, 236-245.
  • Pelino M., Karamanov A., Pisciella P., Crisucci S. & Zonetti D., (2002). Vitrification of electric arc furnace dusts. Waste Manag., 22, 945-949.
  • Peng, N., Peng, B., Liu, H., Lin, D.H. & Xue, K., (2017). Leaching kinetics modelling of reductively roasted zinc calcine, Canadian Metall Quartarly, 3, 301-307,
  • Pickles C.A., (2009). Thermodynamic analysis of the selective chlorination of electric arc furnace dust, Journal of Hazardous Materials, 166, 1030-1042.
  • Piret, N.L. & Castle, J.F., (1990). Review of secondary zinc treatment process options, Recycling of Metalliferous Materials Conference, 23-25 April 1990, Birmingham, UK,181-219.
  • Polsilapa S., Wangyao P., (2007). Glassification of Electric Arc Furnace Dust by Using Fly Ash or Bagasse Ash, Journal of Metals, Materials and Minerals. 17 (1), 67-73. Recendiz, A., Gonzalez, I. & Nava, J.L., (2007). Current efficiency studies of the zinc electrowinning process on aluminum rotating cylinder electrode (RCE) in sulfuric acid medium: Influence of different additives, Electrochimica Acta, 52 (24), 6880-6887.
  • Shawabkey, R.A., (2010). Hydrometallurgical extraction of zinc from Jordanian elektric arc furnace dust, Hydrometallurgy, 104, 61-65.
  • Taha M.A., Nassar A.H. & Zawrah M.F., (2017). Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying, Ceram. Int., 43 (4), 3576-3582. Wadhawan, A.C., (1998). An overview of major non-ferrous minerals and metals in India, Metal News, 1 (5), 4-11
  • Wannakamb S., Manuskijsamrun S. & Buggakupta W., (2013). The use of electric arc furnace dust from steel recycling in ceramic glaze. Suranaree J. Sci. Technol., 20 (4), 329-337.
  • Wheatley, B.I. & Pooley, E.D., (1990). Production of zinc powder from arc and smelter flue dusts, Recycling of Metalliferous Materials Conference, 23-25 April 1990, Birmingham, UK, 291-299 Wolski, W. & Koztowska, I.O., (1971). Dissolutions velocity of zinc ferrite in Acids, Japan Society of Powder and Powder Metallurgy, 18, 8-18.
  • Xanthopoulos, P., Agatzini-Leonardou, S., Oustadakis, P., &Tsakiridis, P.E., (2017). Zinc recovery from purified electric arc furnace dust leach liquors by chemical precipitation, Journal of Environmental Chemical Engineering, 5, 3550-3559.
  • Yan, H., Chai, L., Peng, B., Li, M., Peng, N. & Hou, D., (2014). A Novel method to recover zinc and iron from zinc leaching residue, Minerals Engineering, 55, 103-110.
  • Youcai, Z. & Stanforth, R., (2000). Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium, Journal of Hazerdous Materials, 80, 223-240.
  • Zhanga, C., Wanga, J., Baia, J. & Zhaob, Y., (2012). Recovering of zinc from solid waste bearing sphalerite or zinc ferrite by mechano-chemical extraction in alkaline solution, Procedia Environmental Sciences, 16, 786-790.
  • Zhang C., Zhuang L., Wang J., Bai J. & Yuan W., (2016). Extraction of zinc from zinc ferrites by alkaline leaching: enhancing recovery by mechanochemical reduction with metallic iron, J. S. Afr. Inst. Min. Metall. 116 (12), 1111-1114.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ahmet Kalpaklı Bu kişi benim 0000-0002-8382-4085

Şevval Ayaz Bu kişi benim 0000-0003-2891-8377

Sedat İlhan 0000-0001-9976-0955

Mert Zorağa 0000-0002-7723-728X

Proje Numarası 118M376
Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 24 Nisan 2020
Kabul Tarihi 23 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kalpaklı, A., Ayaz, Ş., İlhan, S., Zorağa, M. (2020). Tehlikeli Atık Sınıfında Olan Elektrik Ark Fırını Baca Tozlarından Hidrometalurjik Yöntemler Kullanılarak Çinkonun Geri Kazanılması: Güncel Değerlendirmeler. Journal of Anatolian Environmental and Animal Sciences, 5(3), 274-282. https://doi.org/10.35229/jaes.726394


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS