Research Article
BibTex RIS Cite
Year 2022, , 505 - 526, 25.09.2022
https://doi.org/10.28979/jarnas.1037716

Abstract

References

  • Ardel, A. (1968). Jeomorfolojinin Prensipleri, Fasikül I. İstanbul: Istanbul University Institute of Geography Publication
  • Arkel, N. van. (1973). Die Gegenwärtige Vergletscherung des Ararat (The present-day glaciation of Ararat). Zeitscrift Für Gletscherkunde Und Glazialgeologie, 9, 89–103.
  • Atalay, İ. (2017). Türkiye Jeomorfolojisi. İzmir: Meta Printing Services.
  • Avci, V., & Sunkar, M. (2015). Giresun’da Sel ve Taşkın Oluşumuna Neden Olan Aksu Çayı ve Bat-lama Deresi Havzalarının Morfometrik Analizleri. Coğrafya Dergisi, (30), 91–119
  • Avci, V., & Sunkar, M. (2018). Bulancak’ta (Giresun) Sel Ve Taşkın Olaylarına Neden Olan Pazarsu-yu, İncüvez, Kara ve Bulancak Derelerinin Morfometrik Analizleri. Fırat Üniversitesi Sosyal Bilimler Dergisi, 28(2), 15–41
  • Avci, V., Sunkar, M., & Toprak, A. (2018). Ağrı Dağı’nın (Ararat) Morfometrik Analizleri. The Fourth International Mount Ararat And Noah’s Ark Symposium, Proceedings,. Presented at the The Fo-urth International Mount Ararat And Noah’s Ark Symposium, Ağrı
  • Azzoni, R. S., Zerboni, A., Pelfini, M., Garzonio, C. A., Cioni, R., Meraldi, E., Diolaiuti, G. A. (2017). Geomorphology of Mount Ararat/Ağri Daği (Ağri Daği Milli Parki, Eastern Anatolia, Turkey). Journal of Maps, 13(2), 182–190.
  • Bilgin, T. (2013). Kartoğrafya II. İstanbul: Filiz Kitabevi
  • Blumenthal, M. M. (1956). Die Vergletscherung des Ararat (Nordöstliche Türkei). Geographica Helve-tica, 11(4), 263–264
  • Blumenthal, M. M. (1958). Vom Agrı Dag (Ararat) zum Kaçkar Dag. Bergfahrten in nordost anatolisc-hen Glenzlanden (From Mount Ararat to Mount Kaçkar Mountain trip in the frontier region of northeastern Anatolia). Die Alpen, (34), 125–137.
  • Çiner, A. (2003). Recent glaciers and late quaternary glacial deposits of Turkey. Geological Bulletin of Turkey, 46(1), 56–78
  • Dikau, R. (1989). The application of a digital relief model to landform analysis in geomorphology. In In Three Dimensional Application in Geographic Information Systems (pp. 51–77). London: Taylor&Francis
  • Erginal, A. E., & Cürebal, İ. (2007). Soldere Havzasının Jeomorfolojik Özelliklerine Morfometrik Yaklaşım: Jeomorfik İndisler İle Bir Uygulama. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (17), 203–210
  • Erinç, S. (1953). Doğu Anadolu Coğrafyası (Vol. 15). İstanbul: İstanbul Üniversitesi Coğrafya Enstitü-sü
  • Erol, O. (1993). Ayrıntılı jeomorfoloji haritaları çizim yöntemi. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü Bülteni, 10, 19–37.
  • Florinsky, I. V. (1998). Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, 12(1), 47–62
  • Garg, S. K. (1983). Geology—The science of the earth. New Delhi: Khanna.
  • Güner, Y., & Şaroğlu, F. (1987). Doğu Anadolu’da Kuvaterner volkanizması ve jeotermal enerji açı-sından önemi. Türkiye, 7, 371–383
  • Horton, R. E. (1932). Drainage-basin characteristics. Eos, Transactions American Geophysical Union, 13(1), 350–361
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical app-roach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370.
  • Imhof, B. (1956). Der Ararat. Die Alpen, 32(1), 1–14.
  • Jenness, J. (2006). Topographic Position Index extension for ArcView 3. X, v. 1.2., Jenness Enterpri-ses.
  • Kaya, F. (2017). Ağrı Dağı. Ağrı: Republic of Turkey Agri Governorship Provincial Culture and Tou-rism Directorate Publications
  • Keller, E. A., & Pinter, N. (2002). Active tectonics: Earthquakes, uplift, and landscape. Prentice-Hall, Upper Saddle River
  • Kelson, K. I., & Wells, S. G. (1989). Geologic influences on fluvial hydrology and bedload transport in small mountainous watersheds, northern New Mexico, USA. Earth Surface Processes and Landforms, 14(8), 671–690
  • Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology. San Fran-cisco and London
  • Malik, M. I., Bhat, M. S., & Kuchay, N. A. (2011). Watershed based drainage morphometric analysis of Lidder catchment in Kashmir valley using geographical information system. Recent Research in Science and Technology, 3(4), 118–126
  • Moglen, G. E., Eltahir, E. A. B., & Bras, R. L. (1998). On the sensitivity of drainage density to climate change. Water Resources Research, (34), 855–862
  • Özşahin, E. (2015). Hoşköy Deresi Havzası’nın (Tekirdağ) Jeomorfometrik Özellikleri. International Journal of Social Science, 33, 99–120.
  • Rich, J. L. (1916). A graphical method of determining the average inclination of a land surface from a contour map. Transaction Illinois Academy of Science, 9, 196–199.
  • Riley, S. J., DeGloria, S. D., & Elliot, R. (1999). Index that quantifies topographic heterogeneity. In-termountain Journal of Sciences, 5(1–4), 23–27
  • Różycka, M., Migoń, P., & Michniewicz, A. (2017). Topographic Wetness Index and Terrain Rugged-ness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland. Zeitschrift Für Geomorphologie, Supplementary Issues, 61, 61–80.
  • Şahin, C. (2011). Türkiye Fiziki Coğrafyası (Extended 4th Edition). Ankara: Daytime Education and Publishing
  • Sarıkaya, M. A. (2012). Recession of the ice cap on Mount Ağrı (Ararat), Turkey, from 1976 to 2011 and its climatic significance. Journal of Asian Earth Sciences, 46, 190–194.
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646.
  • Şenel, M., & Ercan, T. (2002). 1/500.000 Ölçekli Türkiye Jeoloji Haritaları, Van Paftası. Ankara: Ma-den Tetkik ve Arama Genel Müdürlüğü.
  • Shary, P. A. (1995). Land surface in gravity points classification by a complete system of curvatures. Mathematical Geology, 27(3), 373–390.
  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Sci-ence, 248(9), 655–668.
  • Smith, M. J., Goodchild, M. F., & Longley, P. A. (2012). Geospatial analysis: A comprehensive guide, Electronic book.
  • Strahler, A. N. (1952a). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63(9), 923–938.
  • Strahler, A. N. (1952b). Hypsometric Analysis of Erosional Topography. Bull. Geol. Soc. Am. Vol-63.
  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel net work. Hand-book of Applied Hidrology, 4–76
  • Tağıl, Ş., & Jenness, J. (2008). GIS-based automated landform classification and topographic, land-cover and geologic attributes of landforms around the Yazoren Polje, Turkey.
  • Topuz, M., & Karabulut, M. (2016). Limonlu ve Alata Havzalarının (Mersin-Erdemli) Jeomorfometrik Analizi. Electronic Turkish Studies, 11(2).
  • Türkecan, A. (2017). Türkiye’nin Doğu Bölgelerinde Gözlenen Kuvaterner Yaşlı Volkanik Etkinlikle-ri. Doğal Kaynaklar ve Ekonomi Bülteni, (22).
  • Türkünal, S. (1980). Doğu ve Güneydoğu Anadolu’nun Jeolojisi. Ankara: Chamber of Geological En-gineers Publication
  • Weiss, A. (2001). Topographic position and landforms analysis. Poster Presentation, ESRI User Con-ference, San Diego, CA, 200.
  • Wentworth, C. K. (1930). A simplified method of determining the average slope of land surfaces. American Journal of Science, 5(117), 184–194.
  • Wilson, J. P., & Gallant, J. C. (2000). Terrain analysis: Principles and applications. John Wiley & Sons.

Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye)

Year 2022, , 505 - 526, 25.09.2022
https://doi.org/10.28979/jarnas.1037716

Abstract

In this study, the morphometric characteristics of Mount Ararat which is a strato-volcano are analyzed. Türkiye’s highest Mountain, Mount Ararat, is located in Eastern Anatolia. The Mountain takes the shape of two major volcanic cones after 2500 m height; these volcanic cones are named Greater Mount Ararat (5137 m) and Little Mount Ararat (3896 m). In this study, relief morphometry, basin morphometry, and drainage characteristics are morphometrically analyzed with Geographic Information Systems (GIS) using 10x10 m resolution Digital Elevation Model (DEM). According to the analysis results, there is an increase in the elevation on the high and steep slopes of the main cone and the slope values increase up to 56° in some locations towards the summit. On the other hand, according to the aspect analyses, 19.9% of slope faces are north-east direction, 14.7% of the slopes are north-direction, 9.4% are northwest, 9.8% are west, 10.7% are southeast, and 16.4% of the slopes are east direction. These results support the fact that Mount Ararat extends in NW-SE direction and is formed on the basis of a fault line in this direction. According to the grouping made by the altitude ranges analysis, the decrease in the rate of elevation belts starting from the slopes of the mountain towards the top confirms the structure of volcanic cone. Elevation differences in relative relief analyses range between 0 and 1141 m and this value increases to 1141 m on the slopes surrounding the summit. The cone structure of Mount Ararat was prominent in transverse and longitudinal profile analyses.

References

  • Ardel, A. (1968). Jeomorfolojinin Prensipleri, Fasikül I. İstanbul: Istanbul University Institute of Geography Publication
  • Arkel, N. van. (1973). Die Gegenwärtige Vergletscherung des Ararat (The present-day glaciation of Ararat). Zeitscrift Für Gletscherkunde Und Glazialgeologie, 9, 89–103.
  • Atalay, İ. (2017). Türkiye Jeomorfolojisi. İzmir: Meta Printing Services.
  • Avci, V., & Sunkar, M. (2015). Giresun’da Sel ve Taşkın Oluşumuna Neden Olan Aksu Çayı ve Bat-lama Deresi Havzalarının Morfometrik Analizleri. Coğrafya Dergisi, (30), 91–119
  • Avci, V., & Sunkar, M. (2018). Bulancak’ta (Giresun) Sel Ve Taşkın Olaylarına Neden Olan Pazarsu-yu, İncüvez, Kara ve Bulancak Derelerinin Morfometrik Analizleri. Fırat Üniversitesi Sosyal Bilimler Dergisi, 28(2), 15–41
  • Avci, V., Sunkar, M., & Toprak, A. (2018). Ağrı Dağı’nın (Ararat) Morfometrik Analizleri. The Fourth International Mount Ararat And Noah’s Ark Symposium, Proceedings,. Presented at the The Fo-urth International Mount Ararat And Noah’s Ark Symposium, Ağrı
  • Azzoni, R. S., Zerboni, A., Pelfini, M., Garzonio, C. A., Cioni, R., Meraldi, E., Diolaiuti, G. A. (2017). Geomorphology of Mount Ararat/Ağri Daği (Ağri Daği Milli Parki, Eastern Anatolia, Turkey). Journal of Maps, 13(2), 182–190.
  • Bilgin, T. (2013). Kartoğrafya II. İstanbul: Filiz Kitabevi
  • Blumenthal, M. M. (1956). Die Vergletscherung des Ararat (Nordöstliche Türkei). Geographica Helve-tica, 11(4), 263–264
  • Blumenthal, M. M. (1958). Vom Agrı Dag (Ararat) zum Kaçkar Dag. Bergfahrten in nordost anatolisc-hen Glenzlanden (From Mount Ararat to Mount Kaçkar Mountain trip in the frontier region of northeastern Anatolia). Die Alpen, (34), 125–137.
  • Çiner, A. (2003). Recent glaciers and late quaternary glacial deposits of Turkey. Geological Bulletin of Turkey, 46(1), 56–78
  • Dikau, R. (1989). The application of a digital relief model to landform analysis in geomorphology. In In Three Dimensional Application in Geographic Information Systems (pp. 51–77). London: Taylor&Francis
  • Erginal, A. E., & Cürebal, İ. (2007). Soldere Havzasının Jeomorfolojik Özelliklerine Morfometrik Yaklaşım: Jeomorfik İndisler İle Bir Uygulama. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (17), 203–210
  • Erinç, S. (1953). Doğu Anadolu Coğrafyası (Vol. 15). İstanbul: İstanbul Üniversitesi Coğrafya Enstitü-sü
  • Erol, O. (1993). Ayrıntılı jeomorfoloji haritaları çizim yöntemi. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü Bülteni, 10, 19–37.
  • Florinsky, I. V. (1998). Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, 12(1), 47–62
  • Garg, S. K. (1983). Geology—The science of the earth. New Delhi: Khanna.
  • Güner, Y., & Şaroğlu, F. (1987). Doğu Anadolu’da Kuvaterner volkanizması ve jeotermal enerji açı-sından önemi. Türkiye, 7, 371–383
  • Horton, R. E. (1932). Drainage-basin characteristics. Eos, Transactions American Geophysical Union, 13(1), 350–361
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical app-roach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370.
  • Imhof, B. (1956). Der Ararat. Die Alpen, 32(1), 1–14.
  • Jenness, J. (2006). Topographic Position Index extension for ArcView 3. X, v. 1.2., Jenness Enterpri-ses.
  • Kaya, F. (2017). Ağrı Dağı. Ağrı: Republic of Turkey Agri Governorship Provincial Culture and Tou-rism Directorate Publications
  • Keller, E. A., & Pinter, N. (2002). Active tectonics: Earthquakes, uplift, and landscape. Prentice-Hall, Upper Saddle River
  • Kelson, K. I., & Wells, S. G. (1989). Geologic influences on fluvial hydrology and bedload transport in small mountainous watersheds, northern New Mexico, USA. Earth Surface Processes and Landforms, 14(8), 671–690
  • Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology. San Fran-cisco and London
  • Malik, M. I., Bhat, M. S., & Kuchay, N. A. (2011). Watershed based drainage morphometric analysis of Lidder catchment in Kashmir valley using geographical information system. Recent Research in Science and Technology, 3(4), 118–126
  • Moglen, G. E., Eltahir, E. A. B., & Bras, R. L. (1998). On the sensitivity of drainage density to climate change. Water Resources Research, (34), 855–862
  • Özşahin, E. (2015). Hoşköy Deresi Havzası’nın (Tekirdağ) Jeomorfometrik Özellikleri. International Journal of Social Science, 33, 99–120.
  • Rich, J. L. (1916). A graphical method of determining the average inclination of a land surface from a contour map. Transaction Illinois Academy of Science, 9, 196–199.
  • Riley, S. J., DeGloria, S. D., & Elliot, R. (1999). Index that quantifies topographic heterogeneity. In-termountain Journal of Sciences, 5(1–4), 23–27
  • Różycka, M., Migoń, P., & Michniewicz, A. (2017). Topographic Wetness Index and Terrain Rugged-ness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland. Zeitschrift Für Geomorphologie, Supplementary Issues, 61, 61–80.
  • Şahin, C. (2011). Türkiye Fiziki Coğrafyası (Extended 4th Edition). Ankara: Daytime Education and Publishing
  • Sarıkaya, M. A. (2012). Recession of the ice cap on Mount Ağrı (Ararat), Turkey, from 1976 to 2011 and its climatic significance. Journal of Asian Earth Sciences, 46, 190–194.
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646.
  • Şenel, M., & Ercan, T. (2002). 1/500.000 Ölçekli Türkiye Jeoloji Haritaları, Van Paftası. Ankara: Ma-den Tetkik ve Arama Genel Müdürlüğü.
  • Shary, P. A. (1995). Land surface in gravity points classification by a complete system of curvatures. Mathematical Geology, 27(3), 373–390.
  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Sci-ence, 248(9), 655–668.
  • Smith, M. J., Goodchild, M. F., & Longley, P. A. (2012). Geospatial analysis: A comprehensive guide, Electronic book.
  • Strahler, A. N. (1952a). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63(9), 923–938.
  • Strahler, A. N. (1952b). Hypsometric Analysis of Erosional Topography. Bull. Geol. Soc. Am. Vol-63.
  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel net work. Hand-book of Applied Hidrology, 4–76
  • Tağıl, Ş., & Jenness, J. (2008). GIS-based automated landform classification and topographic, land-cover and geologic attributes of landforms around the Yazoren Polje, Turkey.
  • Topuz, M., & Karabulut, M. (2016). Limonlu ve Alata Havzalarının (Mersin-Erdemli) Jeomorfometrik Analizi. Electronic Turkish Studies, 11(2).
  • Türkecan, A. (2017). Türkiye’nin Doğu Bölgelerinde Gözlenen Kuvaterner Yaşlı Volkanik Etkinlikle-ri. Doğal Kaynaklar ve Ekonomi Bülteni, (22).
  • Türkünal, S. (1980). Doğu ve Güneydoğu Anadolu’nun Jeolojisi. Ankara: Chamber of Geological En-gineers Publication
  • Weiss, A. (2001). Topographic position and landforms analysis. Poster Presentation, ESRI User Con-ference, San Diego, CA, 200.
  • Wentworth, C. K. (1930). A simplified method of determining the average slope of land surfaces. American Journal of Science, 5(117), 184–194.
  • Wilson, J. P., & Gallant, J. C. (2000). Terrain analysis: Principles and applications. John Wiley & Sons.
There are 49 citations in total.

Details

Primary Language English
Subjects General Geology
Journal Section Research Article
Authors

Vedat Avci 0000-0003-1439-3098

Murat Sunkar 0000-0002-4479-5023

Ahmet Toprak 0000-0001-6790-1856

Publication Date September 25, 2022
Submission Date December 18, 2021
Published in Issue Year 2022

Cite

APA Avci, V., Sunkar, M., & Toprak, A. (2022). Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye). Journal of Advanced Research in Natural and Applied Sciences, 8(3), 505-526. https://doi.org/10.28979/jarnas.1037716
AMA Avci V, Sunkar M, Toprak A. Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye). JARNAS. September 2022;8(3):505-526. doi:10.28979/jarnas.1037716
Chicago Avci, Vedat, Murat Sunkar, and Ahmet Toprak. “Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye)”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 3 (September 2022): 505-26. https://doi.org/10.28979/jarnas.1037716.
EndNote Avci V, Sunkar M, Toprak A (September 1, 2022) Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye). Journal of Advanced Research in Natural and Applied Sciences 8 3 505–526.
IEEE V. Avci, M. Sunkar, and A. Toprak, “Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye)”, JARNAS, vol. 8, no. 3, pp. 505–526, 2022, doi: 10.28979/jarnas.1037716.
ISNAD Avci, Vedat et al. “Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye)”. Journal of Advanced Research in Natural and Applied Sciences 8/3 (September 2022), 505-526. https://doi.org/10.28979/jarnas.1037716.
JAMA Avci V, Sunkar M, Toprak A. Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye). JARNAS. 2022;8:505–526.
MLA Avci, Vedat et al. “Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye)”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 3, 2022, pp. 505-26, doi:10.28979/jarnas.1037716.
Vancouver Avci V, Sunkar M, Toprak A. Morphometric Analysis of Mount Ararat (Eastern Anatolia, Türkiye). JARNAS. 2022;8(3):505-26.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).