Research Article
BibTex RIS Cite

Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays

Year 2022, , 340 - 346, 25.09.2022
https://doi.org/10.28979/jarnas.1039429

Abstract

The electrodeposition coated graphene oxide (GO) sheets on semiconductor metal oxide substrates are reduced to produce transparent, flexible, and conductive electrodes. Electrochemically produced bismuth oxide nanoflower films with high crystallinity were characterized by depositing reduced graphene oxide (GO) films on top. The influence of coating period on the shape, structure, and characteristics of electrochemically formed metal oxides was also examined. The graphene oxide modified metal oxide electrode was successfully manufactured using an electrochemical method and characterized using potential controlled electrochemical deposition, atomic force microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction techniques, and Raman measurements. By controlling the deposition period, we can regulate the form and size of electroprecipita-ted bismuth oxide/graphene oxide nanostructures using this electrochemical method from aqueous bismuth oxi-de/graphene oxide suspensions. The nanostructured bismuth oxide/graphene oxide electrode that results has high photovoltaic characteristics and can be employed in solar energy conversion applications. Our findings suggest that indium tin oxide (ITO) or bismuth oxide-GO films on gold electrodes may be used to enhance surface area in electrochemical synthesis, and that it is conceivable to synthesize semiconductor metal oxides in GO films for future flexible photovoltaic applications.

References

  • Anandan, S., Lee, G. J., Chen, P. K., Fan, C., & Wu, J. J. (2010). Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods. Industrial & engineering chemistry research, 49(20), 9729-9737.
  • Eberl, J., & Kisch, H. (2008). Visible light photo-oxidations in the presence of α-Bi2O3. Photochemical & Photobiological Sciences, 7(11), 1400-1406.
  • Jiang, H. Y., Cheng, K., & Lin, J. (2012). Crystalline metallic Au nanoparticle-loaded α-Bi2O3 microrods for improved photocatalysis. Physical Chemistry Chemical Physics, 14(35), 12114-12121.
  • Kamat, P. V. (2011). Graphene-based nanoassemblies for energy conversion. The Journal of Physical Chemistry Letters, 2(3), 242-251. Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y. J., Berger, C., ... & Riedo, E. (2012). Room-temperature metastability of multilayer graphene oxide films. Nature materials, 11(6), 544-549.
  • Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of physical chemistry A, 115(46), 13211-13241.
  • Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., ... & Ajayan, P. M. (2012). Controlled, stepwise reduction and band gap manipulation of graphene oxide. The journal of physical chemistry letters, 3(8), 986-991.
  • McAllister, M. J., Li, J. L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., ... & Aksay, I. A. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of materials, 19(18), 4396-4404.
  • Panda, P. K. (2009). Environmental friendly lead-free piezoelectric materials. Journal of materials science, 44(19), 504
  • Rubbens, A., Drache, M., Roussel, P., & Wignacourt, J. P. (2007). Raman scattering characterization of bismuth based mixed oxides with Bi2O3 related structures. Materials research bulletin, 42(9), 1683-1690.9-5062.
  • Taufik, S., Yusof, N. A., Tee, T. W., & Ramli, I. (2011). Bismuth oxide nanoparticles/chitosan/modified electrode as biosensor for DNA hybridization. Int. J. Electrochem. Sci, 6, 1880-1891.
  • Yang, W. D., & Lin, Y. J. (2020). Highly Oriented β-Bi2O3-decorated Reduced Graphene Oxide Composites for Supercapacitor Electrodes. Int. J. Electrochem. Sci, 15, 1915-1929.
  • Zhu, G., Que, W., & Zhang, J. (2011). Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation. Journal of alloys and compounds, 509(39), 9479-9486.
Year 2022, , 340 - 346, 25.09.2022
https://doi.org/10.28979/jarnas.1039429

Abstract

Şeffaf, esnek ve iletken elektrotlar, yarı iletken metal oksit substratlar üzerine elektrodepozisyon ile kaplanmış grafen oksit (GO) filmlerinin indirgenmesiyle hazırlanır. İyi kristalliğe sahip bizmut oksit nanoçiçek filmleri elekt-rokimyasal olarak biriktirilmiş ve daha sonra üzerine indirgenmiş grafen oksit (GO) filmleri kaplanarak karakterize edilmiştir. Aynı zamanda, elektrokimyasal olarak biriktirilen metal oksidin morfolojisi, yapısı ve özelliği üzerindeki kaplamanın etki süresi de incelenmiştir. Grafen oksit modifiye metal oksit elektrot, bir elektrokimyasal yöntem kullanılarak başarılı bir şekilde üretildi ve potansiyel kontrollü elektrokimyasal biriktirme, atomik kuvvet mikrosko-bu (AFM), taramalı elektron mikroskobu (SEM), enerji dağılımlı spektroskopi (EDS), X ışını kırınım teknikleri (XRD), Raman ölçümleri ile karakterize edildi. Deneysel sonuçlar, sulu bizmut oksit/grafen oksit süspansiyonların-dan gelen bu elektrokimyasal yaklaşımın, biriktirme süresini ayarlayarak, elektro-çökeltilmiş bizmut oksit/grafen oksit nanoyapılarının morfolojisini ve boyutunu kontrol etmemize izin verdiğini göstermektedir. Elde edilen nano yapılı bizmut oksit/grafen oksit elektrot, iyi fotovoltaik özellikler sergiler ve güneş enerjisi dönüşümündeki uygula-malar için kullanılabilir. Sonuçlarımız, elektrokimyasal sentezde indiyum kalay oksit (ITO) veya altın elektrotları üzerinde bulunan bizmut oksit- GO filmleriyle yüzey alanını artırmanın olası bir yolunu sunar ve gelecekteki esnek fotovoltaik uygulamalar için GO filmlerinde yarı iletken metal oksitleri sentezlemeyi umut verici kılar.

References

  • Anandan, S., Lee, G. J., Chen, P. K., Fan, C., & Wu, J. J. (2010). Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods. Industrial & engineering chemistry research, 49(20), 9729-9737.
  • Eberl, J., & Kisch, H. (2008). Visible light photo-oxidations in the presence of α-Bi2O3. Photochemical & Photobiological Sciences, 7(11), 1400-1406.
  • Jiang, H. Y., Cheng, K., & Lin, J. (2012). Crystalline metallic Au nanoparticle-loaded α-Bi2O3 microrods for improved photocatalysis. Physical Chemistry Chemical Physics, 14(35), 12114-12121.
  • Kamat, P. V. (2011). Graphene-based nanoassemblies for energy conversion. The Journal of Physical Chemistry Letters, 2(3), 242-251. Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y. J., Berger, C., ... & Riedo, E. (2012). Room-temperature metastability of multilayer graphene oxide films. Nature materials, 11(6), 544-549.
  • Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of physical chemistry A, 115(46), 13211-13241.
  • Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., ... & Ajayan, P. M. (2012). Controlled, stepwise reduction and band gap manipulation of graphene oxide. The journal of physical chemistry letters, 3(8), 986-991.
  • McAllister, M. J., Li, J. L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., ... & Aksay, I. A. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of materials, 19(18), 4396-4404.
  • Panda, P. K. (2009). Environmental friendly lead-free piezoelectric materials. Journal of materials science, 44(19), 504
  • Rubbens, A., Drache, M., Roussel, P., & Wignacourt, J. P. (2007). Raman scattering characterization of bismuth based mixed oxides with Bi2O3 related structures. Materials research bulletin, 42(9), 1683-1690.9-5062.
  • Taufik, S., Yusof, N. A., Tee, T. W., & Ramli, I. (2011). Bismuth oxide nanoparticles/chitosan/modified electrode as biosensor for DNA hybridization. Int. J. Electrochem. Sci, 6, 1880-1891.
  • Yang, W. D., & Lin, Y. J. (2020). Highly Oriented β-Bi2O3-decorated Reduced Graphene Oxide Composites for Supercapacitor Electrodes. Int. J. Electrochem. Sci, 15, 1915-1929.
  • Zhu, G., Que, W., & Zhang, J. (2011). Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation. Journal of alloys and compounds, 509(39), 9479-9486.
There are 12 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Fatma Bayrakçeken Nişancı 0000-0002-3166-2301

Publication Date September 25, 2022
Submission Date December 21, 2021
Published in Issue Year 2022

Cite

APA Bayrakçeken Nişancı, F. (2022). Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays. Journal of Advanced Research in Natural and Applied Sciences, 8(3), 340-346. https://doi.org/10.28979/jarnas.1039429
AMA Bayrakçeken Nişancı F. Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays. JARNAS. September 2022;8(3):340-346. doi:10.28979/jarnas.1039429
Chicago Bayrakçeken Nişancı, Fatma. “Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 3 (September 2022): 340-46. https://doi.org/10.28979/jarnas.1039429.
EndNote Bayrakçeken Nişancı F (September 1, 2022) Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays. Journal of Advanced Research in Natural and Applied Sciences 8 3 340–346.
IEEE F. Bayrakçeken Nişancı, “Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays”, JARNAS, vol. 8, no. 3, pp. 340–346, 2022, doi: 10.28979/jarnas.1039429.
ISNAD Bayrakçeken Nişancı, Fatma. “Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays”. Journal of Advanced Research in Natural and Applied Sciences 8/3 (September 2022), 340-346. https://doi.org/10.28979/jarnas.1039429.
JAMA Bayrakçeken Nişancı F. Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays. JARNAS. 2022;8:340–346.
MLA Bayrakçeken Nişancı, Fatma. “Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 3, 2022, pp. 340-6, doi:10.28979/jarnas.1039429.
Vancouver Bayrakçeken Nişancı F. Controllable Electrochemical Synthesis and Photovoltaic Performance of Bismuth Oxide/Graphene Oxide Nanostructure Arrays. JARNAS. 2022;8(3):340-6.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).