Research Article
BibTex RIS Cite

Characterization of ZnMnCuO Nanoparticles: Photocatalytic and Hemolytic Properties

Year 2022, , 429 - 442, 25.09.2022
https://doi.org/10.28979/jarnas.1064592

Abstract

Zinc oxide (ZnO)-based nano-sized particles have attracted a lot of interest in recent years due to their photoca-talytic effects, their relatively high surface/volume ratio and photo-stability, as well as their biological potential. In this study, nano-sized manganese doped zinc-copper oxide nanoparticles (Zn0.99-xMnxCu0.01O x = 0.00, 0.01, 0.03, 0.05, 0.10) were synthesized by sol-gel method. Morphological structures, photocatalytic performances and he-molytic properties of Zn0.99-xMnxCu0.01O nanoparticles synthesized by using copper, zinc and manganese acetates precursors were investigated. The obtained results are given in comparison with the findings of nano-sized ZnCuO particles synthesized by the same method. The crystal structure properties of the samples and the morphological properties of the surfaces were investigated using x-ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM), respectively. In addition to the structural characterizations, the photocatalytic properties of Zn0.99-xMnxCu0.01O nanoparticles were also investigated using crystal violet (CV) as a model organic molecule and the photocatalytic degradation process of CV had been followed by ultraviolet-visible (UV-vis) spectroscopy. In addition, blood compatibility tests were carried out to determine whether Zn0.99-xMnxCu0.01O nanoparticles have potential for biomedical applications. It was determined that the highest photocatalytic activity and the highest blood compatibility among the synthesized samples were shown by Zn0.94Mn0.05Cu0.01O nanoparticles. It has been shown that Zn0.94Mn0.05Cu0.01O degraded 78.1% of the initial amount of CV after 330 minutes, and caused he-molysis below 5% at both nanoparticle concentrations corresponding to a significant blood compatibility.

References

  • Acharya, A. D., Moghe, S., Panda, R., Shrivastava, S. B., Gangrade, M., Shripathi, T., Ganesan, V. (2012). Effect of Cd dopant on electrical and optical properties of ZnO thin films prepared by spray pyrolysis route. Thin Solid Films, 525, 49-55. https://doi.org/10.1016/j.tsf.2012.10.100
  • Aggarwal, N., Vasishth, A., Singh, B., & Singh, B. (2018). Investigation of room temperature ferromagnetic behaviour in dilute magnetic oxides. Integrated Ferroelectrics, 186(1), 10-16. https://doi.org/10.1080/10584587.2017.1369317
  • Ahmad, S., Aadil, M., Ejaz, S. R., Akhtar, M. U., Noor, H., Haider, S., Yasmin, G. (2022). Sol-gel synthesis of nanostructured ZnO/SrZnO2 with boosted antibacterial and photocatalytic activity. Ceramics International, 48(2), 2394-2405. https://doi.org/10.1016/j.ceramint.2021.10.020
  • Al-Buriahi, A. K., Al-Gheethi, A. A., Kumar, P. S., Mohamed, R. M. S. R., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162. https://doi.org/10.1016/j.chemosphere.2021.132162
  • Azzam, E. M. S., & Zaki, M. F. (2016). Surface and antibacterial activity of synthesized nonionic surfactant assembled on metal nanoparticles. Egyptian Journal of Petroleum, 25(2), 153-159. https://doi.org/10.1016/j.ejpe.2015.04.005
  • Balcha, A., Yadav, O. P., & Dey, T. (2016). Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environmental Science and Pollution Research, 23(24), 25485-25493. https://doi.org/10.1007/s11356-016-7750-6
  • Beitollahi, H., Tajik, S., Nejad, F. G., & Safaei, M. (2020). Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. Journal of Materials Chemistry B, 8(27), 5826-5844. https://doi.org/10.1039/D0TB00569J
  • Bijang, C. M., Nurdin, M., Latupeirissa, J., Aziz, T., & Talapessy, F. (2022). The Ouw Natural Clay Impregnation Using Titanium Dioxide as a Rhodamine B Dyestuff Degrader. Indonesian Journal of Chemical Research, 9(3), 144-149. https://doi.org/10.30598//ijcr
  • Bilgili, A. K., Akpınar, Ö., Kurtuluş, G., Öztürk, M. K., Ozcelik, S., & Ozbay, E. (2019). Lattice parameters a-, c-, strain-stress analysis and thermal expansion coefficient of InGaN/GaN solar cell structures grown by MOCVD. Politeknik Dergisi, 22(1), 33-39. https://doi.org/10.2339/politeknik.403978
  • Bopape, D. A., Motaung, D. E., & Hintsho-Mbita, N. C. (2022). Green synthesis of ZnO: Effect of plant concentration on the morphology, optical properties and photodegradation of dyes and antibiotics in wastewater. Optik, 251, 168459. https://doi.org/10.1016/j.ijleo.2021.168459
  • Carofiglio, M., Barui, S., Cauda, V., & Laurenti, M. (2020). Doped zinc oxide nanoparticles: Synthesis, characterization and potential use in nanomedicine. Applied Sciences, 10(15), 5194. https://doi.org/10.3390/app10155194
  • Cho, Y., Woo, J. H., Kwon, O. S., Yoon, S. S., & Son, J. (2019). Alterations in phospholipid profiles of erythrocytes deep‐frozen without cryoprotectants. Drug testing and analysis, 11(8), 1231-1237. https://doi.org/10.1002/dta.2600
  • Guler, A., Arda, L., Dogan, N., Boyraz, C., & Ozugurlu, E. (2019). The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles. Ceramics International, 45(2), 1737-1745. https://doi.org/10.1016/j.ceramint.2018.10.056
  • Hasan, F. A., & Hussein, M. T. (2021). Study of some electronic and spectroscopic properties of ZnO nanostructers by density functional theory. Materials Today: Proceedings, 42, 2638-2644. https://doi.org/10.1016/j.matpr.2020.12.593
  • He, X., Gui, Y., Xie, J., Liu, X., Wang, Q., & Tang, C. (2020). A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT. Applied Surface Science, 500, 144030. https://doi.org/10.1016/j.apsusc.2019.144030
  • Hou, Q., Qi, M., Yin, X., Wang, Z., & Sha, S. (2022). First principles study of carrier activity, lifetime and absorption spectrum to investigate effects of strain on the photocatalytic performance of doped ZnO. Current Applied Physics, 33, 41-50. https://doi.org/10.1016/j.cap.2021.09.012
  • Islam, S. E., Hang, D. R., Chen, C. H., & Sharma, K. H. (2018). Facile and Cost‐Efficient Synthesis of Quasi‐0D/2D ZnO/MoS2 Nanocomposites for Highly Enhanced Visible‐Light‐Driven Photocatalytic Degradation of Organic Pollutants and Antibiotics. Chemistry–A European Journal, 24(37), 9305-9315. https://doi.org/10.1002/chem.201801397
  • Jha, M., & Shimpi, N. G. (2018). Spherical nanosilver: Bio-inspired green synthesis, characterizations, and catalytic applications. Nano-Structures & Nano-Objects, 16, 234-249. https://doi.org/10.1016/j.nanoso.2018.07.004
  • Karthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., & Sivaramakrishnan, S. (2017). Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. Journal of Materials Science: Materials in Electronics, 28(15), 11420-11429. https://doi.org/10.1007/s10854-017-6937-z
  • Khan, U., Jan, F. A., Ullah, R., & Ullah, N. (2022). Comparative photocatalytic performance and therapeutic applications of zinc oxide (ZnO) and neodymium-doped zinc oxide (Nd–ZnO) nanocatalysts against Acid Yellow-3 dye: kinetic and thermodynamic study of the reaction and effect of various parameters. Journal of Materials Science: Materials in Electronics, 1-20. https://doi.org/10.1007/s10854-021-07483-0
  • Kokila, N. R., Mahesh, B., Roopa, K. P., Prasad, B. D., Raj, K., Manjula, S. N., Ramu, R. (2022). Thunbergia mysorensis mediated Nano Silver Oxide for Enhanced Antibacterial, Antioxidant, Anticancer potential and in vitro Hemolysis Evaluation. Journal of Molecular Structure, 132455. https://doi.org/10.1016/j.molstruc.2022.132455
  • Lee, D., Park, D., Shin, K., Seo, H. M., Lee, H., Choi, Y., & Kim, J. W. (2021). ZnO nanoparticles-laden cellulose nanofibers-armored Pickering emulsions with improved UV protection and water resistance. Journal of Industrial and Engineering Chemistry, 96, 219-225. https://doi.org/10.1016/j.jiec.2021.01.018
  • Li, H. C., Hsieh, F. J., Chen, C. P., Chang, M. Y., Hsieh, P. C., Chen, C. C., Chang, H. C. (2013). The hemocompatibility of oxidized diamond nanocrystals for biomedical applications. Scientific reports, 3(1), 1-8. https://doi.org/10.1038/srep03044
  • Li, H., Liu, J., Wang, C., Yang, H., & Xue, X. (2022). Oxygen vacancies-enriched and porous hierarchical structures of ZnO microspheres with improved photocatalytic performance. Vacuum, 110891. https://doi.org/10.1016/j.vacuum.2022.110891
  • Li, Y., Liao, C., & Tjong, S. C. (2020). Recent advances in zinc oxide nanostructures with antimicrobial activities. International Journal of Molecular Sciences, 21(22), 8836. https://doi.org/10.3390/ijms21228836
  • Li, X., Lu, H., Zhang, Y., & He, F. (2017). Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs-CoFe2O4 magnetic nanocomposites. Chemical Engineering Journal, 316, 893-902. https://doi.org/10.1016/j.cej.2017.02.037
  • Markiewicz, K. H., Zembko, P., Półtorak, K., Misztalewska, I., Wojtulewski, S., Majcher, A. M., Wilczewska, A. Z. (2016). Magnetic nanoparticles with chelating shells prepared by RAFT/MADIX polymerization. New Journal of Chemistry, 40(11), 9223-9231. https://doi.org/10.1039/C6NJ01938B
  • Murali, M., Kalegowda, N., Gowtham, H. G., Ansari, M. A., Alomary, M. N., Alghamdi, S., Amruthesh, K. N. (2021). Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics, 13(10), 1662. https://doi.org/10.3390/pharmaceutics13101662
  • Naik, M. M., Naik, H. B., Nagaraju, G., Vinuth, M., Vinu, K., & Rashmi, S. K. (2018). Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. Journal of Materials Science: Materials in Electronics, 29(23), 20395-20414. https://doi.org/10.1007/s10854-018-0174-y
  • Ozcelik, S., Yalcin, B., Arda, L., Santos, H., Sáez-Puche, R., Angurel, L. A., Ozcelik, B. (2021). Structure, magnetic, photocatalytic and blood compatibility studies of nickel nanoferrites prepared by laser ablation technique in distilled water. Journal of Alloys and Compounds, 854, 157279. https://doi.org/10.1016/j.jallcom.2020.157279
  • Pillai, A. M., Sivasankarapillai, V. S., Rahdar, A., Joseph, J., Sadeghfar, F., Rajesh, K., & Kyzas, G. Z. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 1211, 128107. https://doi.org/10.1016/j.molstruc.2020.128107
  • Rani, M., & Shanker, U. (2022). Green nanomaterials: An overview. Green Functionalized Nanomaterials for Environmental Applications, 43-80. https://doi.org/10.1016/B978-0-12-823137-1.00026-9
  • Rao, A. N., Sivasankar, B., & Sadasivam, V. (2009). Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst. Journal of Molecular Catalysis A: Chemical, 306(1-2), 77-81. https://doi.org/10.1016/j.molcata.2009.02.028
  • Reynolds, J. G., & Reynolds, C. L. (2014). Progress in ZnO acceptor doping: what is the best strategy?. Advances in Condensed Matter Physics, 2014. https://doi.org/10.1155/2014/457058
  • Saleh, R., & Djaja, N. F. (2014). UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices and Microstructures, 74, 217-233. https://doi.org/10.1016/j.spmi.2014.06.013
  • Saravanan, R., Karthikeyan, S., Gupta, V. K., Sekaran, G., Narayanan, V., & Stephen, A. J. M. S. (2013). Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering: C, 33(1), 91-98. https://doi.org/10.1016/j.msec.2012.08.011
  • Sathi, A., Viswanad, V., Aneesh, T. P., & Kumar, B. A. (2014). Pros and cons of phospholipid asymmetry in erythrocytes. Journal of pharmacy & bioallied sciences, 6(2), 81. https://doi.org/10.4103/0975-7406.129171
  • Senol, S. D., Yalcin, B., Ozugurlu, E., & Arda, L. (2020). Structure, microstructure, optical and photocatalytic properties of Mn-doped ZnO nanoparticles. Materials Research Express, 7(1), 015079. https://doi.org/10.1088/2053-1591/ab5eea
  • Sha, R., Puttapati, S. K., Srikanth, V. V., & Badhulika, S. (2017a). Ultra-sensitive phenol sensor based on overcoming surface fouling of reduced graphene oxide-zinc oxide composite electrode. Journal of Electroanalytical Chemistry, 785, 26-32. https://doi.org/10.1016/j.jelechem.2016.12.001
  • Sha, R., Puttapati, S. K., Srikanth, V. V., & Badhulika, S. (2017b). Ultra-sensitive non-enzymatic ethanol sensor based on reduced graphene oxide-zinc oxide composite modified electrode. IEEE Sensors Journal, 18(5), 1844-1848. https://doi.org/10.1109/JSEN.2017.2787538
  • Shen, W., Li, Z., Wang, H., Liu, Y., Guo, Q., & Zhang, Y. (2008). Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol–gel methods. Journal of Hazardous Materials, 152(1), 172-175. https://doi.org/10.1016/j.jhazmat.2007.06.082
  • Shi, Y., Liu, Q. G., Chen, Y., & Wang, M. H. (2022). Synthesis and properties of rod-like ZnO composite powders by the reflux method. Journal of Materials Science: Materials in Electronics, 1-10. https://doi.org/10.1007/s10854-021-07548-0
  • Thirumoorthy, G. S., Balasubramaniam, O., Kumaresan, P., Muthusamy, P., & Subramani, K. (2021). Tetraselmis indica mediated green synthesis of zinc oxide (ZnO) nanoparticles and evaluating its antibacterial, antioxidant, and hemolytic activity. BioNanoScience, 11(1), 172-181. https://doi.org/10.1007/s12668-020-00817-y
  • Titov, V. V., Lisachenko, A. A., Akopyan, I. K., Labzovskaya, M. E., & Novikov, B. V. (2019). Long-Lived Photocatalysis Centers Created in ZnO via Resonant Exciton Excitation. Physics of the Solid State, 61(11), 2134-2138. https://doi.org/10.1134/S1063783419110398
  • Tkachenko, A., Onishchenko, A., Klochkov, V., Kavok, N., Nakonechna, O., Yefimova, S., Posokhov, Y. (2020). The impact of orally administered gadolinium orthovanadate GdVO4: Eu3+ nanoparticles on the state of phospholipid bilayer of erythrocytes. Turkish Journal of Biochemistry, 45(4), 389-395. https://doi.org/10.1515/tjb-2019-0427
  • Wolski, L., Walkowiak, A., & Ziolek, M. (2019). Formation of reactive oxygen species upon interaction of Au/ZnO with H2O2 and their activity in methylene blue degradation. Catalysis Today, 333, 54-62. https://doi.org/10.1016/j.cattod.2018.04.004
  • Yalcin, B., & Erbil, C. (2018). Effect of sodium hydroxide solution as polymerization solvent and activator on structural, mechanical and antibacterial properties of PNIPAAm and P (NIPAAm–clay) hydrogels. Polymer Composites, 39, E386-E406. https://doi.org/10.1002/pc.24490
  • Yi, C., Yu, Z., Ren, Q., Liu, X., Wang, Y., Sun, X., Huang, X. (2020). Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiagnosis and photodynamic therapy, 30, 101694. https://doi.org/10.1016/j.pdpdt.2020.101694
  • Zhang, H. (2016). Erythrocytes in nanomedicine: an optimal blend of natural and synthetic materials. Biomaterials science, 4(7), 1024-1031. https://doi.org/10.1039/C6BM00072J
  • Zhou, D., Wang, P., Roy, C. R., Barnes, M. D., & Kittilstved, K. R. (2018). Direct evidence of surface charges in n-type Al-doped ZnO. The Journal of Physical Chemistry C, 122(32), 18596-18602. https://doi.org/10.1021/acs.jpcc.8b04718

ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik ve Hemolitik Özellikler

Year 2022, , 429 - 442, 25.09.2022
https://doi.org/10.28979/jarnas.1064592

Abstract

Çinko oksit (ZnO) temelli nano boyutlu parçacıklar, fotokatalitik etkileri, birim hacim başına oldukça yüksek olan yüzey alanları ve foto-kararlılıklarının yanı sıra, biyolojik potansiyelleri nedeniyle de özellikle son yıllarda oldukça dikkat çekmektedirler. Bu makalede, bakır asetat, çinko asetat ve mangan asetat öncüleri kullanılarak sol-jel yöntemiyle sentezlenmiş nano-boyutlu mangan katkılı çinko-bakır oksit nano-parçacıkların (Zn0.99-xMnxCu0.01O x = 0.00, 0.01, 0.03, 0.05, 0.10), kristal özellikleri, morfolojik yapıları, fotokatalitik performansları ve hemolitik özellikleri araştırılmıştır. Elde edilen sonuçlar, yine sol-jel yöntemiyle sentezlenmiş nano boyutlu ZnCuO parçacıklara ait bulgular ile kıyaslamalı olarak verilmiştir. Örneklerin kristal yapı özellikleri ile yüzeylere ait morfolojik özellikler, sırasıyla x-ışını kırınım spektroskopisi (XRD) ve taramalı elektron mikroskobu (SEM) kullanılarak incelenmiştir. Yapısal karakterizasyonlara ek olarak, Zn0.99-xMnxCu0.01O nanoparçacıkların fotokatalitik özellikleri de model organik molekül olarak kristal viyole (crystal violet - CV) kullanılarak incelenmiş, CV’nin fotokatalitik bozunma süreci ultraviyole-görünür alan (UV-vis) spektroskopisi ile takip edilmiştir. Ayrıca, Zn0.99-xMnxCu0.01O nanoparçacıkların biyomedikal uygulamalar açısından potansiyele sahip olup olmadığının tespiti amacıyla kan uyumluluğu testleri de gerçekleştirilmiştir. Sentezlenen numuneler içerisinde en yüksek fotokatalitik aktivite ve en yüksek kan uyumluluğunun Zn0.94Mn0.05Cu0.01O nanoparçacıklar tarafından gösterildiği tespit edilmiştir. Zn0.94Mn0.05Cu0.01O nanoparçacıklar, 330 dakika sonunda CV başlangıç miktarının %78.1’ini degrade ederken, çalışılan her iki konsantrasyonda (1.0 mg mL-1 ve 5.0 mg mL-1) %5’in altında hemolize sebep olarak belirgin bir kan uyumluluğu göstermiştir.

References

  • Acharya, A. D., Moghe, S., Panda, R., Shrivastava, S. B., Gangrade, M., Shripathi, T., Ganesan, V. (2012). Effect of Cd dopant on electrical and optical properties of ZnO thin films prepared by spray pyrolysis route. Thin Solid Films, 525, 49-55. https://doi.org/10.1016/j.tsf.2012.10.100
  • Aggarwal, N., Vasishth, A., Singh, B., & Singh, B. (2018). Investigation of room temperature ferromagnetic behaviour in dilute magnetic oxides. Integrated Ferroelectrics, 186(1), 10-16. https://doi.org/10.1080/10584587.2017.1369317
  • Ahmad, S., Aadil, M., Ejaz, S. R., Akhtar, M. U., Noor, H., Haider, S., Yasmin, G. (2022). Sol-gel synthesis of nanostructured ZnO/SrZnO2 with boosted antibacterial and photocatalytic activity. Ceramics International, 48(2), 2394-2405. https://doi.org/10.1016/j.ceramint.2021.10.020
  • Al-Buriahi, A. K., Al-Gheethi, A. A., Kumar, P. S., Mohamed, R. M. S. R., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162. https://doi.org/10.1016/j.chemosphere.2021.132162
  • Azzam, E. M. S., & Zaki, M. F. (2016). Surface and antibacterial activity of synthesized nonionic surfactant assembled on metal nanoparticles. Egyptian Journal of Petroleum, 25(2), 153-159. https://doi.org/10.1016/j.ejpe.2015.04.005
  • Balcha, A., Yadav, O. P., & Dey, T. (2016). Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environmental Science and Pollution Research, 23(24), 25485-25493. https://doi.org/10.1007/s11356-016-7750-6
  • Beitollahi, H., Tajik, S., Nejad, F. G., & Safaei, M. (2020). Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. Journal of Materials Chemistry B, 8(27), 5826-5844. https://doi.org/10.1039/D0TB00569J
  • Bijang, C. M., Nurdin, M., Latupeirissa, J., Aziz, T., & Talapessy, F. (2022). The Ouw Natural Clay Impregnation Using Titanium Dioxide as a Rhodamine B Dyestuff Degrader. Indonesian Journal of Chemical Research, 9(3), 144-149. https://doi.org/10.30598//ijcr
  • Bilgili, A. K., Akpınar, Ö., Kurtuluş, G., Öztürk, M. K., Ozcelik, S., & Ozbay, E. (2019). Lattice parameters a-, c-, strain-stress analysis and thermal expansion coefficient of InGaN/GaN solar cell structures grown by MOCVD. Politeknik Dergisi, 22(1), 33-39. https://doi.org/10.2339/politeknik.403978
  • Bopape, D. A., Motaung, D. E., & Hintsho-Mbita, N. C. (2022). Green synthesis of ZnO: Effect of plant concentration on the morphology, optical properties and photodegradation of dyes and antibiotics in wastewater. Optik, 251, 168459. https://doi.org/10.1016/j.ijleo.2021.168459
  • Carofiglio, M., Barui, S., Cauda, V., & Laurenti, M. (2020). Doped zinc oxide nanoparticles: Synthesis, characterization and potential use in nanomedicine. Applied Sciences, 10(15), 5194. https://doi.org/10.3390/app10155194
  • Cho, Y., Woo, J. H., Kwon, O. S., Yoon, S. S., & Son, J. (2019). Alterations in phospholipid profiles of erythrocytes deep‐frozen without cryoprotectants. Drug testing and analysis, 11(8), 1231-1237. https://doi.org/10.1002/dta.2600
  • Guler, A., Arda, L., Dogan, N., Boyraz, C., & Ozugurlu, E. (2019). The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles. Ceramics International, 45(2), 1737-1745. https://doi.org/10.1016/j.ceramint.2018.10.056
  • Hasan, F. A., & Hussein, M. T. (2021). Study of some electronic and spectroscopic properties of ZnO nanostructers by density functional theory. Materials Today: Proceedings, 42, 2638-2644. https://doi.org/10.1016/j.matpr.2020.12.593
  • He, X., Gui, Y., Xie, J., Liu, X., Wang, Q., & Tang, C. (2020). A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT. Applied Surface Science, 500, 144030. https://doi.org/10.1016/j.apsusc.2019.144030
  • Hou, Q., Qi, M., Yin, X., Wang, Z., & Sha, S. (2022). First principles study of carrier activity, lifetime and absorption spectrum to investigate effects of strain on the photocatalytic performance of doped ZnO. Current Applied Physics, 33, 41-50. https://doi.org/10.1016/j.cap.2021.09.012
  • Islam, S. E., Hang, D. R., Chen, C. H., & Sharma, K. H. (2018). Facile and Cost‐Efficient Synthesis of Quasi‐0D/2D ZnO/MoS2 Nanocomposites for Highly Enhanced Visible‐Light‐Driven Photocatalytic Degradation of Organic Pollutants and Antibiotics. Chemistry–A European Journal, 24(37), 9305-9315. https://doi.org/10.1002/chem.201801397
  • Jha, M., & Shimpi, N. G. (2018). Spherical nanosilver: Bio-inspired green synthesis, characterizations, and catalytic applications. Nano-Structures & Nano-Objects, 16, 234-249. https://doi.org/10.1016/j.nanoso.2018.07.004
  • Karthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., & Sivaramakrishnan, S. (2017). Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. Journal of Materials Science: Materials in Electronics, 28(15), 11420-11429. https://doi.org/10.1007/s10854-017-6937-z
  • Khan, U., Jan, F. A., Ullah, R., & Ullah, N. (2022). Comparative photocatalytic performance and therapeutic applications of zinc oxide (ZnO) and neodymium-doped zinc oxide (Nd–ZnO) nanocatalysts against Acid Yellow-3 dye: kinetic and thermodynamic study of the reaction and effect of various parameters. Journal of Materials Science: Materials in Electronics, 1-20. https://doi.org/10.1007/s10854-021-07483-0
  • Kokila, N. R., Mahesh, B., Roopa, K. P., Prasad, B. D., Raj, K., Manjula, S. N., Ramu, R. (2022). Thunbergia mysorensis mediated Nano Silver Oxide for Enhanced Antibacterial, Antioxidant, Anticancer potential and in vitro Hemolysis Evaluation. Journal of Molecular Structure, 132455. https://doi.org/10.1016/j.molstruc.2022.132455
  • Lee, D., Park, D., Shin, K., Seo, H. M., Lee, H., Choi, Y., & Kim, J. W. (2021). ZnO nanoparticles-laden cellulose nanofibers-armored Pickering emulsions with improved UV protection and water resistance. Journal of Industrial and Engineering Chemistry, 96, 219-225. https://doi.org/10.1016/j.jiec.2021.01.018
  • Li, H. C., Hsieh, F. J., Chen, C. P., Chang, M. Y., Hsieh, P. C., Chen, C. C., Chang, H. C. (2013). The hemocompatibility of oxidized diamond nanocrystals for biomedical applications. Scientific reports, 3(1), 1-8. https://doi.org/10.1038/srep03044
  • Li, H., Liu, J., Wang, C., Yang, H., & Xue, X. (2022). Oxygen vacancies-enriched and porous hierarchical structures of ZnO microspheres with improved photocatalytic performance. Vacuum, 110891. https://doi.org/10.1016/j.vacuum.2022.110891
  • Li, Y., Liao, C., & Tjong, S. C. (2020). Recent advances in zinc oxide nanostructures with antimicrobial activities. International Journal of Molecular Sciences, 21(22), 8836. https://doi.org/10.3390/ijms21228836
  • Li, X., Lu, H., Zhang, Y., & He, F. (2017). Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs-CoFe2O4 magnetic nanocomposites. Chemical Engineering Journal, 316, 893-902. https://doi.org/10.1016/j.cej.2017.02.037
  • Markiewicz, K. H., Zembko, P., Półtorak, K., Misztalewska, I., Wojtulewski, S., Majcher, A. M., Wilczewska, A. Z. (2016). Magnetic nanoparticles with chelating shells prepared by RAFT/MADIX polymerization. New Journal of Chemistry, 40(11), 9223-9231. https://doi.org/10.1039/C6NJ01938B
  • Murali, M., Kalegowda, N., Gowtham, H. G., Ansari, M. A., Alomary, M. N., Alghamdi, S., Amruthesh, K. N. (2021). Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics, 13(10), 1662. https://doi.org/10.3390/pharmaceutics13101662
  • Naik, M. M., Naik, H. B., Nagaraju, G., Vinuth, M., Vinu, K., & Rashmi, S. K. (2018). Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. Journal of Materials Science: Materials in Electronics, 29(23), 20395-20414. https://doi.org/10.1007/s10854-018-0174-y
  • Ozcelik, S., Yalcin, B., Arda, L., Santos, H., Sáez-Puche, R., Angurel, L. A., Ozcelik, B. (2021). Structure, magnetic, photocatalytic and blood compatibility studies of nickel nanoferrites prepared by laser ablation technique in distilled water. Journal of Alloys and Compounds, 854, 157279. https://doi.org/10.1016/j.jallcom.2020.157279
  • Pillai, A. M., Sivasankarapillai, V. S., Rahdar, A., Joseph, J., Sadeghfar, F., Rajesh, K., & Kyzas, G. Z. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 1211, 128107. https://doi.org/10.1016/j.molstruc.2020.128107
  • Rani, M., & Shanker, U. (2022). Green nanomaterials: An overview. Green Functionalized Nanomaterials for Environmental Applications, 43-80. https://doi.org/10.1016/B978-0-12-823137-1.00026-9
  • Rao, A. N., Sivasankar, B., & Sadasivam, V. (2009). Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst. Journal of Molecular Catalysis A: Chemical, 306(1-2), 77-81. https://doi.org/10.1016/j.molcata.2009.02.028
  • Reynolds, J. G., & Reynolds, C. L. (2014). Progress in ZnO acceptor doping: what is the best strategy?. Advances in Condensed Matter Physics, 2014. https://doi.org/10.1155/2014/457058
  • Saleh, R., & Djaja, N. F. (2014). UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices and Microstructures, 74, 217-233. https://doi.org/10.1016/j.spmi.2014.06.013
  • Saravanan, R., Karthikeyan, S., Gupta, V. K., Sekaran, G., Narayanan, V., & Stephen, A. J. M. S. (2013). Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering: C, 33(1), 91-98. https://doi.org/10.1016/j.msec.2012.08.011
  • Sathi, A., Viswanad, V., Aneesh, T. P., & Kumar, B. A. (2014). Pros and cons of phospholipid asymmetry in erythrocytes. Journal of pharmacy & bioallied sciences, 6(2), 81. https://doi.org/10.4103/0975-7406.129171
  • Senol, S. D., Yalcin, B., Ozugurlu, E., & Arda, L. (2020). Structure, microstructure, optical and photocatalytic properties of Mn-doped ZnO nanoparticles. Materials Research Express, 7(1), 015079. https://doi.org/10.1088/2053-1591/ab5eea
  • Sha, R., Puttapati, S. K., Srikanth, V. V., & Badhulika, S. (2017a). Ultra-sensitive phenol sensor based on overcoming surface fouling of reduced graphene oxide-zinc oxide composite electrode. Journal of Electroanalytical Chemistry, 785, 26-32. https://doi.org/10.1016/j.jelechem.2016.12.001
  • Sha, R., Puttapati, S. K., Srikanth, V. V., & Badhulika, S. (2017b). Ultra-sensitive non-enzymatic ethanol sensor based on reduced graphene oxide-zinc oxide composite modified electrode. IEEE Sensors Journal, 18(5), 1844-1848. https://doi.org/10.1109/JSEN.2017.2787538
  • Shen, W., Li, Z., Wang, H., Liu, Y., Guo, Q., & Zhang, Y. (2008). Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol–gel methods. Journal of Hazardous Materials, 152(1), 172-175. https://doi.org/10.1016/j.jhazmat.2007.06.082
  • Shi, Y., Liu, Q. G., Chen, Y., & Wang, M. H. (2022). Synthesis and properties of rod-like ZnO composite powders by the reflux method. Journal of Materials Science: Materials in Electronics, 1-10. https://doi.org/10.1007/s10854-021-07548-0
  • Thirumoorthy, G. S., Balasubramaniam, O., Kumaresan, P., Muthusamy, P., & Subramani, K. (2021). Tetraselmis indica mediated green synthesis of zinc oxide (ZnO) nanoparticles and evaluating its antibacterial, antioxidant, and hemolytic activity. BioNanoScience, 11(1), 172-181. https://doi.org/10.1007/s12668-020-00817-y
  • Titov, V. V., Lisachenko, A. A., Akopyan, I. K., Labzovskaya, M. E., & Novikov, B. V. (2019). Long-Lived Photocatalysis Centers Created in ZnO via Resonant Exciton Excitation. Physics of the Solid State, 61(11), 2134-2138. https://doi.org/10.1134/S1063783419110398
  • Tkachenko, A., Onishchenko, A., Klochkov, V., Kavok, N., Nakonechna, O., Yefimova, S., Posokhov, Y. (2020). The impact of orally administered gadolinium orthovanadate GdVO4: Eu3+ nanoparticles on the state of phospholipid bilayer of erythrocytes. Turkish Journal of Biochemistry, 45(4), 389-395. https://doi.org/10.1515/tjb-2019-0427
  • Wolski, L., Walkowiak, A., & Ziolek, M. (2019). Formation of reactive oxygen species upon interaction of Au/ZnO with H2O2 and their activity in methylene blue degradation. Catalysis Today, 333, 54-62. https://doi.org/10.1016/j.cattod.2018.04.004
  • Yalcin, B., & Erbil, C. (2018). Effect of sodium hydroxide solution as polymerization solvent and activator on structural, mechanical and antibacterial properties of PNIPAAm and P (NIPAAm–clay) hydrogels. Polymer Composites, 39, E386-E406. https://doi.org/10.1002/pc.24490
  • Yi, C., Yu, Z., Ren, Q., Liu, X., Wang, Y., Sun, X., Huang, X. (2020). Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiagnosis and photodynamic therapy, 30, 101694. https://doi.org/10.1016/j.pdpdt.2020.101694
  • Zhang, H. (2016). Erythrocytes in nanomedicine: an optimal blend of natural and synthetic materials. Biomaterials science, 4(7), 1024-1031. https://doi.org/10.1039/C6BM00072J
  • Zhou, D., Wang, P., Roy, C. R., Barnes, M. D., & Kittilstved, K. R. (2018). Direct evidence of surface charges in n-type Al-doped ZnO. The Journal of Physical Chemistry C, 122(32), 18596-18602. https://doi.org/10.1021/acs.jpcc.8b04718
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Biomaterial , Nanotechnology
Journal Section Research Article
Authors

Bestenur Yalçın 0000-0002-7233-6561

Publication Date September 25, 2022
Submission Date January 28, 2022
Published in Issue Year 2022

Cite

APA Yalçın, B. (2022). ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik ve Hemolitik Özellikler. Journal of Advanced Research in Natural and Applied Sciences, 8(3), 429-442. https://doi.org/10.28979/jarnas.1064592
AMA Yalçın B. ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik ve Hemolitik Özellikler. JARNAS. September 2022;8(3):429-442. doi:10.28979/jarnas.1064592
Chicago Yalçın, Bestenur. “ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik Ve Hemolitik Özellikler”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 3 (September 2022): 429-42. https://doi.org/10.28979/jarnas.1064592.
EndNote Yalçın B (September 1, 2022) ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik ve Hemolitik Özellikler. Journal of Advanced Research in Natural and Applied Sciences 8 3 429–442.
IEEE B. Yalçın, “ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik ve Hemolitik Özellikler”, JARNAS, vol. 8, no. 3, pp. 429–442, 2022, doi: 10.28979/jarnas.1064592.
ISNAD Yalçın, Bestenur. “ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik Ve Hemolitik Özellikler”. Journal of Advanced Research in Natural and Applied Sciences 8/3 (September 2022), 429-442. https://doi.org/10.28979/jarnas.1064592.
JAMA Yalçın B. ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik ve Hemolitik Özellikler. JARNAS. 2022;8:429–442.
MLA Yalçın, Bestenur. “ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik Ve Hemolitik Özellikler”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 3, 2022, pp. 429-42, doi:10.28979/jarnas.1064592.
Vancouver Yalçın B. ZnMnCuO Nanoparçacıkların Karakterizasyonu: Fotokatalitik ve Hemolitik Özellikler. JARNAS. 2022;8(3):429-42.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).