Research Article
BibTex RIS Cite

Optimization tool for small hydropower plant resource planning and development: A case study

Year 2022, , 391 - 428, 25.09.2022
https://doi.org/10.28979/jarnas.1083208

Abstract

The dimensions and significance of the modern power systems prove the necessity to change the principles of energy generation and power supply planning and management. In order to decrease carbon dioxide emissions, fight climate change, not being attached to fuel resources, and increase energy security while decreasing dependence on foreign countries, governments of many countries are increasing the share of renewable energy in electricity production and have taken actions to exploit their domestic resources, which is why renewable energy is an essential and important issue in today‘s world and also in the future it may continue to play a globally essential role. The study addresses model applications, optimization techniques, and operational issues. The main goal was devoted to the problem of small-scale hydropower plant control regime optimization. The task of determining small hydropower plant operation conditions is solved by striving for maximum profit by looking at the cases of known variations of prices in the market environment. An optimization tool known as the Quasi-Newton method for nonlinear optimization tasks is used to plan energy generation under uncertainties. The opportunity to apply the Monte-Carlo method for the feasibility study is demonstrated

References

  • Alterach, J., Popa, B., Magureanu, R., Šantl, S., Kozelj, D., Rak, G., Skroza, A., Steinman, F., Zenz, G., Harb, G., Bostan, I., Dulgheru, V., Bostan, V., & A. Sochirean. (2010). Manual Addressed to Stakeholders with the Description of Methodologies to Improve SHP Implementation in SEE Countries. 90. http://www.southeast-europe.net/document.cmt?id=288
  • Alvarez, M., Cuevas, C. M., Escudero, L. F., Escudero, J. L., García, C., & Prieto, F. J. (1994). Network planning under uncertainty with an application to hydropower generation. Top, 2(1), 25–58. https://doi.org/10.1007/BF02574759
  • Arai, M., Tanaka, K., Abe, R., & Mogi, G. (2011). Time-Series Analysis in Power Supply System To Achieve a Sustainable Economic Growth in Bangledesh. Icme2011, December, 18–20.
  • Asif, M., & Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388–1413. https://doi.org/10.1016/j.rser.2005.12.004
  • Bachir, M. L. (2017). Impact of Hydrology and Financial Cost Analysis On The Production Of Mini Hydropower: The Case Of Djendjenni, Mali.
  • Barros, M. T., Lopes, J. E., Yang, S. L., Yeh, W. W. G. (2001). Large-scale hydropower system optimization. IAHS Publications.
  • Belbo, T. (2016). Cost Analysis and Cost Estimation Model for 1-10 MW Small-Scale Hydropower Projects in Norway Torfinn Belbo.
  • Benli, B., & Kodal, S. (2003). A non-linear model for farm optimization with adequate and limited water supplies Application to the South-east Anatolian Project (GAP) Region. Agricultural Water Management, 62(3), 187–203. https://doi.org/10.1016/S0378-3774(03)00095-7
  • Berry, R. A. (2003). Ensemble Averaged Conservation Equations For Multiphase, Multi-Component, And Multi-Material FLows (Issue August). https://doi.org/doi:10.2172/910743
  • Bilgili, M., Bilirgen, H., Ozbek, A., Ekinci, F., & Demirdelen, T. (2018). The role of hydropower installations for sustainable energy development in Turkey and the world. Renewable Energy, 126, 755–764. https://doi.org/10.1016/j.renene.2018.03.089
  • Bin, D. (2021). Discussion on the development direction of hydropower in China. Clean Energy, 5(1), 10–18. https://doi.org/10.1093/ce/zkaa025
  • Bulut, U., & Muratoglu, G. (2018). Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus.
  • Energy Policy, 123(September), 240–250. https://doi.org/10.1016/j.enpol.2018.08.057
  • Chiyembekezo S. Kaunda, Cuthbert Z. Kimambo, T. K. N. (2012). Hydropower in the Context of Sustainable Energy Supply: A Review of Technologies and Challenges.
  • Coban, H. H., Varfolomejeva, R., Sauhats, A., Umbrasko, I. (2015). Hydropower Plant Regime Management According to the Market Conditions. 2nd International Congress on
  • Energy Efficiency and Energy Related Materials (ENEFM2014), 141–152.
  • Coban, H H. (2020). A 100% Renewable Energy System: The Case of Turkey In The Year 2050. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 1(2), 130–141. https://dergipark.org.tr/en/pub/imctd/issue/59372/817991Coban, Hasan Huseyin. (2020). Maximizing Income of a Cascade Hydropower with Optimization Modeling Journal of Renewable. 7(1), 12–17.
  • Coban, Hasan Huseyin. (2021). How is COVID-19 affecting the renewable energy sector and the electric power grid? European Journal of Science and Technology, 27, 489–494. https://doi.org/10.31590/ejosat.890451
  • Davis, S. J., Lewis, N. S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L., Benson, S. M., Bradley, T., Brouwer, J., Chiang, Y. M., Clack, C. T. M., Cohen, A., Doig, S., Edmonds, J., Fennell,
  • P., Field, C. B., Hannegan, B., Hodge, B. M., Hoffert, M. I., … Caldeira, K. (2018). Net-zero emissions energy systems. Science, 360(6396). https://doi.org/10.1126/science.aas9793 Day-ahead prices, Nordpoolgroup. (2022). Day-Ahead Prices. https://www.nordpoolgroup.com/Market-data1/Dayahead/Area-Prices/LV/Hourly/?view=table
  • De Jong, P., Tanajura, C. A. S., Sánchez, A. S., Dargaville, R., Kiperstok, A., & Torres, E. A. (2018). Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Science of the Total Environment, 634, 1540–1553. https://doi.org/10.1016/j.scitotenv.2018.03.256
  • Demirtas, O. (2013). Evaluating the best renewable energy technology for sustainable energy planning. International Journal of Energy Economics and Policy, 3(SPECIAL ISSUE), 23–33.
  • Desreumaux, Q., Leconte, R., & Côté, P. (2014). Role of hydrologic information in stochastic dynamic programming: a case study of the Kemano hydropower system in British Columbia. Canadian Journal of Civil Engineering, 41(9), 839–844. https://doi.org/10.1139/cjce-2013-0370
  • Dong, H., Ye, F., & Fu, W. (2019). Stability reliability of a cutting slope in Laohuzui Hydropower Station in Tibet of China. Geomatics, Natural Hazards and Risk, 10(1), 935–957. https://doi.org/10.1080/19475705.2018.1554604
  • Dženan Malović, Hendrik Engelmann Pilger, N. Arsenijević, Katharina Gassner, Elena Merle-Beral, G. Monti, J. Pooley, L. Inouye, Jeremy Levin, J. K. (2015). Hydroelectric Power, A Guide for Developers and Investors. https://doi.org/10.1002/9781119204442.ch16
  • Enoksson, V., & Svedberg, F. (2015). Optimization of hydro power on the Nordic electricity exchange using financial derivatives. Royal Institute of Technology.
  • Erat, S., Telli, A., Ozkendir, O. M., & Demir, B. (2021). Turkey’s energy transition from fossil-based to renewable up to 2030: milestones, challenges and opportunities. Clean Technologies and Environmental Policy, 23(2), 401–412. https://doi.org/10.1007/s10098-020-01949-1
  • Erdin, C., & Ozkaya, G. (2019). Turkey’s 2023 energy strategies and investment opportunities for renewable energy sources: Site selection based on ELECTRE. Sustainability (Switzerland), 11(7). https://doi.org/10.3390/su11072136
  • Fen, Q., Zhang, K., & Smith, B. (2012). Small Hydropower Cost Reference Model (Issue October).
  • Grigoriu, M., Popescu, M. C. (2010). Hydropower Preventive Monitoring Action Plan. In Proceedings of the 5th IASME/WSEAS International Conference on Energy&Environment, Recent Advances in Energy & Environment, Published by WSEAS Press, 265–270.
  • J.C., H. (2006). Technical Basis for Optimizing Hydropower Operations with MS-Excel. Great Wall World Renewable Energy Forum and Exhibition.
  • Jiang, Z., Li, R., Li, A., & Ji, C. (2018). Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application. Energy, 158, 693–708. https://doi.org/10.1016/j.energy.2018.06.083
  • Kaygusuz, K. (2018). Small hydropower potential and utilization in Turkey. Journal of Engineering Research and Applied Science, 7(1), 791–798.
  • Khaniya, B., Karunanayake, C., Gunathilake, M. B., & Rathnayake, U. (2020). Projection of Future Hydropower Generation in Samanalawewa Power Plant, Sri Lanka. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/8862067
  • Kober, T., Schiffer, H. W., Densing, M., & Panos, E. (2020). Global energy perspectives to 2060 – WEC’s World Energy Scenarios 2019. Energy Strategy Reviews, 31(August), 100523. https://doi.org/10.1016/j.esr.2020.100523
  • Koç, C. (2018). A study on operation problems of hydropower plants integrated with irrigation schemes operated in Turkey. International Journal of Green Energy, 15(2), 129–135. https://doi.org/10.1080/15435075.2018.1427591
  • Kok, B., & Benli, H. (2017). Energy diversity and nuclear energy for sustainable development in Turkey. Renewable Energy, 111, 870–877. https://doi.org/10.1016/j.renene.2017.05.001
  • Kotchen, M. J., Moore, M. R., Lupi, F., & Rutherford, E. S. (2006). Environmental constraints on hydropower: An ex post benefit-cost analysis of dam relicensing in Michigan. Land Economics, 82(3), 384–403. https://doi.org/10.3368/le.82.3.384
  • KURAL, D., & ARA AKSOY, S. (2020). An Analysis of the Optimal Design of Feed-in Tariff Policy for Photovoltaic Investments in Turkey. Sosyoekonomi, 28(46), 425–444. https://doi.org/10.17233/sosyoekonomi.2020.04.20
  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., & Garrote, L. (2020). Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic–ecohydraulic approach. Energy Conversion and Management, 223(August). https://doi.org/10.1016/j.enconman.2020.113267
  • Legal Sources on Renewable Energy. (n.d.). Compare Support Schemes. http://www.res-legal.eu/compare-support-schemes
  • Lund, H., & Østergaard, P. A. (2018). Sustainable Towns: The Case of Frederikshavn Aiming at 100% Renewable Energy. Sustainable Cities and Communities Design Handbook.
  • Mahmoudimehr, J., & Sebghati, P. (2019). A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study. Energy, 168, 796–814. https://doi.org/10.1016/j.energy.2018.11.079
  • Marchand, A. ; Gendreau, M. ; Blais, M. ; Emiel, G. (2019). Efficient tabu search procedure for short-term planning of large-scale hydropower systems. Journal of Water Resources Planning and Management, 145(7).
  • Matzenberger, J., Kranzl, L., Tromborg, E., Junginger, M., Daioglou, V., Sheng Goh, C., & Keramidas, K. (2015). Future perspectives of international bioenergy trade. Renewable and Sustainable Energy Reviews, 43, 926–941. https://doi.org/10.1016/j.rser.2014.10.106
  • Najarchi, M., & Haghverdi, A. (2020). Application in optimization of multi-reservoir water systems using improving shuffled complex algorithm. SN Applied Sciences, 2(5), 1–9. https://doi.org/10.1007/s42452-020-2590-x
  • R., V. (2014). The Aspects of the Planning and Optimization of Electric Stations Operational Regimes under the Conditions of Market Economy. RTU.
  • Ranjbari, M., Shams Esfandabadi, Z., Zanetti, M. C., Scagnelli, S. D., Siebers, P. O., Aghbashlo, M., Peng, W., Quatraro, F., & Tabatabaei, M. (2021). Three pillars of sustainability in the wake of COVID-19: A systematic review and future research agenda for sustainable development. Journal of Cleaner Production, 297, 126660. https://doi.org/10.1016/j.jclepro.2021.126660
  • Renewable energy technologies: Cost analysis series. Concentrating solar power. (2012). In Irena, I. R. E. A. (Vol. 4, Issue 5).
  • Republic of Turkey Ministry of Energy and Natural Resources. (2022). https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • Şahin, C. (2021). The Development of Renewable Energy in Turkish Electricity Markets. European Journal of Science and Technology, 25, 238–246. https://doi.org/10.31590/ejosat.893539
  • Şahin, M. (2021). A comprehensive analysis of weighting and multicriteria methods in the context of sustainable energy. International Journal of Environmental Science and Technology, 18(6), 1591–1616. https://doi.org/10.1007/s13762-020-02922-7
  • Sauhats, A., Varfolomejeva, R., Umbrasko, I., Coban, H. H. (2014). An additional income of small hydropower plants and a public trader. International Journal of Energy, 8.
  • Sauhats, A., Coban, H. H., Baltputnis, K., Broka, Z., Petrichenko, R., & Varfolomejeva, R. (2016). Optimal investment and operational planning of a storage power plant. International Journal of Hydrogen Energy, 41(29), 12443–12453. https://doi.org/10.1016/j.ijhydene.2016.03.078
  • Sauhats, A., Varfolomejeva, R., Petrichenko, R., & Kucajevs, J. (2015). A stochastic approach to hydroelectric power generation planning in an electricity market. 2015 IEEE 15th International Conference on Environment and Electrical Engineering, EEEIC 2015 - Conference Proceedings, 2013, 883–888. https://doi.org/10.1109/EEEIC.2015.7165280
  • Shukla, A. K., Sudhakar, K., & Baredar, P. (2017). Renewable energy resources in South Asian countries: Challenges, policy and recommendations. Resource-Efficient Technologies, 3(3), 342–346. https://doi.org/10.1016/j.reffit.2016.12.003
  • Singh, V. K., & Singal, S. K. (2018). Optimal Operation of Run of River Small Hydro Power Plant. BioPhysical Economics and Resource Quality, 3(3), 1–11. https://doi.org/10.1007/s41247-018-0045-4
  • Siriwardena M.B.D.K., S. N. T. S. (2020). Optimization of an Industrial Boiler Operation. Journal of Research Technology and Engineering, 1(3), 126–134.
  • Soares, S., & Carneiro, A. A. F. M. (1991). Optimal operation of reservoirs for electric generation. IEEE Transactions on Power Delivery, 6(3), 1101–1107. https://doi.org/10.1109/61.85854
  • Sun, L., Niu, D., Wang, K., & Xu, X. (2021). Sustainable development pathways of hydropower in China: Interdisciplinary qualitative analysis and scenario-based system dynamics quantitative modeling. Journal of Cleaner Production, 287, 125528. https://doi.org/10.1016/j.jclepro.2020.125528
  • Tayefeh Hashemi, S., Ebadati, O. M., & Kaur, H. (2020). Cost estimation and prediction in construction projects: a systematic review on machine learning techniques. SN Applied Sciences, 2(10), 1–27. https://doi.org/10.1007/s42452-020-03497-1
  • Teck, T. S., Subramaniam, H., & Sorooshian, S. (2019). Exploring challenges of the fourth industrial revolution. International Journal of Innovative Technology and Exploring Engineering, 8(9), 27–30. https://doi.org/10.35940/ijitee.i7910.078919
  • Tiainen, R., Lindh, T., Ahola, J., Niemelä, M., & Särkimäki, V. (2008). Energy price-based control strategy of a small-scale head-dependent hydroelectric power plant. Renewable Energy and Power Quality Journal, 1(6), 514–519. https://doi.org/10.24084/repqj06.345
  • Üçüncü, O. (2018). Latest status of hydropower plants in Turkey: Technical, environmental policy and environmental law from the perspective of the evaluation. A/Z ITU Journal of the Faculty of Architecture, 15(2), 153–171. https://doi.org/10.5505/itujfa.2018.79664
  • Varfolomejeva, R., Petrichenko, R., Sauhats, A., Kucajevs, J. (2015). An optimization algorithm selection to regulate the power plant work. 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical Uni.
  • Varfolomejeva R., Zima-Bockarjova M., C. H. H. (2014). Reconsideration of Supporting Scheme for Renewable Energy Producers. 4th International Symposium on Environmental Biotechnology and Engineering (4ISEBE), 62–63.
  • Varfolomejeva, R., Umbrasko, I., & Mahnitko, A. (2013). The small hydropower plant operating regime optimization by the income maximization. 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013. https://doi.org/10.1109/PTC.2013.6652497
  • Wendle, C. (2019). Rights to the River: Implementing A Social Cost-Benefit Analysis in the United States Hydropower Relicensing Process. https://scholarship.claremont.edu/scripps_theses/1395/
  • Wessel, M., Madlener, R., & Hilgers, C. (2020). Economic Feasibility of Semi-Underground Pumped Storage Hydropower Plants in Open-Pit Mines. Energies, 13(6), 1–33. https://doi.org/10.3390/en13164178
  • Wu, L., Shahidehpour, M., & Li, T. (2008). Cost of reliability analysis based on stochastic unit commitment. IEEE Transactions on Power Systems, 23(3), 1364–1374. https://doi.org/10.1109/TPWRS.2008.922231
  • Xu, J., Liu, Z., Jiang, H. (2021). Study on Application of Solar Energy in Highway. E3S Web of Conferences, 261. Yalılı, M., Tiryaki, R., & Gözen, M. (2020). Evolution of auction schemes for renewable energy in Turkey: An assessment on the results of different designs. Energy Policy, 145(August). https://doi.org/10.1016/j.enpol.2020.111772
  • Yang, Y., Zhou, J., Liu, G., Mo, L., Wang, Y., Jia, B., & He, F. (2020). Multi-plan formulation of hydropower generation considering uncertainty of wind power. Applied Energy, 260(December 2019). https://doi.org/10.1016/j.apenergy.2019.114239
  • Yang, Z., Wang, Y., & Yang, K. (2022). The stochastic short-term hydropower generation scheduling considering uncertainty in load output forecasts. Energy, 241, 122838. https://doi.org/10.1016/j.energy.2021.122838
  • Yildiz, V., & Vrugt, J. A. (2019). A toolbox for the optimal design of run-of-river hydropower plants. Environmental Modelling and Software, 111(August 2017), 134–152. https://doi.org/10.1016/j.envsoft.2018.08.018
  • Yuan, W., Wang, X., Su, C., Cheng, C., Liu, Z., & Wu, Z. (2021). Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming. Energy, 222, 119996. https://doi.org/10.1016/j.energy.2021.119996
  • Yuksel, I., Arman, H., & Demirel, I. H. (2017). As a clean, sustainable and renewable energy - Hydropower in Turkey. MATEC Web of Conferences, 120, 1–5. https://doi.org/10.1051/matecconf/201712008004
  • Zhang, Y., Ma, H., & Zhao, S. (2021). Assessment of hydropower sustainability: Review and modeling. Journal of Cleaner Production, 321(September), 128898. https://doi.org/10.1016/j.jclepro.2021.128898
Year 2022, , 391 - 428, 25.09.2022
https://doi.org/10.28979/jarnas.1083208

Abstract

References

  • Alterach, J., Popa, B., Magureanu, R., Šantl, S., Kozelj, D., Rak, G., Skroza, A., Steinman, F., Zenz, G., Harb, G., Bostan, I., Dulgheru, V., Bostan, V., & A. Sochirean. (2010). Manual Addressed to Stakeholders with the Description of Methodologies to Improve SHP Implementation in SEE Countries. 90. http://www.southeast-europe.net/document.cmt?id=288
  • Alvarez, M., Cuevas, C. M., Escudero, L. F., Escudero, J. L., García, C., & Prieto, F. J. (1994). Network planning under uncertainty with an application to hydropower generation. Top, 2(1), 25–58. https://doi.org/10.1007/BF02574759
  • Arai, M., Tanaka, K., Abe, R., & Mogi, G. (2011). Time-Series Analysis in Power Supply System To Achieve a Sustainable Economic Growth in Bangledesh. Icme2011, December, 18–20.
  • Asif, M., & Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388–1413. https://doi.org/10.1016/j.rser.2005.12.004
  • Bachir, M. L. (2017). Impact of Hydrology and Financial Cost Analysis On The Production Of Mini Hydropower: The Case Of Djendjenni, Mali.
  • Barros, M. T., Lopes, J. E., Yang, S. L., Yeh, W. W. G. (2001). Large-scale hydropower system optimization. IAHS Publications.
  • Belbo, T. (2016). Cost Analysis and Cost Estimation Model for 1-10 MW Small-Scale Hydropower Projects in Norway Torfinn Belbo.
  • Benli, B., & Kodal, S. (2003). A non-linear model for farm optimization with adequate and limited water supplies Application to the South-east Anatolian Project (GAP) Region. Agricultural Water Management, 62(3), 187–203. https://doi.org/10.1016/S0378-3774(03)00095-7
  • Berry, R. A. (2003). Ensemble Averaged Conservation Equations For Multiphase, Multi-Component, And Multi-Material FLows (Issue August). https://doi.org/doi:10.2172/910743
  • Bilgili, M., Bilirgen, H., Ozbek, A., Ekinci, F., & Demirdelen, T. (2018). The role of hydropower installations for sustainable energy development in Turkey and the world. Renewable Energy, 126, 755–764. https://doi.org/10.1016/j.renene.2018.03.089
  • Bin, D. (2021). Discussion on the development direction of hydropower in China. Clean Energy, 5(1), 10–18. https://doi.org/10.1093/ce/zkaa025
  • Bulut, U., & Muratoglu, G. (2018). Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus.
  • Energy Policy, 123(September), 240–250. https://doi.org/10.1016/j.enpol.2018.08.057
  • Chiyembekezo S. Kaunda, Cuthbert Z. Kimambo, T. K. N. (2012). Hydropower in the Context of Sustainable Energy Supply: A Review of Technologies and Challenges.
  • Coban, H. H., Varfolomejeva, R., Sauhats, A., Umbrasko, I. (2015). Hydropower Plant Regime Management According to the Market Conditions. 2nd International Congress on
  • Energy Efficiency and Energy Related Materials (ENEFM2014), 141–152.
  • Coban, H H. (2020). A 100% Renewable Energy System: The Case of Turkey In The Year 2050. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 1(2), 130–141. https://dergipark.org.tr/en/pub/imctd/issue/59372/817991Coban, Hasan Huseyin. (2020). Maximizing Income of a Cascade Hydropower with Optimization Modeling Journal of Renewable. 7(1), 12–17.
  • Coban, Hasan Huseyin. (2021). How is COVID-19 affecting the renewable energy sector and the electric power grid? European Journal of Science and Technology, 27, 489–494. https://doi.org/10.31590/ejosat.890451
  • Davis, S. J., Lewis, N. S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L., Benson, S. M., Bradley, T., Brouwer, J., Chiang, Y. M., Clack, C. T. M., Cohen, A., Doig, S., Edmonds, J., Fennell,
  • P., Field, C. B., Hannegan, B., Hodge, B. M., Hoffert, M. I., … Caldeira, K. (2018). Net-zero emissions energy systems. Science, 360(6396). https://doi.org/10.1126/science.aas9793 Day-ahead prices, Nordpoolgroup. (2022). Day-Ahead Prices. https://www.nordpoolgroup.com/Market-data1/Dayahead/Area-Prices/LV/Hourly/?view=table
  • De Jong, P., Tanajura, C. A. S., Sánchez, A. S., Dargaville, R., Kiperstok, A., & Torres, E. A. (2018). Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Science of the Total Environment, 634, 1540–1553. https://doi.org/10.1016/j.scitotenv.2018.03.256
  • Demirtas, O. (2013). Evaluating the best renewable energy technology for sustainable energy planning. International Journal of Energy Economics and Policy, 3(SPECIAL ISSUE), 23–33.
  • Desreumaux, Q., Leconte, R., & Côté, P. (2014). Role of hydrologic information in stochastic dynamic programming: a case study of the Kemano hydropower system in British Columbia. Canadian Journal of Civil Engineering, 41(9), 839–844. https://doi.org/10.1139/cjce-2013-0370
  • Dong, H., Ye, F., & Fu, W. (2019). Stability reliability of a cutting slope in Laohuzui Hydropower Station in Tibet of China. Geomatics, Natural Hazards and Risk, 10(1), 935–957. https://doi.org/10.1080/19475705.2018.1554604
  • Dženan Malović, Hendrik Engelmann Pilger, N. Arsenijević, Katharina Gassner, Elena Merle-Beral, G. Monti, J. Pooley, L. Inouye, Jeremy Levin, J. K. (2015). Hydroelectric Power, A Guide for Developers and Investors. https://doi.org/10.1002/9781119204442.ch16
  • Enoksson, V., & Svedberg, F. (2015). Optimization of hydro power on the Nordic electricity exchange using financial derivatives. Royal Institute of Technology.
  • Erat, S., Telli, A., Ozkendir, O. M., & Demir, B. (2021). Turkey’s energy transition from fossil-based to renewable up to 2030: milestones, challenges and opportunities. Clean Technologies and Environmental Policy, 23(2), 401–412. https://doi.org/10.1007/s10098-020-01949-1
  • Erdin, C., & Ozkaya, G. (2019). Turkey’s 2023 energy strategies and investment opportunities for renewable energy sources: Site selection based on ELECTRE. Sustainability (Switzerland), 11(7). https://doi.org/10.3390/su11072136
  • Fen, Q., Zhang, K., & Smith, B. (2012). Small Hydropower Cost Reference Model (Issue October).
  • Grigoriu, M., Popescu, M. C. (2010). Hydropower Preventive Monitoring Action Plan. In Proceedings of the 5th IASME/WSEAS International Conference on Energy&Environment, Recent Advances in Energy & Environment, Published by WSEAS Press, 265–270.
  • J.C., H. (2006). Technical Basis for Optimizing Hydropower Operations with MS-Excel. Great Wall World Renewable Energy Forum and Exhibition.
  • Jiang, Z., Li, R., Li, A., & Ji, C. (2018). Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application. Energy, 158, 693–708. https://doi.org/10.1016/j.energy.2018.06.083
  • Kaygusuz, K. (2018). Small hydropower potential and utilization in Turkey. Journal of Engineering Research and Applied Science, 7(1), 791–798.
  • Khaniya, B., Karunanayake, C., Gunathilake, M. B., & Rathnayake, U. (2020). Projection of Future Hydropower Generation in Samanalawewa Power Plant, Sri Lanka. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/8862067
  • Kober, T., Schiffer, H. W., Densing, M., & Panos, E. (2020). Global energy perspectives to 2060 – WEC’s World Energy Scenarios 2019. Energy Strategy Reviews, 31(August), 100523. https://doi.org/10.1016/j.esr.2020.100523
  • Koç, C. (2018). A study on operation problems of hydropower plants integrated with irrigation schemes operated in Turkey. International Journal of Green Energy, 15(2), 129–135. https://doi.org/10.1080/15435075.2018.1427591
  • Kok, B., & Benli, H. (2017). Energy diversity and nuclear energy for sustainable development in Turkey. Renewable Energy, 111, 870–877. https://doi.org/10.1016/j.renene.2017.05.001
  • Kotchen, M. J., Moore, M. R., Lupi, F., & Rutherford, E. S. (2006). Environmental constraints on hydropower: An ex post benefit-cost analysis of dam relicensing in Michigan. Land Economics, 82(3), 384–403. https://doi.org/10.3368/le.82.3.384
  • KURAL, D., & ARA AKSOY, S. (2020). An Analysis of the Optimal Design of Feed-in Tariff Policy for Photovoltaic Investments in Turkey. Sosyoekonomi, 28(46), 425–444. https://doi.org/10.17233/sosyoekonomi.2020.04.20
  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., & Garrote, L. (2020). Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic–ecohydraulic approach. Energy Conversion and Management, 223(August). https://doi.org/10.1016/j.enconman.2020.113267
  • Legal Sources on Renewable Energy. (n.d.). Compare Support Schemes. http://www.res-legal.eu/compare-support-schemes
  • Lund, H., & Østergaard, P. A. (2018). Sustainable Towns: The Case of Frederikshavn Aiming at 100% Renewable Energy. Sustainable Cities and Communities Design Handbook.
  • Mahmoudimehr, J., & Sebghati, P. (2019). A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study. Energy, 168, 796–814. https://doi.org/10.1016/j.energy.2018.11.079
  • Marchand, A. ; Gendreau, M. ; Blais, M. ; Emiel, G. (2019). Efficient tabu search procedure for short-term planning of large-scale hydropower systems. Journal of Water Resources Planning and Management, 145(7).
  • Matzenberger, J., Kranzl, L., Tromborg, E., Junginger, M., Daioglou, V., Sheng Goh, C., & Keramidas, K. (2015). Future perspectives of international bioenergy trade. Renewable and Sustainable Energy Reviews, 43, 926–941. https://doi.org/10.1016/j.rser.2014.10.106
  • Najarchi, M., & Haghverdi, A. (2020). Application in optimization of multi-reservoir water systems using improving shuffled complex algorithm. SN Applied Sciences, 2(5), 1–9. https://doi.org/10.1007/s42452-020-2590-x
  • R., V. (2014). The Aspects of the Planning and Optimization of Electric Stations Operational Regimes under the Conditions of Market Economy. RTU.
  • Ranjbari, M., Shams Esfandabadi, Z., Zanetti, M. C., Scagnelli, S. D., Siebers, P. O., Aghbashlo, M., Peng, W., Quatraro, F., & Tabatabaei, M. (2021). Three pillars of sustainability in the wake of COVID-19: A systematic review and future research agenda for sustainable development. Journal of Cleaner Production, 297, 126660. https://doi.org/10.1016/j.jclepro.2021.126660
  • Renewable energy technologies: Cost analysis series. Concentrating solar power. (2012). In Irena, I. R. E. A. (Vol. 4, Issue 5).
  • Republic of Turkey Ministry of Energy and Natural Resources. (2022). https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • Şahin, C. (2021). The Development of Renewable Energy in Turkish Electricity Markets. European Journal of Science and Technology, 25, 238–246. https://doi.org/10.31590/ejosat.893539
  • Şahin, M. (2021). A comprehensive analysis of weighting and multicriteria methods in the context of sustainable energy. International Journal of Environmental Science and Technology, 18(6), 1591–1616. https://doi.org/10.1007/s13762-020-02922-7
  • Sauhats, A., Varfolomejeva, R., Umbrasko, I., Coban, H. H. (2014). An additional income of small hydropower plants and a public trader. International Journal of Energy, 8.
  • Sauhats, A., Coban, H. H., Baltputnis, K., Broka, Z., Petrichenko, R., & Varfolomejeva, R. (2016). Optimal investment and operational planning of a storage power plant. International Journal of Hydrogen Energy, 41(29), 12443–12453. https://doi.org/10.1016/j.ijhydene.2016.03.078
  • Sauhats, A., Varfolomejeva, R., Petrichenko, R., & Kucajevs, J. (2015). A stochastic approach to hydroelectric power generation planning in an electricity market. 2015 IEEE 15th International Conference on Environment and Electrical Engineering, EEEIC 2015 - Conference Proceedings, 2013, 883–888. https://doi.org/10.1109/EEEIC.2015.7165280
  • Shukla, A. K., Sudhakar, K., & Baredar, P. (2017). Renewable energy resources in South Asian countries: Challenges, policy and recommendations. Resource-Efficient Technologies, 3(3), 342–346. https://doi.org/10.1016/j.reffit.2016.12.003
  • Singh, V. K., & Singal, S. K. (2018). Optimal Operation of Run of River Small Hydro Power Plant. BioPhysical Economics and Resource Quality, 3(3), 1–11. https://doi.org/10.1007/s41247-018-0045-4
  • Siriwardena M.B.D.K., S. N. T. S. (2020). Optimization of an Industrial Boiler Operation. Journal of Research Technology and Engineering, 1(3), 126–134.
  • Soares, S., & Carneiro, A. A. F. M. (1991). Optimal operation of reservoirs for electric generation. IEEE Transactions on Power Delivery, 6(3), 1101–1107. https://doi.org/10.1109/61.85854
  • Sun, L., Niu, D., Wang, K., & Xu, X. (2021). Sustainable development pathways of hydropower in China: Interdisciplinary qualitative analysis and scenario-based system dynamics quantitative modeling. Journal of Cleaner Production, 287, 125528. https://doi.org/10.1016/j.jclepro.2020.125528
  • Tayefeh Hashemi, S., Ebadati, O. M., & Kaur, H. (2020). Cost estimation and prediction in construction projects: a systematic review on machine learning techniques. SN Applied Sciences, 2(10), 1–27. https://doi.org/10.1007/s42452-020-03497-1
  • Teck, T. S., Subramaniam, H., & Sorooshian, S. (2019). Exploring challenges of the fourth industrial revolution. International Journal of Innovative Technology and Exploring Engineering, 8(9), 27–30. https://doi.org/10.35940/ijitee.i7910.078919
  • Tiainen, R., Lindh, T., Ahola, J., Niemelä, M., & Särkimäki, V. (2008). Energy price-based control strategy of a small-scale head-dependent hydroelectric power plant. Renewable Energy and Power Quality Journal, 1(6), 514–519. https://doi.org/10.24084/repqj06.345
  • Üçüncü, O. (2018). Latest status of hydropower plants in Turkey: Technical, environmental policy and environmental law from the perspective of the evaluation. A/Z ITU Journal of the Faculty of Architecture, 15(2), 153–171. https://doi.org/10.5505/itujfa.2018.79664
  • Varfolomejeva, R., Petrichenko, R., Sauhats, A., Kucajevs, J. (2015). An optimization algorithm selection to regulate the power plant work. 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical Uni.
  • Varfolomejeva R., Zima-Bockarjova M., C. H. H. (2014). Reconsideration of Supporting Scheme for Renewable Energy Producers. 4th International Symposium on Environmental Biotechnology and Engineering (4ISEBE), 62–63.
  • Varfolomejeva, R., Umbrasko, I., & Mahnitko, A. (2013). The small hydropower plant operating regime optimization by the income maximization. 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013. https://doi.org/10.1109/PTC.2013.6652497
  • Wendle, C. (2019). Rights to the River: Implementing A Social Cost-Benefit Analysis in the United States Hydropower Relicensing Process. https://scholarship.claremont.edu/scripps_theses/1395/
  • Wessel, M., Madlener, R., & Hilgers, C. (2020). Economic Feasibility of Semi-Underground Pumped Storage Hydropower Plants in Open-Pit Mines. Energies, 13(6), 1–33. https://doi.org/10.3390/en13164178
  • Wu, L., Shahidehpour, M., & Li, T. (2008). Cost of reliability analysis based on stochastic unit commitment. IEEE Transactions on Power Systems, 23(3), 1364–1374. https://doi.org/10.1109/TPWRS.2008.922231
  • Xu, J., Liu, Z., Jiang, H. (2021). Study on Application of Solar Energy in Highway. E3S Web of Conferences, 261. Yalılı, M., Tiryaki, R., & Gözen, M. (2020). Evolution of auction schemes for renewable energy in Turkey: An assessment on the results of different designs. Energy Policy, 145(August). https://doi.org/10.1016/j.enpol.2020.111772
  • Yang, Y., Zhou, J., Liu, G., Mo, L., Wang, Y., Jia, B., & He, F. (2020). Multi-plan formulation of hydropower generation considering uncertainty of wind power. Applied Energy, 260(December 2019). https://doi.org/10.1016/j.apenergy.2019.114239
  • Yang, Z., Wang, Y., & Yang, K. (2022). The stochastic short-term hydropower generation scheduling considering uncertainty in load output forecasts. Energy, 241, 122838. https://doi.org/10.1016/j.energy.2021.122838
  • Yildiz, V., & Vrugt, J. A. (2019). A toolbox for the optimal design of run-of-river hydropower plants. Environmental Modelling and Software, 111(August 2017), 134–152. https://doi.org/10.1016/j.envsoft.2018.08.018
  • Yuan, W., Wang, X., Su, C., Cheng, C., Liu, Z., & Wu, Z. (2021). Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming. Energy, 222, 119996. https://doi.org/10.1016/j.energy.2021.119996
  • Yuksel, I., Arman, H., & Demirel, I. H. (2017). As a clean, sustainable and renewable energy - Hydropower in Turkey. MATEC Web of Conferences, 120, 1–5. https://doi.org/10.1051/matecconf/201712008004
  • Zhang, Y., Ma, H., & Zhao, S. (2021). Assessment of hydropower sustainability: Review and modeling. Journal of Cleaner Production, 321(September), 128898. https://doi.org/10.1016/j.jclepro.2021.128898
There are 77 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Article
Authors

Hasan Huseyin Coban 0000-0002-5284-0568

Antans Sauhats 0000-0001-9794-6078

Publication Date September 25, 2022
Submission Date March 5, 2022
Published in Issue Year 2022

Cite

APA Coban, H. H., & Sauhats, A. (2022). Optimization tool for small hydropower plant resource planning and development: A case study. Journal of Advanced Research in Natural and Applied Sciences, 8(3), 391-428. https://doi.org/10.28979/jarnas.1083208
AMA Coban HH, Sauhats A. Optimization tool for small hydropower plant resource planning and development: A case study. JARNAS. September 2022;8(3):391-428. doi:10.28979/jarnas.1083208
Chicago Coban, Hasan Huseyin, and Antans Sauhats. “Optimization Tool for Small Hydropower Plant Resource Planning and Development: A Case Study”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 3 (September 2022): 391-428. https://doi.org/10.28979/jarnas.1083208.
EndNote Coban HH, Sauhats A (September 1, 2022) Optimization tool for small hydropower plant resource planning and development: A case study. Journal of Advanced Research in Natural and Applied Sciences 8 3 391–428.
IEEE H. H. Coban and A. Sauhats, “Optimization tool for small hydropower plant resource planning and development: A case study”, JARNAS, vol. 8, no. 3, pp. 391–428, 2022, doi: 10.28979/jarnas.1083208.
ISNAD Coban, Hasan Huseyin - Sauhats, Antans. “Optimization Tool for Small Hydropower Plant Resource Planning and Development: A Case Study”. Journal of Advanced Research in Natural and Applied Sciences 8/3 (September 2022), 391-428. https://doi.org/10.28979/jarnas.1083208.
JAMA Coban HH, Sauhats A. Optimization tool for small hydropower plant resource planning and development: A case study. JARNAS. 2022;8:391–428.
MLA Coban, Hasan Huseyin and Antans Sauhats. “Optimization Tool for Small Hydropower Plant Resource Planning and Development: A Case Study”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 3, 2022, pp. 391-28, doi:10.28979/jarnas.1083208.
Vancouver Coban HH, Sauhats A. Optimization tool for small hydropower plant resource planning and development: A case study. JARNAS. 2022;8(3):391-428.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).