Research Article
BibTex RIS Cite
Year 2022, , 543 - 554, 15.12.2022
https://doi.org/10.28979/jarnas.1097902

Abstract

References

  • Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A., & Lercker, G. (2007). Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules, 12(8), 1679–1719. https://doi.org/10.3390/12081679
  • Berg, J. C. (2010). An Introduction to Interfaces & Colloids: The Bridge to Nanoscience. World Scientific. https://books.google.com/books?id=x-XZBJngdM4C Boskou, D., Blekas, G., & Tsimidou, M. (2006). Olive Oil Composition. Olive Oil: Chemistry and Technology: Second Edition, 41–72. https://doi.org/10.1016/B978-1-893997-88-2.50008-0
  • Chakraborty, S. K., Kotwaliwale, N., & Navale, S. A. (2018). Rheological characterization of gluten free millet flour dough. Journal of Food Measurement and Characterization, 12(2), 1195–1202. https://doi.org/10.1007/S11694-018-9733-4
  • Di Mattia, C. D., Sacchetti, G., Mastrocola, D., & Pittia, P. (2009). Effect of phenolic antioxidants on the dispersion state and chemical stability of olive oil O/W emulsions. Food Research International, 42(8), 1163–1170. https://doi.org/10.1016/j.foodres.2009.05.017
  • Di Mattia, Carla D., Sacchetti, G., & Pittia, P. (2011). Interfacial Behavior and Antioxidant Efficiency of Olive Phenolic Compounds in O/W Olive oil Emulsions as Affected by Surface Active Agent Type. Food Biophysics, 6(2), 295–302. https://doi.org/10.1007/S11483-010-9195-7
  • Dickinson, E. (1998). Proteins at interfaces and in emulsions. Stability, rheology and interactions. Journal of the Chemical Society - Faraday Transactions, 94(12), 1657–1669. https://doi.org/10.1039/a801167b
  • Dickinson, E. (2008). Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions. Soft Matter, 4(5), 932–942. https://doi.org/10.1039/b718319d
  • Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23(6), 1473–1482. https://doi.org/10.1016/j.foodhyd.2008.08.005
  • Dickinson, E. (2011). Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids, 25(8), 1966–1983. https://doi.org/10.1016/j.foodhyd.2010.12.001
  • Dickinson, E., Ma, J., & Povey, M. J. W. (1994). Creaming of concentrated oil-in-water emulsions containing xanthan. Topics in Catalysis, 8(5), 481–497. https://doi.org/10.1016/S0268-005X(09)80090-8
  • Freer, E. M., Yim, K. S., Fuller, G. G., & Radke, C. J. (2004). Interfacial Rheology of Globular and Flexible Proteins at the Hexadecane/Water Interface: Comparison of Shear and Dilatation Deformation. The Journal of Physical Chemistry B, 108(12), 3835–3844. https://doi.org/10.1021/jp037236k
  • Gavahian, M., Chen, Y. M., Mousavi Khaneghah, A., Barba, F. J., & Yang, B. B. (2018). In-pack sonication technique for edible emulsions: Understanding the impact of acacia gum and lecithin emulsifiers and ultrasound homogenization on salad dressing emulsions stability. Food Hydrocolloids, 83, 79–87. https://doi.org/10.1016/j.foodhyd.2018.04.039
  • Giacintucci, V., Di Mattia, C., Sacchetti, G., Neri, L., & Pittia, P. (2016). Role of olive oil phenolics in physical properties and stability of mayonnaise-like emulsions. Food Chemistry, 213, 369–377. https://doi.org/10.1016/J.FOODCHEM.2016.06.095
  • Hong, L. F., Cheng, L. H., Gan, C. Y., Lee, C. Y., & Peh, K. K. (2018). Evaluation of starch propionate as emulsion stabiliser in comparison with octenylsuccinate starch. LWT - Food Science and Technology, 91, 526–531. https://doi.org/10.1016/j.lwt.2018.01.076
  • Kaltsa, O., Michon, C., Yanniotis, S., & Mandala, I. (2013). Ultrasonic energy input influence on the production of sub-micron o/w emulsions containing whey protein and common stabilizers. Ultrasonics Sonochemistry, 20(3), 881–891. https://doi.org/10.1016/j.ultsonch.2012.11.011
  • Kentish, S., & Feng, H. (2014). Applications of Power Ultrasound in Food Processing. Annual Review of Food Science and Technology, 5(1), 263–284. https://doi.org/10.1146/annurev-food-030212-182537
  • Kiosseoglou, V. D., & Sherman, P. (1983). Influence of Egg Yolk Lipoproteins on the Rheology and Stability of O/W Emulsions and Mayonnaise 1. Viscoelasticity of Groundnut Oil‐in‐Water Emulsions and Mayonnaise. Journal of Texture Studies, 14(4), 397–417. https://doi.org/10.1111/j.1745-4603.1983.tb00358.x
  • Kirtil, E., & Oztop, M. H. M. H. (2016). Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. Food Research International, 85, 84–94. https://doi.org/10.1016/j.foodres.2016.04.019
  • Kirtil, E., Svitova, T., Radke, C. J., Oztop, M. H., & Sahin, S. (2022). Investigation of surface properties of quince seed extract as a novel polymeric surfactant. Food Hydrocolloids, 123(September 2021), 107185. https://doi.org/10.1016/j.foodhyd.2021.107185
  • Kontogiorgos, V. (2019). Polysaccharides at fluid interfaces of food systems. Advances in Colloid and Interface Science, 270, 28–37. https://doi.org/10.1016/j.cis.2019.05.008
  • Krstonošić, V. S., Kalić, M. D., Dapčević-Hadnađev, T. R., Lončarević, I. S., & Hadnađev, M. S. (2020). Physico-chemical characterization of protein stabilized oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 125045. https://doi.org/10.1016/j.colsurfa.2020.125045
  • Laca, A., Sáenz, M. C., Paredes, B., & Díaz, M. (2010). Rheological properties, stability and sensory evaluation of low-cholesterol mayonnaises prepared using egg yolk granules as emulsifying agent. Journal of Food Engineering, 97(2), 243–252. https://doi.org/10.1016/j.jfoodeng.2009.10.017
  • Langton, M., Jordansson, E., Altskär, A., Sørensen, C., & Hermansson, A. M. (1999). Microstructure and image analysis of mayonnaises. Food Hydrocolloids, 13(2), 113–125. https://doi.org/10.1016/S0268-005X(98)00076-9
  • Li, Y., Xiang, D., Wang, B., & Gong, X. (2019). Oil-in-water emulsions stabilized by ultrasonic degraded polysaccharide complex. Molecules, 24(6). https://doi.org/10.3390/molecules24061097
  • Marcotte, M., Hoshahili, A. R. T., & Ramaswamy, H. S. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 34(8), 695–703. https://doi.org/10.1016/S0963-9969(01)00091-6
  • Nikzade, V., Tehrani, M. M., & Saadatmand-Tarzjan, M. (2012). Optimization of low-cholesterol-low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocolloids, 28(2), 344–352. https://doi.org/10.1016/j.foodhyd.2011.12.023
  • Rosell, C. M., Rojas, J. A., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75–81. https://doi.org/10.1016/S0268-005X(00)00054-0
  • Vélez-Erazo, E. M., Bosqui, K., Rabelo, R. S., Kurozawa, L. E., & Hubinger, M. D. (2020). High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocolloids, 105, 105775. https://doi.org/10.1016/j.foodhyd.2020.105775
  • Vogt, S. J., Smith, J. R., Seymour, J. D., Carr, A. J., Golding, M. D., & Codd, S. L. (2015). Assessment of the changes in the structure and component mobility of Mozzarella and Cheddar cheese during heating. Journal of Food Engineering, 150, 35–43. https://doi.org/10.1016/j.jfoodeng.2014.10.026
  • Wilde, P., Mackie, A., Husband, F., Gunning, P., & Morris, V. (2004). Proteins and emulsifiers at liquid interfaces. Advances in Colloid and Interface Science. https://doi.org/10.1016/j.cis.2003.10.011
  • Yang, J. S., Jiang, B., He, W., & Xia, Y. M. (2012). Hydrophobically modified alginate for emulsion of oil in water. Carbohydrate Polymers, 87(2), 1503–1506. https://doi.org/10.1016/j.carbpol.2011.09.046
  • Zampounis, V. (2006). Olive Oil in the World Market. Olive Oil: Chemistry and Technology: Second Edition, 21–39. https://doi.org/10.1016/B978-1-893997-88-2.50007-9

Improving The Physical Stability Of Virgin Olive Oil Mayonnaise

Year 2022, , 543 - 554, 15.12.2022
https://doi.org/10.28979/jarnas.1097902

Abstract

Mayonnaise is a popular solid like sauce obtained typically from the ingredients; vegetable oil, vinegar, egg yolk, and salt. For mayonnaise production, vegetable oils with low costs are preferred. Extra virgin olive oil (EVOO), despite its high cost, is unique in that it has some very exceptional nutritional and sensorial properties and positive health promoting effects. However, EVOO mayonnaises pose some challenges in preparation and particu-larly in maintaining their stability for elevated periods. This study explored some options that could extend the shelf life of mayonnaise prepared from EVOO. For this purpose, two different stabilizer sodium alginate and gellan gum at two different concentrations (0.1% and 0.2%) were added to mayonnaise formulations, additionally ultrasound was applied at two different powers (40% and 70%) for 2 min. Rheological characterization revealed that all mayonnaise samples displayed a pseudoplastic behaviour which is desirable in condiments like mayonnaise. Particle size meas-urements revealed that oil particle diameters ranged between 2.1-25.5 μm. Real time and accelerated emulsion sta-bility measurement were in line with each other. According to these, sodium alginate resulted in mayonnaise with the highest physical stability. Real time emulsion stability measurements revealed that all samples except control main-tained their physical stability up to 20 days after preparation.

References

  • Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A., & Lercker, G. (2007). Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules, 12(8), 1679–1719. https://doi.org/10.3390/12081679
  • Berg, J. C. (2010). An Introduction to Interfaces & Colloids: The Bridge to Nanoscience. World Scientific. https://books.google.com/books?id=x-XZBJngdM4C Boskou, D., Blekas, G., & Tsimidou, M. (2006). Olive Oil Composition. Olive Oil: Chemistry and Technology: Second Edition, 41–72. https://doi.org/10.1016/B978-1-893997-88-2.50008-0
  • Chakraborty, S. K., Kotwaliwale, N., & Navale, S. A. (2018). Rheological characterization of gluten free millet flour dough. Journal of Food Measurement and Characterization, 12(2), 1195–1202. https://doi.org/10.1007/S11694-018-9733-4
  • Di Mattia, C. D., Sacchetti, G., Mastrocola, D., & Pittia, P. (2009). Effect of phenolic antioxidants on the dispersion state and chemical stability of olive oil O/W emulsions. Food Research International, 42(8), 1163–1170. https://doi.org/10.1016/j.foodres.2009.05.017
  • Di Mattia, Carla D., Sacchetti, G., & Pittia, P. (2011). Interfacial Behavior and Antioxidant Efficiency of Olive Phenolic Compounds in O/W Olive oil Emulsions as Affected by Surface Active Agent Type. Food Biophysics, 6(2), 295–302. https://doi.org/10.1007/S11483-010-9195-7
  • Dickinson, E. (1998). Proteins at interfaces and in emulsions. Stability, rheology and interactions. Journal of the Chemical Society - Faraday Transactions, 94(12), 1657–1669. https://doi.org/10.1039/a801167b
  • Dickinson, E. (2008). Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions. Soft Matter, 4(5), 932–942. https://doi.org/10.1039/b718319d
  • Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23(6), 1473–1482. https://doi.org/10.1016/j.foodhyd.2008.08.005
  • Dickinson, E. (2011). Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids, 25(8), 1966–1983. https://doi.org/10.1016/j.foodhyd.2010.12.001
  • Dickinson, E., Ma, J., & Povey, M. J. W. (1994). Creaming of concentrated oil-in-water emulsions containing xanthan. Topics in Catalysis, 8(5), 481–497. https://doi.org/10.1016/S0268-005X(09)80090-8
  • Freer, E. M., Yim, K. S., Fuller, G. G., & Radke, C. J. (2004). Interfacial Rheology of Globular and Flexible Proteins at the Hexadecane/Water Interface: Comparison of Shear and Dilatation Deformation. The Journal of Physical Chemistry B, 108(12), 3835–3844. https://doi.org/10.1021/jp037236k
  • Gavahian, M., Chen, Y. M., Mousavi Khaneghah, A., Barba, F. J., & Yang, B. B. (2018). In-pack sonication technique for edible emulsions: Understanding the impact of acacia gum and lecithin emulsifiers and ultrasound homogenization on salad dressing emulsions stability. Food Hydrocolloids, 83, 79–87. https://doi.org/10.1016/j.foodhyd.2018.04.039
  • Giacintucci, V., Di Mattia, C., Sacchetti, G., Neri, L., & Pittia, P. (2016). Role of olive oil phenolics in physical properties and stability of mayonnaise-like emulsions. Food Chemistry, 213, 369–377. https://doi.org/10.1016/J.FOODCHEM.2016.06.095
  • Hong, L. F., Cheng, L. H., Gan, C. Y., Lee, C. Y., & Peh, K. K. (2018). Evaluation of starch propionate as emulsion stabiliser in comparison with octenylsuccinate starch. LWT - Food Science and Technology, 91, 526–531. https://doi.org/10.1016/j.lwt.2018.01.076
  • Kaltsa, O., Michon, C., Yanniotis, S., & Mandala, I. (2013). Ultrasonic energy input influence on the production of sub-micron o/w emulsions containing whey protein and common stabilizers. Ultrasonics Sonochemistry, 20(3), 881–891. https://doi.org/10.1016/j.ultsonch.2012.11.011
  • Kentish, S., & Feng, H. (2014). Applications of Power Ultrasound in Food Processing. Annual Review of Food Science and Technology, 5(1), 263–284. https://doi.org/10.1146/annurev-food-030212-182537
  • Kiosseoglou, V. D., & Sherman, P. (1983). Influence of Egg Yolk Lipoproteins on the Rheology and Stability of O/W Emulsions and Mayonnaise 1. Viscoelasticity of Groundnut Oil‐in‐Water Emulsions and Mayonnaise. Journal of Texture Studies, 14(4), 397–417. https://doi.org/10.1111/j.1745-4603.1983.tb00358.x
  • Kirtil, E., & Oztop, M. H. M. H. (2016). Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. Food Research International, 85, 84–94. https://doi.org/10.1016/j.foodres.2016.04.019
  • Kirtil, E., Svitova, T., Radke, C. J., Oztop, M. H., & Sahin, S. (2022). Investigation of surface properties of quince seed extract as a novel polymeric surfactant. Food Hydrocolloids, 123(September 2021), 107185. https://doi.org/10.1016/j.foodhyd.2021.107185
  • Kontogiorgos, V. (2019). Polysaccharides at fluid interfaces of food systems. Advances in Colloid and Interface Science, 270, 28–37. https://doi.org/10.1016/j.cis.2019.05.008
  • Krstonošić, V. S., Kalić, M. D., Dapčević-Hadnađev, T. R., Lončarević, I. S., & Hadnađev, M. S. (2020). Physico-chemical characterization of protein stabilized oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 125045. https://doi.org/10.1016/j.colsurfa.2020.125045
  • Laca, A., Sáenz, M. C., Paredes, B., & Díaz, M. (2010). Rheological properties, stability and sensory evaluation of low-cholesterol mayonnaises prepared using egg yolk granules as emulsifying agent. Journal of Food Engineering, 97(2), 243–252. https://doi.org/10.1016/j.jfoodeng.2009.10.017
  • Langton, M., Jordansson, E., Altskär, A., Sørensen, C., & Hermansson, A. M. (1999). Microstructure and image analysis of mayonnaises. Food Hydrocolloids, 13(2), 113–125. https://doi.org/10.1016/S0268-005X(98)00076-9
  • Li, Y., Xiang, D., Wang, B., & Gong, X. (2019). Oil-in-water emulsions stabilized by ultrasonic degraded polysaccharide complex. Molecules, 24(6). https://doi.org/10.3390/molecules24061097
  • Marcotte, M., Hoshahili, A. R. T., & Ramaswamy, H. S. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 34(8), 695–703. https://doi.org/10.1016/S0963-9969(01)00091-6
  • Nikzade, V., Tehrani, M. M., & Saadatmand-Tarzjan, M. (2012). Optimization of low-cholesterol-low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocolloids, 28(2), 344–352. https://doi.org/10.1016/j.foodhyd.2011.12.023
  • Rosell, C. M., Rojas, J. A., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75–81. https://doi.org/10.1016/S0268-005X(00)00054-0
  • Vélez-Erazo, E. M., Bosqui, K., Rabelo, R. S., Kurozawa, L. E., & Hubinger, M. D. (2020). High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocolloids, 105, 105775. https://doi.org/10.1016/j.foodhyd.2020.105775
  • Vogt, S. J., Smith, J. R., Seymour, J. D., Carr, A. J., Golding, M. D., & Codd, S. L. (2015). Assessment of the changes in the structure and component mobility of Mozzarella and Cheddar cheese during heating. Journal of Food Engineering, 150, 35–43. https://doi.org/10.1016/j.jfoodeng.2014.10.026
  • Wilde, P., Mackie, A., Husband, F., Gunning, P., & Morris, V. (2004). Proteins and emulsifiers at liquid interfaces. Advances in Colloid and Interface Science. https://doi.org/10.1016/j.cis.2003.10.011
  • Yang, J. S., Jiang, B., He, W., & Xia, Y. M. (2012). Hydrophobically modified alginate for emulsion of oil in water. Carbohydrate Polymers, 87(2), 1503–1506. https://doi.org/10.1016/j.carbpol.2011.09.046
  • Zampounis, V. (2006). Olive Oil in the World Market. Olive Oil: Chemistry and Technology: Second Edition, 21–39. https://doi.org/10.1016/B978-1-893997-88-2.50007-9
There are 32 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Melis Coskun 0000-0001-7042-6486

Sinem Argun 0000-0003-2570-2431

Emrah Kırtıl 0000-0002-9619-1678

Publication Date December 15, 2022
Submission Date April 3, 2022
Published in Issue Year 2022

Cite

APA Coskun, M., Argun, S., & Kırtıl, E. (2022). Improving The Physical Stability Of Virgin Olive Oil Mayonnaise. Journal of Advanced Research in Natural and Applied Sciences, 8(4), 543-554. https://doi.org/10.28979/jarnas.1097902
AMA Coskun M, Argun S, Kırtıl E. Improving The Physical Stability Of Virgin Olive Oil Mayonnaise. JARNAS. December 2022;8(4):543-554. doi:10.28979/jarnas.1097902
Chicago Coskun, Melis, Sinem Argun, and Emrah Kırtıl. “Improving The Physical Stability Of Virgin Olive Oil Mayonnaise”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 4 (December 2022): 543-54. https://doi.org/10.28979/jarnas.1097902.
EndNote Coskun M, Argun S, Kırtıl E (December 1, 2022) Improving The Physical Stability Of Virgin Olive Oil Mayonnaise. Journal of Advanced Research in Natural and Applied Sciences 8 4 543–554.
IEEE M. Coskun, S. Argun, and E. Kırtıl, “Improving The Physical Stability Of Virgin Olive Oil Mayonnaise”, JARNAS, vol. 8, no. 4, pp. 543–554, 2022, doi: 10.28979/jarnas.1097902.
ISNAD Coskun, Melis et al. “Improving The Physical Stability Of Virgin Olive Oil Mayonnaise”. Journal of Advanced Research in Natural and Applied Sciences 8/4 (December 2022), 543-554. https://doi.org/10.28979/jarnas.1097902.
JAMA Coskun M, Argun S, Kırtıl E. Improving The Physical Stability Of Virgin Olive Oil Mayonnaise. JARNAS. 2022;8:543–554.
MLA Coskun, Melis et al. “Improving The Physical Stability Of Virgin Olive Oil Mayonnaise”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 4, 2022, pp. 543-54, doi:10.28979/jarnas.1097902.
Vancouver Coskun M, Argun S, Kırtıl E. Improving The Physical Stability Of Virgin Olive Oil Mayonnaise. JARNAS. 2022;8(4):543-54.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).