Research Article
BibTex RIS Cite
Year 2022, , 785 - 795, 15.12.2022
https://doi.org/10.28979/jarnas.1109192

Abstract

Supporting Institution

Yok.

Project Number

Yok

References

  • Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, Journal of Bacteriology, 62, 293-300. DOI: 10.1128/jb.62.3.293-300.1951
  • Bielecki, S., & Bolek, R. (1996). Immobilization of recombinant E. coli cells with phenol-lyase activity. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Progress in Biotechnology, vol 11. Elsevier, Amsterdam, pp 472–478.
  • Charm, S.E., & Wong, B.L. (1970). Enzyme inactivation with shearing. Biotechnology and Bioengineerig, 12, 1103 – 1109. https://doi.org/10.1002/bit.260120615
  • Çakmak, M., (2016). Citrobacter freundii (NRRL B-2643) Mikroorganizması Kullanılarak Farklı Fermantatif Şartlarda L-Dopa Ve Dopamin Üretiminin İncelenmesi, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, https://tez.yok.gov.tr/UlusalTez Merkezi
  • Demain, A.L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27, 297-306. DOI: 10.1016/j.biotechadv.2009.01.008
  • Elibol, M. & Ozer, D., (2000). Lipase production by immobilised Rhizopus arrhizus. Process Biochemistry, 36, 219 – 223. DOI:10.1016/S0032-9592(00)00191-6
  • Elibol, M., Ulgen, K., Kamarulzaman, K., & Mavituna, F. (1995). Effect of inoculum type on actinorhodin production by Streptomyces coelicolor. Biotechnology Letters, 17, 579–582 DOI:10.1007/BF00129381
  • Fang, H., Kang, J., & Zhang, D. (2017). Microbial production of vitamin B 12: a review and future perspectives. Microbial Cell Factories, 16(15), 1-14 https://doi.org/10.1186/s12934-017-0631-y.
  • Geckil, H., Gencer, S., & Uckun, M. (2004). Vitreoscilla hemoglobin expressing Enterobacter aerogenes and Pseudomonas aeruginosa respond differently to carbon catabolite and oxygen repression for production of L-asparaginase, an enzyme used in cancer therapy, Enzyme and Microbial Technology, 35, 182-189. DOI:10.1016/j.enzmictec.2004.04.005
  • Halkman, A.K. (2005). Anonymous, Merck Gıda Mikrobiyolojisi Uygulamaları. Ed: A. K. Halkman. Başak Matbaacılık Ltd. Şti., Ankara, 358 sayfa." adlı kitabın 03. bölümüdür.
  • Hoffman, B.B., & Lefkowitz, R.J. (1996). Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman J.G., Limbird L.E., Molinoff P.B., Ruddon R.W., Goodman L.S., Gilman A., editors. Goodman & Gilman’sthe Pharmacological Basis of Therapeutics. 9th. McGraw-Hill; New York, NY, USA: 1996. pp. 199–248.
  • Kruk, Z.L., & Pycock, C.J. (1991). Dopamine. In: Neurotransmitters and drugs, Suffolk, UK: St. Edmundsbury Press, 3rd ed., 87–115.
  • Kurt, A.G., Aytan, E., Ozer, U., Ates, B., & Geckil, H. (2009). Production of L-DOPA and dopamine in bacteria bearing Vitreoscilla hemoglobin gene. Biotechnolgy Journal, 4(7), 1077-1088. DOI:10.1002/biot.200900130.
  • Lee, S.G., Hong, S.P., & Sung, M.H. (1999). Development of an enzymatic system for the production of dopamine from catechol, pyruvate, and ammonia, Enzyme and Microbial Technology, 25, 298-302. http://dx.doi.org/10.1016/S0141-0229(99)00071-X
  • Lisbon, A. (2003). Dopexamine, dobutamine and dopamine increase splanchnic blood flow: What is the evidence? CHEST, 123, 460–463. DOI: 10.1378/chest.123.5_suppl.460s
  • McDaniel, L.E., & Bailey, E.G. (1969). Effect of Shaking Speed and Type of Closure on Shake Flask Cultures, Applied Microbiology, 17, 286-290. DOI:10.1128/am.17.2.286-290.1969
  • Misu, Y., Goshima, Y., & Miyamae, T. (2002). Is DOPA a neurotransmitter? Trends in Pharmacological Science, 23(6), 262–268. DOI: 10.1016/s0165-6147(02)02013-8
  • Montgomer, E.B. (1992). Pharmacokinetics and pharmacodynamics of levodopa. Neurology, 42(1 Suppl 1), 17-22. PMID: 1549197
  • Nagatsu, T., & Sawada, M. (2009). L-dopa therapy for Parkinson's disease: Past, present, and future, Parkinsonism & Related Disorders, 15, S3-S8. DOI: 10.1016/S1353-8020(09)70004-5.
  • O'Hara, C.M., Westbrook, G.L., & Miller, J.M. (1997). Evaluation of Vitek GNI+ and Becton Dickinson Microbiology Systems Crystal E/NF identification systems for identification of members of the family Enterobacteriaceae and other gram-negative, glucose-fermenting and non-glucose-fermenting bacilli. Journal of Clinical Microbiology, 35, 3269-3273. DOI: 10.1128/jcm.35.12.3269-3273.1997
  • Prakasham, R.S., Rao, C.S., Rao, R.S., & Sarma, P.N. (2005). Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: Process parameters optimization, Biotechnology Progress, 21, 1380-1388. DOI :10.1021/bp050095e.
  • Prudende, K.W., Katz, A., Sugrue, J.A., & Thomson, A. (1989). The effect of glucose on the expression of acloned Bacillus amyloliquefaciens α-amylase gene in strains Bacillus subtillus, Current Microbiology, 18(1), 27-31. DOI:10.1007/BF01568826
  • Raju, B.G.H., & Ayyanna, C. (1993). Bioconversion of L-tyrosine to L-DOPA Nusing Aspergillus oryzae. CBS Publishers, 106–110. DOI: 10.1007/s00726-010-0768-z.
  • Rehm, J., Reed, G., & Kennedy, J.F. (1987). Biotechnology, Vch. New York, 7a, 5-100.
  • Shuler, M.L., & Kargi, F. (2002). Bioprocess engineering Basic Concepts, Second edition, Prentice Hall New York. Pp. 46-54. ISBN 0-13-081908-5
  • Sodhi, H.K., Sharma, K., Gupta, J.K., & Soni, S.K. (2005). Production of a thermostable alpha-amylase from Bacillus sp PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochemistry, 40, 525-534. https://DOI 10.1016/j.procbio.2003.10.008
  • Tanyildizi, M.S., Ozer, D., & Elibol, M. (2007). Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation. Biochemical Engineering Journal, 37, 294–297. https://DOI 10.1016/j.bej.2007.05.009
  • Yun, J.S., & Ryu, H.W. (2001). Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochemistry, 37, 235-240. https://doi.org/10.1016/S0032-9592(01)00205-9

Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643)

Year 2022, , 785 - 795, 15.12.2022
https://doi.org/10.28979/jarnas.1109192

Abstract

In this study, microbial production of L-Dopa and Dopamine which is an important substrance for the treatment of Parkinson's disease were investigated by using Citrobacter freundii (NRRL B-2643). The effects of carbon source (sucrose) and, salt concentrations (NaCl, CaCl2), initial pH, temperature, inoculum level and shaking speed on L-Dopa and dopamine production were investigated. The amounts of extracellular L-dopa and dopamine were determined by using HPLC. Maximum L-dopa and dopamine production, under optimized conditions (sucrose: 2.5 g/L, NaCl and CaCl2: 1.0 g/L, inoculum level: 1.0% (v/v), initial pH: 6.5, temperature: 33°C, shaking speed: 200 rpm) were found to be 458 and 592 mg/L, respectively. Although the experiments were carried out for 60 hours, but the maximum production of L-Dopa and Dopamine was realized at around the 30th hour of the experiments.

Project Number

Yok

References

  • Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, Journal of Bacteriology, 62, 293-300. DOI: 10.1128/jb.62.3.293-300.1951
  • Bielecki, S., & Bolek, R. (1996). Immobilization of recombinant E. coli cells with phenol-lyase activity. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Progress in Biotechnology, vol 11. Elsevier, Amsterdam, pp 472–478.
  • Charm, S.E., & Wong, B.L. (1970). Enzyme inactivation with shearing. Biotechnology and Bioengineerig, 12, 1103 – 1109. https://doi.org/10.1002/bit.260120615
  • Çakmak, M., (2016). Citrobacter freundii (NRRL B-2643) Mikroorganizması Kullanılarak Farklı Fermantatif Şartlarda L-Dopa Ve Dopamin Üretiminin İncelenmesi, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, https://tez.yok.gov.tr/UlusalTez Merkezi
  • Demain, A.L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27, 297-306. DOI: 10.1016/j.biotechadv.2009.01.008
  • Elibol, M. & Ozer, D., (2000). Lipase production by immobilised Rhizopus arrhizus. Process Biochemistry, 36, 219 – 223. DOI:10.1016/S0032-9592(00)00191-6
  • Elibol, M., Ulgen, K., Kamarulzaman, K., & Mavituna, F. (1995). Effect of inoculum type on actinorhodin production by Streptomyces coelicolor. Biotechnology Letters, 17, 579–582 DOI:10.1007/BF00129381
  • Fang, H., Kang, J., & Zhang, D. (2017). Microbial production of vitamin B 12: a review and future perspectives. Microbial Cell Factories, 16(15), 1-14 https://doi.org/10.1186/s12934-017-0631-y.
  • Geckil, H., Gencer, S., & Uckun, M. (2004). Vitreoscilla hemoglobin expressing Enterobacter aerogenes and Pseudomonas aeruginosa respond differently to carbon catabolite and oxygen repression for production of L-asparaginase, an enzyme used in cancer therapy, Enzyme and Microbial Technology, 35, 182-189. DOI:10.1016/j.enzmictec.2004.04.005
  • Halkman, A.K. (2005). Anonymous, Merck Gıda Mikrobiyolojisi Uygulamaları. Ed: A. K. Halkman. Başak Matbaacılık Ltd. Şti., Ankara, 358 sayfa." adlı kitabın 03. bölümüdür.
  • Hoffman, B.B., & Lefkowitz, R.J. (1996). Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman J.G., Limbird L.E., Molinoff P.B., Ruddon R.W., Goodman L.S., Gilman A., editors. Goodman & Gilman’sthe Pharmacological Basis of Therapeutics. 9th. McGraw-Hill; New York, NY, USA: 1996. pp. 199–248.
  • Kruk, Z.L., & Pycock, C.J. (1991). Dopamine. In: Neurotransmitters and drugs, Suffolk, UK: St. Edmundsbury Press, 3rd ed., 87–115.
  • Kurt, A.G., Aytan, E., Ozer, U., Ates, B., & Geckil, H. (2009). Production of L-DOPA and dopamine in bacteria bearing Vitreoscilla hemoglobin gene. Biotechnolgy Journal, 4(7), 1077-1088. DOI:10.1002/biot.200900130.
  • Lee, S.G., Hong, S.P., & Sung, M.H. (1999). Development of an enzymatic system for the production of dopamine from catechol, pyruvate, and ammonia, Enzyme and Microbial Technology, 25, 298-302. http://dx.doi.org/10.1016/S0141-0229(99)00071-X
  • Lisbon, A. (2003). Dopexamine, dobutamine and dopamine increase splanchnic blood flow: What is the evidence? CHEST, 123, 460–463. DOI: 10.1378/chest.123.5_suppl.460s
  • McDaniel, L.E., & Bailey, E.G. (1969). Effect of Shaking Speed and Type of Closure on Shake Flask Cultures, Applied Microbiology, 17, 286-290. DOI:10.1128/am.17.2.286-290.1969
  • Misu, Y., Goshima, Y., & Miyamae, T. (2002). Is DOPA a neurotransmitter? Trends in Pharmacological Science, 23(6), 262–268. DOI: 10.1016/s0165-6147(02)02013-8
  • Montgomer, E.B. (1992). Pharmacokinetics and pharmacodynamics of levodopa. Neurology, 42(1 Suppl 1), 17-22. PMID: 1549197
  • Nagatsu, T., & Sawada, M. (2009). L-dopa therapy for Parkinson's disease: Past, present, and future, Parkinsonism & Related Disorders, 15, S3-S8. DOI: 10.1016/S1353-8020(09)70004-5.
  • O'Hara, C.M., Westbrook, G.L., & Miller, J.M. (1997). Evaluation of Vitek GNI+ and Becton Dickinson Microbiology Systems Crystal E/NF identification systems for identification of members of the family Enterobacteriaceae and other gram-negative, glucose-fermenting and non-glucose-fermenting bacilli. Journal of Clinical Microbiology, 35, 3269-3273. DOI: 10.1128/jcm.35.12.3269-3273.1997
  • Prakasham, R.S., Rao, C.S., Rao, R.S., & Sarma, P.N. (2005). Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: Process parameters optimization, Biotechnology Progress, 21, 1380-1388. DOI :10.1021/bp050095e.
  • Prudende, K.W., Katz, A., Sugrue, J.A., & Thomson, A. (1989). The effect of glucose on the expression of acloned Bacillus amyloliquefaciens α-amylase gene in strains Bacillus subtillus, Current Microbiology, 18(1), 27-31. DOI:10.1007/BF01568826
  • Raju, B.G.H., & Ayyanna, C. (1993). Bioconversion of L-tyrosine to L-DOPA Nusing Aspergillus oryzae. CBS Publishers, 106–110. DOI: 10.1007/s00726-010-0768-z.
  • Rehm, J., Reed, G., & Kennedy, J.F. (1987). Biotechnology, Vch. New York, 7a, 5-100.
  • Shuler, M.L., & Kargi, F. (2002). Bioprocess engineering Basic Concepts, Second edition, Prentice Hall New York. Pp. 46-54. ISBN 0-13-081908-5
  • Sodhi, H.K., Sharma, K., Gupta, J.K., & Soni, S.K. (2005). Production of a thermostable alpha-amylase from Bacillus sp PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochemistry, 40, 525-534. https://DOI 10.1016/j.procbio.2003.10.008
  • Tanyildizi, M.S., Ozer, D., & Elibol, M. (2007). Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation. Biochemical Engineering Journal, 37, 294–297. https://DOI 10.1016/j.bej.2007.05.009
  • Yun, J.S., & Ryu, H.W. (2001). Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochemistry, 37, 235-240. https://doi.org/10.1016/S0032-9592(01)00205-9
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Meltem Çakmak 0000-0002-6291-863X

Veyis Selen 0000-0003-0016-0840

Dursun Özer 0000-0002-7225-8903

Fikret Karataş 0000-0002-0884-027X

Sinan Saydam 0000-0003-1531-5454

Project Number Yok
Publication Date December 15, 2022
Submission Date April 29, 2022
Published in Issue Year 2022

Cite

APA Çakmak, M., Selen, V., Özer, D., Karataş, F., et al. (2022). Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). Journal of Advanced Research in Natural and Applied Sciences, 8(4), 785-795. https://doi.org/10.28979/jarnas.1109192
AMA Çakmak M, Selen V, Özer D, Karataş F, Saydam S. Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). JARNAS. December 2022;8(4):785-795. doi:10.28979/jarnas.1109192
Chicago Çakmak, Meltem, Veyis Selen, Dursun Özer, Fikret Karataş, and Sinan Saydam. “Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter Freundii (NRRL B-2643)”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 4 (December 2022): 785-95. https://doi.org/10.28979/jarnas.1109192.
EndNote Çakmak M, Selen V, Özer D, Karataş F, Saydam S (December 1, 2022) Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). Journal of Advanced Research in Natural and Applied Sciences 8 4 785–795.
IEEE M. Çakmak, V. Selen, D. Özer, F. Karataş, and S. Saydam, “Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643)”, JARNAS, vol. 8, no. 4, pp. 785–795, 2022, doi: 10.28979/jarnas.1109192.
ISNAD Çakmak, Meltem et al. “Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter Freundii (NRRL B-2643)”. Journal of Advanced Research in Natural and Applied Sciences 8/4 (December 2022), 785-795. https://doi.org/10.28979/jarnas.1109192.
JAMA Çakmak M, Selen V, Özer D, Karataş F, Saydam S. Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). JARNAS. 2022;8:785–795.
MLA Çakmak, Meltem et al. “Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter Freundii (NRRL B-2643)”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 4, 2022, pp. 785-9, doi:10.28979/jarnas.1109192.
Vancouver Çakmak M, Selen V, Özer D, Karataş F, Saydam S. Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). JARNAS. 2022;8(4):785-9.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).