Review
BibTex RIS Cite

Sürdürülebilir ve Yeni Bir “Gıda” Alternatifi Olarak Yenilebilir Böcekler

Year 2023, , 251 - 267, 06.03.2023
https://doi.org/10.28979/jarnas.1139883

Abstract

Bazı böcek türlerinin insanlar tarafından tüketilmesi yeni bir konu olmamakla birlikte, son yıllarda özellikle nüfusun ve hayvansal protein talebinin artışı ile birlikte yeniden ele alınan bir konudur. Böceklerin hâlihazırda en az 2 milyar insan tarafından tüketildiği tahmin edilmektedir. Diğer pek çok hayvansal kaynağa göre daha az yem ile daha fazla vücut ağırlığı kazanımı ve küresel ısınmada çok önemli rol oynayan sera gazı salınımındaki payının oransal olarak çok daha az olması, yenilebilir böceklerin gelecek senaryolarında hem insan gıdası hem de hayvan yemi olarak potansiyelinin değerlendirilmesini önemli kılmaktadır. Besinsel açıdan değerlendirildiğinde yenilebilir böceklerin protein, yağ, diyet lif ve mineral bakımından oldukça zengin kaynaklar olduğu görülmektedir. Bu besin öğeleri içerisinde özellikle protein miktar ve kalitesi dikkat çekmektedir. Diğer yandan, yenilebilir böcekler geleneksel hayvansal kaynaklara kıyasla daha az yem ve su kullanılarak, daha küçük alanlarda yetiştirilebilmekte olup, atık miktarları da oldukça düşüktür. Bununla birlikte, yenilebilir kabul edilen bu böcek türlerinin yetiştirilmesi oldukça yeni bir konu olup hem gıda güvenliği hem de doğal denge bakımından bazı riskler taşımaktadır. Konuya ilişkin yasal mevzuatlarda da ciddi bir boşluk söz konusudur. Yenilebilir böceklere olan ilgi ve bu konudaki bilimsel araştırmaların sayısı son yıllarda dikkate değer bir artış göstermiştir. Bu çalışmada; yenilebilir böceklerin besleyicilik değeri, üretimi, işlenmesi, depolanması, ekonomisi, sağlık ve çevre üzerine etkileri, tüketici kabulü ve yasal düzenlemeler gibi başlıklar ele alınarak konu çok boyutlu bir yaklaşımla ve güncel literatürler taranarak derlenmiştir.

References

  • Ayensu, J., Annan, R. A., Edusei, A., Lutterodt, H. (2019). Beyond nutrients, health effects of entomophagy: a systematic review. Nutrition and Food Science, 49(1), 2-17, https://doi.org/10.1108/NFS-02-2018-0046.
  • Ayieko, I. A., Onyango, M., Ngadze, R. T., Ayieko, M. A. (2021). Edible Insects as New Food Frontier in the Hospitality Industry. Frontiers in Sustainable Food Systems, 325, https://doi.org/10.3389/fsufs.2021.693990.
  • Baiano, A. (2020). Edible insects: an overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science and Technology, 100, 35-50, https://doi.org/10.1016/j.tifs.2020.03.040.
  • Berggren, Å., Jansson, A., Low, M. (2019). Approaching ecological sustainability in the emerging insects-as-food industry. Trends in Ecology and Evolution, 34(2), 132-138, https://doi.org/10.1016/j.tree.2018.11.005.
  • Berggren, Å., Jansson, A., Low, M. (2018). Using current systems to ınform rearing facility design in the insect-as-food industry. Journal of Insects as Food and Feed, 4(3), 167-170, https://doi.org/10.3920/JIFF2017.0076.
  • Biology Dictionary, (2022). Böceklerin Yaşam Evreleri. https://biologydictionary.net/complete-metamorphosis/ (Erişim Tarihi: 26.03.2022).
  • Borrelli, L., Varriale, L., Dipineto, L., Pace, A., Menna, L. F., Fioretti, A. (2021). Insect derived lauric acid as promising alternative strategy to antibiotics in the antimicrobial resistance scenario. Frontiers in Microbiology, 12, 330, https://doi.org/10.3389/fmicb.2021.620798.
  • Boulos, S., Tännler, A., Nyström, L. (2020). Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Frontiers in nutrition, 7, 89, https://doi.org/10.3389/fnut.2020.00089.
  • Dagevos, H. (2021). A literature review of consumer research on edible insects: recent evidence and new vistas from 2019 studies. Journal of Insects as Food and Feed, 7(3), 249-259, https://doi.org/10.3920/JIFF2020.0052.
  • Da Silva Lucas, A. J., De Oliveira, L. M., Da Rocha, M., Prentice, C. (2020). Edible insects: an alternative of nutritional, functional and bioactive compounds. Food Chemistry, 311, 126022, https://doi.org/10.1016/j.foodchem.2019.126022.
  • De Carvalho, N. M., Madureira, A. R., Pintado, M. E. (2020). The potential of insects as food sources–a review. Critical Reviews in Food Science and Nutrition, 60(21), 3642-3652, https://doi.org/10.1080/10408398.2019.1703170.
  • Del Mastro, N. L. (2021). Evolution of the Interest on Edible Insects. American Journal of Biological and Environmental Statistics, 7(2), 52-56, https://doi.org/10.11648/j.ajbes.20210702.13.
  • Delvendahl, N., Rumpold, B. A., Langen, N. (2022). Edible Insects as Food–Insect Welfare and Ethical Aspects from a Consumer Perspective. Insects, 13(2), 121, https://doi.org/10.3390/insects13020121.
  • De Gier, S., Verhoeckx, K. (2018). Insect (food) allergy and allergens. Molecular Immunology, 100, 82-106, https://doi.org/10.1016/j.molimm.2018.03.015.
  • Do, Q., Ramudhin, A., Colicchia, C., Creazza, A., Li, D. (2021). A systematic review of research on food loss and waste prevention and management for the circular economy. International Journal of Production Economics, 239, 108209, https://doi.org/10.1016/j.ijpe.2021.108209.
  • Dobermann, D., Swift, J. A., Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293-308, https://doi.org/10.1111/nbu.12291.
  • Dreyer, M., Hörtenhuber, S., Zollitsch, W., Jäger, H., Schaden, L. M., Gronauer, A., Kral, I. (2021). Environmental life cycle assessment of yellow mealworm (Tenebrio molitor) production for human consumption in Austria–a comparison of mealworm and broiler as protein source. The International Journal of Life Cycle Assessment, 26(11), 2232-2247, https://doi.org/10.1007/s11367-021-01980-4
  • Dürr, J., Ratompoarison, C. (2021). Nature’s “Free Lunch”: The Contribution of Edible Insects to Food and Nutrition Security in the Central Highlands of Madagascar. Foods, 10(12): 2978 p., https://doi.org/10.3390/foods10122978.
  • EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA)., Turck, D. et al. (2021a). Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(1), Article e06343, https://doi.org/10.2903/j.efsa.2021.6343.
  • EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA)., Turck, D. et al. (2021b). Safety of frozen and dried formulations from migratory locust (Locusta migratoria) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(7), Article e06667, https://doi.org/10.2903/j.efsa.2021.6667.
  • Elhassan, M., Wendin, K., Olsson, V., Langton, M. (2019). Quality aspects of insects as food—nutritional, sensory, and related concepts. Foods, 8(3), 95, https://doi.org/10.3390/foods8030095.
  • Evans, J., Alemu, M. H., Flore, R., Frøst, M. B., Halloran, A., Jensen, A. B., Maciel-Vergara, G., Meyer-Rochow, V. B., Münke-Svendsen, C., Olsen, S. B., Payne, C., Roos, N., Rozin, P., Tan, H. S. G., Van Huis, A., Vantomme, P., Eilenberg, J. (2015). ‘Entomophagy’: an evolving terminology in need of review. Journal of Insects as Food and Feed, 1(4), 293-305, https://doi.org/10.3920/JIFF2015.0074.
  • FAO, (2021), Looking at edible insects from a food safety perspective. challenges and opportunities for the sector. Rome., https://doi.org/10.4060/cb4094en.
  • FAO, (2020). Insects for food and feed. the contribution of insects to food security, livelihoods and the environment. https://www.fao.org/edible-insects/en/ (Erişim Tarihi: 05.04.2022).
  • Francis, F., Doyen, V., Debaugnies, F., Mazzucchelli, G., Caparros, R., Alabi, T., Blecker, C., Haubruge, E., Corazza, F. (2019). Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects. Food Chemistry, 276, 714-718, https://doi.org/10.1016/j.foodchem.2018.10.082.
  • Gabaza, M., Shumoy, H., Muchuweti, M., Vandamme, P., Raes, K. (2018). Baobab fruit pulp and mopane worm as potential functional ingredients to improve the iron and zinc content and bioaccessibility of fermented cereals. Innovative Food Science and Emerging Technologies, 47: 390-398 p., https://doi.org/10.1016/j.ifset.2018.04.005.
  • Gahukar, R. T. (2020). Edible insects collected from forests for family livelihood and wellness of rural communities: A review. Global Food Security, 25, 100348, https://doi.org/10.1016/j.gfs.2020.100348.
  • Galanakis, C. M. (ed.), (2019). Sustainable Meat Production and Processing. Academic Press, The UK, 259 p.
  • Gkinali, A. A., Matsakidou, A., Vasileiou, E., Paraskevopoulou, A. (2022). Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends in Food Science and Technology, 119, 495-507, https://doi.org/10.1016/j.tifs.2021.11.024.
  • Grabowski N. T., Abdulmawjood A., Acheuk F., Barragán Fonseca K., Chhay T., Costa Neto Eraldo M., Ferri M., Franco Olivas J., González Aguilar Delia G., Keo S., Lertpatarakomol R., Miech P., Piofczyk T., Proscia F., Mitchaothai J., Guerfali Meriem M., Sayed Waheed, Tchibozo S., Plötz M. (2022) Insects-a source of safe and sustainable food?–yes and no. Frontiers in Sustainable Food Systems, 5, 701797, https://doi.org/10.3389/fsufs.2021.701797.
  • Gravel, A., Doyen, A. (2020). The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science and Emerging Technologies, 59, 102272, https://doi.org/10.1016/j.ifset.2019.102272.
  • Guiné, R. P., Correia, P., Coelho, C., Costa, C. A. (2021). The role of edible insects to mitigate challenges for sustainability. Open Agriculture, 6(1), 24-36, https://doi.org/10.1515/opag-2020-0206.
  • Halloran, A., Roos, N., Eilenberg, J., Cerutti, A., Bruun, S. (2016). Life cycle assessment of edible insects for food protein: a review. Agronomy for Sustainable Development, 36(4), 1-13, https://doi.org/10.1007/s13593-016-0392-8.
  • Janssen, R. H., Vincken, J. P., van den Broek, L. A., Fogliano, V., Lakemond, C. M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278, https://doi.org/10.1021/acs.jafc.7b00471.
  • Jensen, N. H., Lieberoth, A. (2019). We will eat disgusting foods together–Evidence of the normative basis of Western entomophagy-disgust from an insect tasting. Food Quality and Preference, 72, 109-115, https://doi.org/10.1016/j.foodqual.2018.08.012.
  • Jongema, Y. (2017), Dünyadaki yenilebilir böceklerin listesi. https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of Entomology/Edible-insects/Worldwide-species-list.htm (Erişim Tarihi: 25.03.2022).
  • Kawabata, M., Berardo, A., Mattei, P., de Pee, S. (2020). Food security and nutrition challenges in Tajikistan: Opportunities for a systems approach. Food Policy, 96, 101872, https://doi.org/10.1016/j.foodpol.2020.101872.
  • Kemsawasd, V., Inthachat, W., Suttisansanee, U., Temviriyanukul, P. (2022). Road to The Red Carpet of Edible Crickets through Integration into the Human Food Chain with Biofunctions and Sustainability: A Review. International Journal of Molecular Sciences, 23(3), 1801, https://doi.org/10.3390/ijms23031801.
  • Kim, T. K., Yong, H. I., Kim, Y. B., Kim, H. W., Choi, Y. S. (2019). Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Science of Animal Resources, 39(4), 521, https://doi.org/10.5851/kosfa.2019.e53.
  • Kouřimská, L., Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22-26, https://doi.org/10.1016/j.nfs.2016.07.001.
  • La Barbera, F., Verneau, F., Videbæk, P. N., Amato, M., Grunert, K. G. (2020). A self-report measure of attitudes toward the eating of insects: Construction and validation of the Entomophagy Attitude Questionnaire. Food Quality and Preference, 79, 103757, https://doi.org/10.1016/j.foodqual.2019.103757.
  • Lange, K. W., Nakamura, Y. (2021). Edible insects as future food: chances and challenges. Journal of Future Foods, 1(1), 38-46, https://doi.org/10.1016/j.jfutfo.2021.10.001.
  • Lee, J. H., Kim, T. K., Jeong, C. H., Yong, H. I., Cha, J. Y., Kim, B. K., Choi, Y. S. (2021). Biological activity and processing technologies of edible insects: a review. Food Science and Biotechnology, 30(8), 1003-1023, https://doi.org/10.1007/s10068-021-00942-8.
  • Lesnik, J. J. (2017). Not just a fallback food: global patterns of insect consumption related to geography, not agriculture. American Journal of Human Biology, 29(4), e22976, https://doi.org/10.1002/ajhb.22976.
  • Liceaga, A. M. (2021). Processing insects for use in the food and feed industry. Current Opinion in Insect Science, 48, 32-36, https://doi.org/10.1016/j.cois.2021.08.002.
  • Mancini, S., Sogari, G., Espinosa Diaz, S., Menozzi, D., Paci, G., Moruzzo, R. (2022). Exploring the Future of Edible Insects in Europe. Foods, 11(3), 455, https://doi.org/10.3390/foods11030455.
  • Mancini, S., Sogari, G., Menozzi, D., Nuvoloni, R., Torracca, B., Moruzzo, R., Paci, G. (2019). Factors predicting the intention of eating an insect-based product. Foods, 8(7), 270, https://doi.org/10.3390/foods8070270.
  • Mariutti, L. R. B., Rebelo, K. S., Bisconsin-Junior, A., de Morais, J. S., Magnani, M., Maldonade, I. R., Maderia, N. R., Tiengo, A., Marostica, M. R., Cazarin, C. B. B. (2021). The use of alternative food sources to improve health and guarantee access and food intake. Food Research International, 149, 110709, https://doi.org/10.1016/j.foodres.2021.110709.
  • Matiza Ruzengwe, F., Nyarugwe, S. P., Manditsera, F. A., Mubaiwa, J., Cottin, S., Matsungo, T. M., Chopera, P., Ranawana, V., Fiore, A., Macheka, L. (2022). Contribution of edible insects to improved food and nutrition security: a review. International Journal of Food Science and Technology, 1-13, https://doi.org/10.1111/ijfs.15570.
  • Melgar‐Lalanne, G., Hernández‐Álvarez, A. J., Salinas‐Castro, A. (2019). Edible insects processing: traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1166-1191, https://doi.org/10.1111/1541-4337.12463.Imathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, 18, 1-11, https://doi.org/10.1016/j.nfs.2019.11.002.
  • Meshulam-Pascoviche, D., David-Birman, T., Refael, G., Lesmes, U. (2022). Big opportunities for tiny bugs: Processing effects on the techno-functionality and digestibility of edible insects. Trends in Food Science and Technology., https://doi.org/10.1016/j.tifs.2022.02.012.
  • Meyer-Rochow, V. B., Gahukar, R. T., Ghosh, S., Jung, C. (2021). Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods, 10(5), 1036, https://doi.org/10.3390/foods10051036.
  • Meyer-Rochow, V. B., Jung, C. (2020). Insects used as food and feed: isn’t that what we all need. Foods, 9(8), 1003, https://doi.org/10.3390/foods9081003.
  • Meyer-Rochow, V. B., Hakko, H. (2018). Can edible grasshoppers and silkworm pupae be tasted by humans when prevented to see and smell these insects. Journal of Asia-Pacific Entomology, 21(2), 616-619, https://doi.org/10.1016/j.aspen.2018.04.002.
  • Mishyna, M., Keppler, J. K., Chen, J. (2021). Techno-functional properties of edible insect proteins and effects of processing. Current Opinion in Colloid and Interface Science, 56, 101508, https://doi.org/10.1016/j.cocis.2021.101508.
  • Mishyna, M., Chen, J., Benjamin, O. (2020). Sensory attributes of edible insects and insect-based foods–future outlooks for enhancing consumer appeal. Trends in Food Science & Technology, 95, 141-148, https://doi.org/10.1016/j.tifs.2019.11.016.
  • Murefu, T. R., Macheka, L., Musundire, R., Manditsera, F. A. (2019). Safety of wild harvested and reared edible insects: A review. Food Control, 101, 209-224, https://doi.org/10.1016/j.foodcont.2019.03.003.
  • Muslu, M. (2020). Sağlığın geliştirilmesi ve sürdürülebilir beslenme için alternatif bir kaynak: yenilebilir böcekler. Gıda, 45(5), 1009-1018, https://doi.org/10.15237/gida.GD20071.
  • Mwangi, M. N., Oonincx, D. G., Stouten, T., Veenenbos, M., Melse-Boonstra, A., Dicke, M., Van Loon, J. J. (2018). Insects as sources of iron and zinc in human nutrition. Nutrition Research Reviews, 31(2), 248-255, https://doi.org/10.1017/S0954422418000094.
  • Nikkhah, A., Van Haute, S., Jovanovic, V., Jung, H., Dewulf, J., Cirkovic Velickovic, T., Ghnimi, S. (2021). Life cycle assessment of edible insects (Protaetia brevitarsis seulensis larvae) as a future protein and fat source. Scientific Reports, 11(1), 1-11, https://doi.org/10.1038/s41598-021-93284-8.
  • Niyonsaba, H. H., Höhler, J., Kooistra, J., Van Der Fels-Klerx, H. J., Meuwissen, M. P. M. (2021). Profitability of ınsect farms. Journal of Insects as Food and Feed, 7(5), 923-934 , https://doi.org/10.3920/JIFF2020.0087.
  • Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H., Wu, X. (2021). Potential health benefits of edible insects. Critical Reviews in Food Science and Nutrition, 1-10, https://doi.org/10.1080/10408398.2020.1867053.
  • Ojha, S., Bekhit, A. E. D., Grune, T., Schlüter, O. K. (2021). Bioavailability of nutrients from edible insects. Current Opinion in Food Science, 41, 240-248, https://doi.org/10.1016/j.cofs.2021.08.003.
  • Ojha, S., Bußler, S., Psarianos, M., Rossi, G., Schlüter, O. K. (2021). Edible insect processing pathways and implementation of emerging technologies. Journal of Insects as Food and Feed, 7(5), 877-900, https://doi.org/10.3920/JIFF2020.0121.
  • Ordoñez-Araque, R., Egas-Montenegro, E. (2021). Edible insects: a food alternative for the sustainable development of the planet. International Journal of Gastronomy and Food Science, 23, 100304, https://doi.org/10.1016/j.ijgfs.2021.100304.
  • Orsi, L., Voege, L. L., Stranieri, S. (2019). Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. Food Research International, 125, 108573, https://doi.org/10.1016/j.foodres.2019.108573.
  • Osimani, A., Aquilanti, L. (2021). Spore-forming bacteria in insect-based foods. Current Opinion in Food Science, 37, 112-117, https://doi.org/10.1016/j.cofs.2020.10.011.
  • Oonincx, D. G. A. B., Finke, M. D. (2021). Nutritional value of insects and ways to manipulate their composition. Journal of Insects as Food and Feed, 7(5), 639-659, https://doi.org/10.3920/JIFF2020.0050.
  • Patel, S., Suleria, H. A. R., Rauf, A. (2019). Edible insects as innovative foods: Nutritional and functional assessments. Trends in Food Science and Technology, 86, 352-359, https://doi.org/10.1016/j.tifs.2019.02.033.
  • Peniche, P.C.Y.C. (2021). Drivers of insect consumption across human populations. Evolutionary Anthropology., https://doi.org/10.1002/evan.21926. Pippinato, L., Gasco, L., Di Vita, G., Mancuso, T. (2020). Current scenario in the European edible-insect industry: a preliminary study. Journal of Insects as Food and Feed, 6(4), 371-381, https://doi.org/10.3920/JIFF2020.0008.
  • Placentino, U., Sogari, G., Viscecchia, R., De Devitiis, B., Monacis, L. (2021). The New Challenge of Sports Nutrition: Accepting Insect Food as Dietary Supplements in Professional Athletes. Foods, 10(5), 1117, https://doi.org/10.3390/foods10051117.
  • Ponce-Reyes R., Lessard B. D. (2021). Edible Insects - A roadmap for the strategic growth of an emerging Australian industry. CSIRO, Canberra. Poore, J., Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987-992, https://doi.org/10.1126/science.aaq0216.
  • Raheem, D., Raposo, A., Oluwole, O. B., Nieuwland, M., Saraiva, A., Carrascosa, C. (2019). Entomophagy: nutritional, ecological, safety and legislation aspects. Food Research International, 126, 108672, https://doi.org/10.1016/j.foodres.2019.108672.
  • Ribeiro, J. C., Cunha, L. M., Sousa‐Pinto, B., Fonseca, J. (2018). Allergic risks of consuming edible insects: a systematic review. Molecular Nutrition and Food Research, 62(1), 1700030, https://doi.org/10.1002/mnfr.201700030.
  • Rumpold, B. A., Schlüter, O. (2015). Insect-based protein sources and their potential for human consumption: nutritional composition and processing. Animal Frontiers, 5(2), 20-24, https://doi.org/10.2527/af.2015-0015.
  • Rumpold, B. A., Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies, 17, 1-11, https://doi.org/10.1016/j.ifset.2012.11.005.
  • Saadoun, J. H., Sogari, G., Bernini, V., Camorali, C., Rossi, F., Neviani, E., Lazzi, C. (2022). A critical review of intrinsic and extrinsic antimicrobial properties of insects. Trends in Food Science and Technology, 122, 40-48, https://doi.org/10.1016/j.tifs.2022.02.018.
  • Schrögel, P., Wätjen, W. (2019). Insects for food and feed-safety aspects related to mycotoxins and metals. Foods, 8(8), 288, https://doi.org/10.3390/foods8080288.
  • Smetana, S., Spykman, R., Heinz, V. (2021). Environmental aspects of ınsect mass production. Journal of Insects as Food and Feed, 7(5), 553-571, https://doi.org/10.3920/JIFF2020.0116.
  • Sosa, D. A. T., Fogliano V. (2017). Potential of insect-derived ingredients for food applications. Insect Physiology and Ecology, 215-231, http://dx.doi.org/10.5772/67318.
  • Tamburino, L., Bravo, G., Clough, Y., Nicholas, K. A. (2020). From population to production: 50 years of scientific literature on how to feed the world. Global Food Security, 24: 100346 p., https://doi.org/10.1016/j.gfs.2019.100346.
  • Tanga, C. M., Egonyu, J. P., Beesigamukama, D., Niassy, S., Emily, K., Magara, H. J., Omuse, E. R., Subramanian S., Ekesi, S. (2021). Edible insect farming as an emerging and profitable enterprise in East Africa. Current Opinion in Insect Science, 48, 64-71, https://doi.org/10.1016/j.cois.2021.09.007.
  • Tang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L., Li, F. (2019). Edible insects as a food source: a review. Food Production, Processing and Nutrition, 1(1), 1-13, https://doi.org/10.1186/s43014-019-0008-1.
  • Tao, J., Li, Y. O. (2018). Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality and Safety, 2(1), 17-26, https://doi.org/10.1093/fqsafe/fyy001.
  • UNEP (United Nations Environment Programme) (2021). Food waste index report 2021. Nairobi, ISBN: 978-92-807-3868-1., 100.
  • Van Huis, A., Halloran, A., Van Itterbeeck, J., Klunder, H., Vantomme, P. (2022). How many people on our planet eat insects: 2 billion. Journal of Insects as Food and Feed, 8(1), 1-4, https://doi.org/10.3920/JIFF2021.x010.
  • Van Huis, A., Rumpold, B. A., Van Der Fels-Klerx, H. J., Tomberlin, J. K. (2021). Advancing edible insects as food and feed in a circular economy. Journal of Insects as Food and Feed, 7(5), 935-948, https://doi.org/10.3920/JIFF2021.x005.
  • Van Huis, A. (2021). Prospects of insects as food and feed. Organic Agriculture, 11(2), 301-308, https://doi.org/10.1007/s13165-020-00290-7. Van Huis, A., Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 1-14, https://doi.org/10.1007/s13593-017-0452-8.
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P. (2013). Edible insects: future prospects for food and feed security (No. 171). Food and agriculture organization of the United Nations., ISBN: 978-92-5-107596-8.
  • Varelas, V. (2019). Food wastes as a potential new source for edible insect mass production for food and feed: a review. Fermentation, 5(3), 81, https://doi.org/10.3390/fermentation5030081.
  • Wade, M., Hoelle, J. (2020). A review of edible insect industrialization: Scales of production and implications for sustainability. Environmental Research Letters, 15(12), 123013, https://doi.org/10.1088/1748-9326/aba1c1.
  • World Health Organization (WHO), United Nations Children’s Fund (UNICEF), International Bank for Reconstruction and Development/The World Bank. (2021). Levels and trends in child malnutrition: key findings of the 2021 edition of the joint child malnutrition estimates. Geneva: World Health Organization. ISBN: 9789240025257.

Edible Insects as a Sustainable and Novel “Food” Alternative

Year 2023, , 251 - 267, 06.03.2023
https://doi.org/10.28979/jarnas.1139883

Abstract

Although the consumption of some insect species by humans is not a novel issue, it has been a topic that has been reconsidered in recent years, especially with the increase in population and demand for animal protein. It is estimated that insects are currently consumed by at least 2 billion people. Compared to many other animal sources, gaining more body weight with less feed and the proportionally lower share of greenhouse gas emissions, which play a very important role in global warming, makes it important to evaluate the potential of edible insects as both human food and animal feed in future scenarios. From a nutritional point of view, it is indicated that edible insects are rich sources of protein, fat, dietary fiber, and minerals. Among these nutrients, especially the amount and quality of the protein draws attention. On the other hand, edible insects can be grown in smaller areas using less feed and water when compared to traditional animal sources, and the amount of waste is quite low. However, breeding of edible insects is a fairly new issue and involve some risks in terms of both food safety and natural balance. There is also a serious gap in the legal regulations on the subject. Interest in edible insects and the number of scientific researches on this subject have considerably increased in recent years. In this study, topics such as nutritional value, production, processing, storage, economy, health and environmental effects of edible insects, consumer acceptance and legal regulations have been discussed and the subject has been compiled with a multidimensional approach by reviewing the most up-to-date literature.

References

  • Ayensu, J., Annan, R. A., Edusei, A., Lutterodt, H. (2019). Beyond nutrients, health effects of entomophagy: a systematic review. Nutrition and Food Science, 49(1), 2-17, https://doi.org/10.1108/NFS-02-2018-0046.
  • Ayieko, I. A., Onyango, M., Ngadze, R. T., Ayieko, M. A. (2021). Edible Insects as New Food Frontier in the Hospitality Industry. Frontiers in Sustainable Food Systems, 325, https://doi.org/10.3389/fsufs.2021.693990.
  • Baiano, A. (2020). Edible insects: an overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science and Technology, 100, 35-50, https://doi.org/10.1016/j.tifs.2020.03.040.
  • Berggren, Å., Jansson, A., Low, M. (2019). Approaching ecological sustainability in the emerging insects-as-food industry. Trends in Ecology and Evolution, 34(2), 132-138, https://doi.org/10.1016/j.tree.2018.11.005.
  • Berggren, Å., Jansson, A., Low, M. (2018). Using current systems to ınform rearing facility design in the insect-as-food industry. Journal of Insects as Food and Feed, 4(3), 167-170, https://doi.org/10.3920/JIFF2017.0076.
  • Biology Dictionary, (2022). Böceklerin Yaşam Evreleri. https://biologydictionary.net/complete-metamorphosis/ (Erişim Tarihi: 26.03.2022).
  • Borrelli, L., Varriale, L., Dipineto, L., Pace, A., Menna, L. F., Fioretti, A. (2021). Insect derived lauric acid as promising alternative strategy to antibiotics in the antimicrobial resistance scenario. Frontiers in Microbiology, 12, 330, https://doi.org/10.3389/fmicb.2021.620798.
  • Boulos, S., Tännler, A., Nyström, L. (2020). Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Frontiers in nutrition, 7, 89, https://doi.org/10.3389/fnut.2020.00089.
  • Dagevos, H. (2021). A literature review of consumer research on edible insects: recent evidence and new vistas from 2019 studies. Journal of Insects as Food and Feed, 7(3), 249-259, https://doi.org/10.3920/JIFF2020.0052.
  • Da Silva Lucas, A. J., De Oliveira, L. M., Da Rocha, M., Prentice, C. (2020). Edible insects: an alternative of nutritional, functional and bioactive compounds. Food Chemistry, 311, 126022, https://doi.org/10.1016/j.foodchem.2019.126022.
  • De Carvalho, N. M., Madureira, A. R., Pintado, M. E. (2020). The potential of insects as food sources–a review. Critical Reviews in Food Science and Nutrition, 60(21), 3642-3652, https://doi.org/10.1080/10408398.2019.1703170.
  • Del Mastro, N. L. (2021). Evolution of the Interest on Edible Insects. American Journal of Biological and Environmental Statistics, 7(2), 52-56, https://doi.org/10.11648/j.ajbes.20210702.13.
  • Delvendahl, N., Rumpold, B. A., Langen, N. (2022). Edible Insects as Food–Insect Welfare and Ethical Aspects from a Consumer Perspective. Insects, 13(2), 121, https://doi.org/10.3390/insects13020121.
  • De Gier, S., Verhoeckx, K. (2018). Insect (food) allergy and allergens. Molecular Immunology, 100, 82-106, https://doi.org/10.1016/j.molimm.2018.03.015.
  • Do, Q., Ramudhin, A., Colicchia, C., Creazza, A., Li, D. (2021). A systematic review of research on food loss and waste prevention and management for the circular economy. International Journal of Production Economics, 239, 108209, https://doi.org/10.1016/j.ijpe.2021.108209.
  • Dobermann, D., Swift, J. A., Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293-308, https://doi.org/10.1111/nbu.12291.
  • Dreyer, M., Hörtenhuber, S., Zollitsch, W., Jäger, H., Schaden, L. M., Gronauer, A., Kral, I. (2021). Environmental life cycle assessment of yellow mealworm (Tenebrio molitor) production for human consumption in Austria–a comparison of mealworm and broiler as protein source. The International Journal of Life Cycle Assessment, 26(11), 2232-2247, https://doi.org/10.1007/s11367-021-01980-4
  • Dürr, J., Ratompoarison, C. (2021). Nature’s “Free Lunch”: The Contribution of Edible Insects to Food and Nutrition Security in the Central Highlands of Madagascar. Foods, 10(12): 2978 p., https://doi.org/10.3390/foods10122978.
  • EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA)., Turck, D. et al. (2021a). Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(1), Article e06343, https://doi.org/10.2903/j.efsa.2021.6343.
  • EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA)., Turck, D. et al. (2021b). Safety of frozen and dried formulations from migratory locust (Locusta migratoria) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(7), Article e06667, https://doi.org/10.2903/j.efsa.2021.6667.
  • Elhassan, M., Wendin, K., Olsson, V., Langton, M. (2019). Quality aspects of insects as food—nutritional, sensory, and related concepts. Foods, 8(3), 95, https://doi.org/10.3390/foods8030095.
  • Evans, J., Alemu, M. H., Flore, R., Frøst, M. B., Halloran, A., Jensen, A. B., Maciel-Vergara, G., Meyer-Rochow, V. B., Münke-Svendsen, C., Olsen, S. B., Payne, C., Roos, N., Rozin, P., Tan, H. S. G., Van Huis, A., Vantomme, P., Eilenberg, J. (2015). ‘Entomophagy’: an evolving terminology in need of review. Journal of Insects as Food and Feed, 1(4), 293-305, https://doi.org/10.3920/JIFF2015.0074.
  • FAO, (2021), Looking at edible insects from a food safety perspective. challenges and opportunities for the sector. Rome., https://doi.org/10.4060/cb4094en.
  • FAO, (2020). Insects for food and feed. the contribution of insects to food security, livelihoods and the environment. https://www.fao.org/edible-insects/en/ (Erişim Tarihi: 05.04.2022).
  • Francis, F., Doyen, V., Debaugnies, F., Mazzucchelli, G., Caparros, R., Alabi, T., Blecker, C., Haubruge, E., Corazza, F. (2019). Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects. Food Chemistry, 276, 714-718, https://doi.org/10.1016/j.foodchem.2018.10.082.
  • Gabaza, M., Shumoy, H., Muchuweti, M., Vandamme, P., Raes, K. (2018). Baobab fruit pulp and mopane worm as potential functional ingredients to improve the iron and zinc content and bioaccessibility of fermented cereals. Innovative Food Science and Emerging Technologies, 47: 390-398 p., https://doi.org/10.1016/j.ifset.2018.04.005.
  • Gahukar, R. T. (2020). Edible insects collected from forests for family livelihood and wellness of rural communities: A review. Global Food Security, 25, 100348, https://doi.org/10.1016/j.gfs.2020.100348.
  • Galanakis, C. M. (ed.), (2019). Sustainable Meat Production and Processing. Academic Press, The UK, 259 p.
  • Gkinali, A. A., Matsakidou, A., Vasileiou, E., Paraskevopoulou, A. (2022). Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends in Food Science and Technology, 119, 495-507, https://doi.org/10.1016/j.tifs.2021.11.024.
  • Grabowski N. T., Abdulmawjood A., Acheuk F., Barragán Fonseca K., Chhay T., Costa Neto Eraldo M., Ferri M., Franco Olivas J., González Aguilar Delia G., Keo S., Lertpatarakomol R., Miech P., Piofczyk T., Proscia F., Mitchaothai J., Guerfali Meriem M., Sayed Waheed, Tchibozo S., Plötz M. (2022) Insects-a source of safe and sustainable food?–yes and no. Frontiers in Sustainable Food Systems, 5, 701797, https://doi.org/10.3389/fsufs.2021.701797.
  • Gravel, A., Doyen, A. (2020). The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science and Emerging Technologies, 59, 102272, https://doi.org/10.1016/j.ifset.2019.102272.
  • Guiné, R. P., Correia, P., Coelho, C., Costa, C. A. (2021). The role of edible insects to mitigate challenges for sustainability. Open Agriculture, 6(1), 24-36, https://doi.org/10.1515/opag-2020-0206.
  • Halloran, A., Roos, N., Eilenberg, J., Cerutti, A., Bruun, S. (2016). Life cycle assessment of edible insects for food protein: a review. Agronomy for Sustainable Development, 36(4), 1-13, https://doi.org/10.1007/s13593-016-0392-8.
  • Janssen, R. H., Vincken, J. P., van den Broek, L. A., Fogliano, V., Lakemond, C. M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278, https://doi.org/10.1021/acs.jafc.7b00471.
  • Jensen, N. H., Lieberoth, A. (2019). We will eat disgusting foods together–Evidence of the normative basis of Western entomophagy-disgust from an insect tasting. Food Quality and Preference, 72, 109-115, https://doi.org/10.1016/j.foodqual.2018.08.012.
  • Jongema, Y. (2017), Dünyadaki yenilebilir böceklerin listesi. https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of Entomology/Edible-insects/Worldwide-species-list.htm (Erişim Tarihi: 25.03.2022).
  • Kawabata, M., Berardo, A., Mattei, P., de Pee, S. (2020). Food security and nutrition challenges in Tajikistan: Opportunities for a systems approach. Food Policy, 96, 101872, https://doi.org/10.1016/j.foodpol.2020.101872.
  • Kemsawasd, V., Inthachat, W., Suttisansanee, U., Temviriyanukul, P. (2022). Road to The Red Carpet of Edible Crickets through Integration into the Human Food Chain with Biofunctions and Sustainability: A Review. International Journal of Molecular Sciences, 23(3), 1801, https://doi.org/10.3390/ijms23031801.
  • Kim, T. K., Yong, H. I., Kim, Y. B., Kim, H. W., Choi, Y. S. (2019). Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Science of Animal Resources, 39(4), 521, https://doi.org/10.5851/kosfa.2019.e53.
  • Kouřimská, L., Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22-26, https://doi.org/10.1016/j.nfs.2016.07.001.
  • La Barbera, F., Verneau, F., Videbæk, P. N., Amato, M., Grunert, K. G. (2020). A self-report measure of attitudes toward the eating of insects: Construction and validation of the Entomophagy Attitude Questionnaire. Food Quality and Preference, 79, 103757, https://doi.org/10.1016/j.foodqual.2019.103757.
  • Lange, K. W., Nakamura, Y. (2021). Edible insects as future food: chances and challenges. Journal of Future Foods, 1(1), 38-46, https://doi.org/10.1016/j.jfutfo.2021.10.001.
  • Lee, J. H., Kim, T. K., Jeong, C. H., Yong, H. I., Cha, J. Y., Kim, B. K., Choi, Y. S. (2021). Biological activity and processing technologies of edible insects: a review. Food Science and Biotechnology, 30(8), 1003-1023, https://doi.org/10.1007/s10068-021-00942-8.
  • Lesnik, J. J. (2017). Not just a fallback food: global patterns of insect consumption related to geography, not agriculture. American Journal of Human Biology, 29(4), e22976, https://doi.org/10.1002/ajhb.22976.
  • Liceaga, A. M. (2021). Processing insects for use in the food and feed industry. Current Opinion in Insect Science, 48, 32-36, https://doi.org/10.1016/j.cois.2021.08.002.
  • Mancini, S., Sogari, G., Espinosa Diaz, S., Menozzi, D., Paci, G., Moruzzo, R. (2022). Exploring the Future of Edible Insects in Europe. Foods, 11(3), 455, https://doi.org/10.3390/foods11030455.
  • Mancini, S., Sogari, G., Menozzi, D., Nuvoloni, R., Torracca, B., Moruzzo, R., Paci, G. (2019). Factors predicting the intention of eating an insect-based product. Foods, 8(7), 270, https://doi.org/10.3390/foods8070270.
  • Mariutti, L. R. B., Rebelo, K. S., Bisconsin-Junior, A., de Morais, J. S., Magnani, M., Maldonade, I. R., Maderia, N. R., Tiengo, A., Marostica, M. R., Cazarin, C. B. B. (2021). The use of alternative food sources to improve health and guarantee access and food intake. Food Research International, 149, 110709, https://doi.org/10.1016/j.foodres.2021.110709.
  • Matiza Ruzengwe, F., Nyarugwe, S. P., Manditsera, F. A., Mubaiwa, J., Cottin, S., Matsungo, T. M., Chopera, P., Ranawana, V., Fiore, A., Macheka, L. (2022). Contribution of edible insects to improved food and nutrition security: a review. International Journal of Food Science and Technology, 1-13, https://doi.org/10.1111/ijfs.15570.
  • Melgar‐Lalanne, G., Hernández‐Álvarez, A. J., Salinas‐Castro, A. (2019). Edible insects processing: traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1166-1191, https://doi.org/10.1111/1541-4337.12463.Imathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, 18, 1-11, https://doi.org/10.1016/j.nfs.2019.11.002.
  • Meshulam-Pascoviche, D., David-Birman, T., Refael, G., Lesmes, U. (2022). Big opportunities for tiny bugs: Processing effects on the techno-functionality and digestibility of edible insects. Trends in Food Science and Technology., https://doi.org/10.1016/j.tifs.2022.02.012.
  • Meyer-Rochow, V. B., Gahukar, R. T., Ghosh, S., Jung, C. (2021). Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods, 10(5), 1036, https://doi.org/10.3390/foods10051036.
  • Meyer-Rochow, V. B., Jung, C. (2020). Insects used as food and feed: isn’t that what we all need. Foods, 9(8), 1003, https://doi.org/10.3390/foods9081003.
  • Meyer-Rochow, V. B., Hakko, H. (2018). Can edible grasshoppers and silkworm pupae be tasted by humans when prevented to see and smell these insects. Journal of Asia-Pacific Entomology, 21(2), 616-619, https://doi.org/10.1016/j.aspen.2018.04.002.
  • Mishyna, M., Keppler, J. K., Chen, J. (2021). Techno-functional properties of edible insect proteins and effects of processing. Current Opinion in Colloid and Interface Science, 56, 101508, https://doi.org/10.1016/j.cocis.2021.101508.
  • Mishyna, M., Chen, J., Benjamin, O. (2020). Sensory attributes of edible insects and insect-based foods–future outlooks for enhancing consumer appeal. Trends in Food Science & Technology, 95, 141-148, https://doi.org/10.1016/j.tifs.2019.11.016.
  • Murefu, T. R., Macheka, L., Musundire, R., Manditsera, F. A. (2019). Safety of wild harvested and reared edible insects: A review. Food Control, 101, 209-224, https://doi.org/10.1016/j.foodcont.2019.03.003.
  • Muslu, M. (2020). Sağlığın geliştirilmesi ve sürdürülebilir beslenme için alternatif bir kaynak: yenilebilir böcekler. Gıda, 45(5), 1009-1018, https://doi.org/10.15237/gida.GD20071.
  • Mwangi, M. N., Oonincx, D. G., Stouten, T., Veenenbos, M., Melse-Boonstra, A., Dicke, M., Van Loon, J. J. (2018). Insects as sources of iron and zinc in human nutrition. Nutrition Research Reviews, 31(2), 248-255, https://doi.org/10.1017/S0954422418000094.
  • Nikkhah, A., Van Haute, S., Jovanovic, V., Jung, H., Dewulf, J., Cirkovic Velickovic, T., Ghnimi, S. (2021). Life cycle assessment of edible insects (Protaetia brevitarsis seulensis larvae) as a future protein and fat source. Scientific Reports, 11(1), 1-11, https://doi.org/10.1038/s41598-021-93284-8.
  • Niyonsaba, H. H., Höhler, J., Kooistra, J., Van Der Fels-Klerx, H. J., Meuwissen, M. P. M. (2021). Profitability of ınsect farms. Journal of Insects as Food and Feed, 7(5), 923-934 , https://doi.org/10.3920/JIFF2020.0087.
  • Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H., Wu, X. (2021). Potential health benefits of edible insects. Critical Reviews in Food Science and Nutrition, 1-10, https://doi.org/10.1080/10408398.2020.1867053.
  • Ojha, S., Bekhit, A. E. D., Grune, T., Schlüter, O. K. (2021). Bioavailability of nutrients from edible insects. Current Opinion in Food Science, 41, 240-248, https://doi.org/10.1016/j.cofs.2021.08.003.
  • Ojha, S., Bußler, S., Psarianos, M., Rossi, G., Schlüter, O. K. (2021). Edible insect processing pathways and implementation of emerging technologies. Journal of Insects as Food and Feed, 7(5), 877-900, https://doi.org/10.3920/JIFF2020.0121.
  • Ordoñez-Araque, R., Egas-Montenegro, E. (2021). Edible insects: a food alternative for the sustainable development of the planet. International Journal of Gastronomy and Food Science, 23, 100304, https://doi.org/10.1016/j.ijgfs.2021.100304.
  • Orsi, L., Voege, L. L., Stranieri, S. (2019). Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. Food Research International, 125, 108573, https://doi.org/10.1016/j.foodres.2019.108573.
  • Osimani, A., Aquilanti, L. (2021). Spore-forming bacteria in insect-based foods. Current Opinion in Food Science, 37, 112-117, https://doi.org/10.1016/j.cofs.2020.10.011.
  • Oonincx, D. G. A. B., Finke, M. D. (2021). Nutritional value of insects and ways to manipulate their composition. Journal of Insects as Food and Feed, 7(5), 639-659, https://doi.org/10.3920/JIFF2020.0050.
  • Patel, S., Suleria, H. A. R., Rauf, A. (2019). Edible insects as innovative foods: Nutritional and functional assessments. Trends in Food Science and Technology, 86, 352-359, https://doi.org/10.1016/j.tifs.2019.02.033.
  • Peniche, P.C.Y.C. (2021). Drivers of insect consumption across human populations. Evolutionary Anthropology., https://doi.org/10.1002/evan.21926. Pippinato, L., Gasco, L., Di Vita, G., Mancuso, T. (2020). Current scenario in the European edible-insect industry: a preliminary study. Journal of Insects as Food and Feed, 6(4), 371-381, https://doi.org/10.3920/JIFF2020.0008.
  • Placentino, U., Sogari, G., Viscecchia, R., De Devitiis, B., Monacis, L. (2021). The New Challenge of Sports Nutrition: Accepting Insect Food as Dietary Supplements in Professional Athletes. Foods, 10(5), 1117, https://doi.org/10.3390/foods10051117.
  • Ponce-Reyes R., Lessard B. D. (2021). Edible Insects - A roadmap for the strategic growth of an emerging Australian industry. CSIRO, Canberra. Poore, J., Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987-992, https://doi.org/10.1126/science.aaq0216.
  • Raheem, D., Raposo, A., Oluwole, O. B., Nieuwland, M., Saraiva, A., Carrascosa, C. (2019). Entomophagy: nutritional, ecological, safety and legislation aspects. Food Research International, 126, 108672, https://doi.org/10.1016/j.foodres.2019.108672.
  • Ribeiro, J. C., Cunha, L. M., Sousa‐Pinto, B., Fonseca, J. (2018). Allergic risks of consuming edible insects: a systematic review. Molecular Nutrition and Food Research, 62(1), 1700030, https://doi.org/10.1002/mnfr.201700030.
  • Rumpold, B. A., Schlüter, O. (2015). Insect-based protein sources and their potential for human consumption: nutritional composition and processing. Animal Frontiers, 5(2), 20-24, https://doi.org/10.2527/af.2015-0015.
  • Rumpold, B. A., Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies, 17, 1-11, https://doi.org/10.1016/j.ifset.2012.11.005.
  • Saadoun, J. H., Sogari, G., Bernini, V., Camorali, C., Rossi, F., Neviani, E., Lazzi, C. (2022). A critical review of intrinsic and extrinsic antimicrobial properties of insects. Trends in Food Science and Technology, 122, 40-48, https://doi.org/10.1016/j.tifs.2022.02.018.
  • Schrögel, P., Wätjen, W. (2019). Insects for food and feed-safety aspects related to mycotoxins and metals. Foods, 8(8), 288, https://doi.org/10.3390/foods8080288.
  • Smetana, S., Spykman, R., Heinz, V. (2021). Environmental aspects of ınsect mass production. Journal of Insects as Food and Feed, 7(5), 553-571, https://doi.org/10.3920/JIFF2020.0116.
  • Sosa, D. A. T., Fogliano V. (2017). Potential of insect-derived ingredients for food applications. Insect Physiology and Ecology, 215-231, http://dx.doi.org/10.5772/67318.
  • Tamburino, L., Bravo, G., Clough, Y., Nicholas, K. A. (2020). From population to production: 50 years of scientific literature on how to feed the world. Global Food Security, 24: 100346 p., https://doi.org/10.1016/j.gfs.2019.100346.
  • Tanga, C. M., Egonyu, J. P., Beesigamukama, D., Niassy, S., Emily, K., Magara, H. J., Omuse, E. R., Subramanian S., Ekesi, S. (2021). Edible insect farming as an emerging and profitable enterprise in East Africa. Current Opinion in Insect Science, 48, 64-71, https://doi.org/10.1016/j.cois.2021.09.007.
  • Tang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L., Li, F. (2019). Edible insects as a food source: a review. Food Production, Processing and Nutrition, 1(1), 1-13, https://doi.org/10.1186/s43014-019-0008-1.
  • Tao, J., Li, Y. O. (2018). Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality and Safety, 2(1), 17-26, https://doi.org/10.1093/fqsafe/fyy001.
  • UNEP (United Nations Environment Programme) (2021). Food waste index report 2021. Nairobi, ISBN: 978-92-807-3868-1., 100.
  • Van Huis, A., Halloran, A., Van Itterbeeck, J., Klunder, H., Vantomme, P. (2022). How many people on our planet eat insects: 2 billion. Journal of Insects as Food and Feed, 8(1), 1-4, https://doi.org/10.3920/JIFF2021.x010.
  • Van Huis, A., Rumpold, B. A., Van Der Fels-Klerx, H. J., Tomberlin, J. K. (2021). Advancing edible insects as food and feed in a circular economy. Journal of Insects as Food and Feed, 7(5), 935-948, https://doi.org/10.3920/JIFF2021.x005.
  • Van Huis, A. (2021). Prospects of insects as food and feed. Organic Agriculture, 11(2), 301-308, https://doi.org/10.1007/s13165-020-00290-7. Van Huis, A., Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 1-14, https://doi.org/10.1007/s13593-017-0452-8.
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P. (2013). Edible insects: future prospects for food and feed security (No. 171). Food and agriculture organization of the United Nations., ISBN: 978-92-5-107596-8.
  • Varelas, V. (2019). Food wastes as a potential new source for edible insect mass production for food and feed: a review. Fermentation, 5(3), 81, https://doi.org/10.3390/fermentation5030081.
  • Wade, M., Hoelle, J. (2020). A review of edible insect industrialization: Scales of production and implications for sustainability. Environmental Research Letters, 15(12), 123013, https://doi.org/10.1088/1748-9326/aba1c1.
  • World Health Organization (WHO), United Nations Children’s Fund (UNICEF), International Bank for Reconstruction and Development/The World Bank. (2021). Levels and trends in child malnutrition: key findings of the 2021 edition of the joint child malnutrition estimates. Geneva: World Health Organization. ISBN: 9789240025257.
There are 92 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Article
Authors

Ali Emre Andaç 0000-0002-0898-066X

Neşe Yılmaz Tuncel 0000-0003-2700-5840

Publication Date March 6, 2023
Submission Date July 3, 2022
Published in Issue Year 2023

Cite

APA Andaç, A. E., & Yılmaz Tuncel, N. (2023). Sürdürülebilir ve Yeni Bir “Gıda” Alternatifi Olarak Yenilebilir Böcekler. Journal of Advanced Research in Natural and Applied Sciences, 9(1), 251-267. https://doi.org/10.28979/jarnas.1139883
AMA Andaç AE, Yılmaz Tuncel N. Sürdürülebilir ve Yeni Bir “Gıda” Alternatifi Olarak Yenilebilir Böcekler. JARNAS. March 2023;9(1):251-267. doi:10.28979/jarnas.1139883
Chicago Andaç, Ali Emre, and Neşe Yılmaz Tuncel. “Sürdürülebilir Ve Yeni Bir ‘Gıda’ Alternatifi Olarak Yenilebilir Böcekler”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 1 (March 2023): 251-67. https://doi.org/10.28979/jarnas.1139883.
EndNote Andaç AE, Yılmaz Tuncel N (March 1, 2023) Sürdürülebilir ve Yeni Bir “Gıda” Alternatifi Olarak Yenilebilir Böcekler. Journal of Advanced Research in Natural and Applied Sciences 9 1 251–267.
IEEE A. E. Andaç and N. Yılmaz Tuncel, “Sürdürülebilir ve Yeni Bir ‘Gıda’ Alternatifi Olarak Yenilebilir Böcekler”, JARNAS, vol. 9, no. 1, pp. 251–267, 2023, doi: 10.28979/jarnas.1139883.
ISNAD Andaç, Ali Emre - Yılmaz Tuncel, Neşe. “Sürdürülebilir Ve Yeni Bir ‘Gıda’ Alternatifi Olarak Yenilebilir Böcekler”. Journal of Advanced Research in Natural and Applied Sciences 9/1 (March 2023), 251-267. https://doi.org/10.28979/jarnas.1139883.
JAMA Andaç AE, Yılmaz Tuncel N. Sürdürülebilir ve Yeni Bir “Gıda” Alternatifi Olarak Yenilebilir Böcekler. JARNAS. 2023;9:251–267.
MLA Andaç, Ali Emre and Neşe Yılmaz Tuncel. “Sürdürülebilir Ve Yeni Bir ‘Gıda’ Alternatifi Olarak Yenilebilir Böcekler”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 1, 2023, pp. 251-67, doi:10.28979/jarnas.1139883.
Vancouver Andaç AE, Yılmaz Tuncel N. Sürdürülebilir ve Yeni Bir “Gıda” Alternatifi Olarak Yenilebilir Böcekler. JARNAS. 2023;9(1):251-67.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).