Research Article
BibTex RIS Cite

Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion

Year 2023, , 15 - 27, 06.03.2023
https://doi.org/10.28979/jarnas.1140573

Abstract

Kombucha, a fermented beverage, is popular for its prophylactic and therapeutic properties. Kombucha is a traditionally black tea infusion fermented with a symbiotic bacteria and yeast consortium (SCOBY) under aerobic conditions for 7-21 days. However, the beneficial properties of kombucha vary according to the substrate kind, fermentation conditions, and SCOBY consortium. The present study has screened the physicochemical, bioactive, antimicrobial, and sensory properties of beverages produced by fermenting black, green, rosehip, and licorice tea infusions with kombucha starter culture for 21 days. Tea infusions before and after fermentation; pH value, titratable acidity (TA), pellicle weight, color values (L*, a*, b*, ΔE), total phenolic content (TPC), antioxidant capacity against DPPH (2,2-diphenyl-1- picrylhydrazil) radicals, and antimicrobial activity was measured. Antimicrobial activity is applied to various foodborne pathogens such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and C. albicans with based disc diffusion method and spectrophotometric technique. In this study, tea type statistically affected all parameters except pH in kombucha beverages (p<0.05). The highest TPC and antioxidant activity were determined in the green tea kombucha sample. All kombucha beverages, especially those prepared by fermentation of licorice and green tea infusions, showed the highest antimicrobial potential against E. coli and S. aureus, respectively. Consequently, it is vital to prefer kombucha fermented with SCOBY instead of consuming beverages prepared with various plants' infusions to increase many beneficial properties and provide additional benefits.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • AOAC. (2002). Official Methods of Analysis of AOAC International, 17th ed. Methods 976.05, 923.03, 962.09, 920.39. USA: Association of Official Analytical Chemists
  • AOAC. (1975). Association of Official Analytical Chemists. Official Methods of analysis. In Methods in Enzymology (Vol. 299, pp. 152–178). Academic Press. https://doi.org/10.1016/S0076-6879(99)99017-1
  • Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems, 3, 7. https://doi.org/10.3389/FSUFS.2019.00007/BIBTEX
  • Battikh, H., Chaieb, K., Bakhrouf, A., & Ammar, E. (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry, 37(2), 231–236. https://doi.org/10.1111/j.1745-4514.2011.00629.x
  • Bhattacharya, S., Gachhui, R., & Sil, P. C. (2013). Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food and Chemical Toxicology, 60, 328–340. https://doi.org/10.1016/J.FCT.2013.07.051
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Cardoso, R. R., Neto, R. O., dos Santos D’Almeida, C. T., do Nascimento, T. P., Pressete, C. G., Azevedo, L., Martino, H. S. D., Cameron, L. C., Ferreira, M. S. L., & Barros, F. A. R. de. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782. https://doi.org/10.1016/J.FOODRES.2019.108782
  • Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63–72. https://doi.org/10.1016/J.IJFOODMICRO.2015.12.015
  • Chiu, C. T., Lai, C. H., Huang, Y. H., Yang, C. H., & Lin, J. N. (2021). Comparative analysis of gradient diffusion and disk diffusion with agar dilution for susceptibility testing of Elizabethkingia anophelis. Antibiotics, 10(4), 450. https://doi.org/10.3390/antibiotics10040450
  • Chrubasik, C., Roufogalis, B. D., Müller-Ladner, U., & Chrubasik, S. (2008). A systematic review on the Rosa canina effect and efficacy profiles. Phytotherapy Research, 22(6), 725–733. https://doi.org/10.1002/PTR.2400
  • Chu, S. C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98(3), 502–507. https://doi.org/10.1016/J.FOODCHEM.2005.05.080
  • Corbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206. https://doi.org/10.1111/1541-4337.12109
  • Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G., & Coton, E. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology, 93(5). https://doi.org/10.1093/FEMSEC/FIX048
  • Cottet, C., Ramirez-Tapias, Y. A., Delgado, J. F., la Osa, O. De, Salvay, A. G., & Peltzer, M. A. (2020). Biobased Materials from Microbial Biomass and Its Derivatives. Materials 2020, Vol. 13, Page 1263, 13(6), 1263. https://doi.org/10.3390/MA13061263
  • De Roos, J., & De Vuyst, L. (2018). Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology, 49, 115–119. https://doi.org/10.1016/j.copbio.2017.08.007
  • Demir, N., Yildiz, O., Alpaslan, M., & Hayaloglu, A. A. (2014). Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT - Food Science and Technology, 57(1), 126–133. https://doi.org/10.1016/j.lwt.2013.12.038
  • Dufresne, C., & Farnworth, E. (2000). Tea, Kombucha, and health: A review. Food Research International, 33(6), 409–421. https://doi.org/10.1016/S0963-9969(00)00067-3
  • Emiljanowicz, K. E., & Malinowska-Pańczyk, E. (2020). Kombucha from alternative raw materials–The review. In Critical Reviews in Food Science and Nutrition (Vol. 60, Issue 19, pp. 3185–3194). Taylor & Francis. https://doi.org/10.1080/10408398.2019.1679714
  • Fujii, S., Morinaga, O., Uto, T., Nomura, S., & Shoyama, Y. (2014). Development of a monoclonal antibody-based immunochemical assay for liquiritin and its application to the quality control of licorice products. Journal of Agricultural and Food Chemistry, 62(15), 3377–3383. https://doi.org/10.1021/JF404731Z/ASSET/IMAGES/JF404731Z.SOCIAL.JPEG_V03
  • Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D. S., Jakobsen, R. R., Castro-Mejía, J. L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., & Di Gioia, D. (2018). Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2019, Vol. 11, Page 1, 11(1), 1. https://doi.org/10.3390/NU11010001
  • Greenwalt, C. J., Ledford, R. A., & Steinkraus, K. H. (1998). Determination and characterization of the antimicrobial activity of the fermented tea Kombucha. LWT - Food Science and Technology, 31(3), 291–296. https://doi.org/10.1006/fstl.1997.0354
  • Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, Vol. 9, Page 447, 9(5), 447. https://doi.org/10.3390/ANTIOX9050447
  • Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007a). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392–398. https://doi.org/10.1016/J.FOODCHEM.2006.05.032
  • Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007b). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392–398. https://doi.org/10.1016/j.foodchem.2006.05.032
  • Jayabalan, Rasu, Chen, P.-N., Hsieh, Y.-S., Prabhakaran, K., Pitchai, P., Marimuthu, S., Thangaraj, P., Swaminathan, K., & Eok Yun, S. (2011). Effect of solvent fractions of kombucha tea on viability and invasiveness of cancer cells-Characterization of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin. Indian Journal of Biotechnology, 10, 75–82.
  • Jayabalan, Rasu, Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. In Comprehensive Reviews in Food Science and Food Safety (Vol. 13, Issue 4, pp. 538–550). John Wiley & Sons, Ltd. https://doi.org/10.1111/1541-4337.12073
  • Kamal, D. A. M., Salamt, N., Zaid, S. S. M., & Mokhtar, M. H. (2021). Beneficial effects of green tea catechins on female reproductive disorders: A review. Molecules, 26(9), 2675. https://doi.org/10.3390/molecules26092675
  • Khan, N., & Mukhtar, H. (2019). Tea polyphenols in promotion of human health. In Nutrients (Vol. 11, Issue 1, p. 39). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/nu11010039
  • Kim, J., & Adhikari, K. (2020). Current trends in kombucha: Marketing perspectives and the need for improved sensory research. In Beverages (Vol. 6, Issue 1, pp. 1–19). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/beverages6010015
  • Liu, C. H., Hsu, W. H., Lee, F. L., & Liao, C. C. (1996). The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13(6), 407–415. https://doi.org/10.1006/FMIC.1996.0047
  • Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38, 171–178. https://doi.org/10.1016/j.fm.2013.09.003
  • Massoud, R., Jafari-Dastjerdeh, R., Naghavi, N., & Khosravi-Darani, K. (2022). All aspects of antioxidant properties of kombucha drink. In Biointerface Research in Applied Chemistry (Vol. 12, Issue 3, pp. 4018–4027). https://doi.org/10.33263/BRIAC123.40184027
  • Maughan, C., Tansawat, R., Cornforth, D., Ward, R., & Martini, S. (2012). Development of a beef flavor lexicon and its application to compare the flavor profile and consumer acceptance of rib steaks from grass- or grain-fed cattle. Meat Science, 90(1), 116–121. https://doi.org/10.1016/J.MEATSCI.2011.06.006
  • May, A., Narayanan, S., Alcock, J., Varsani, A., Maley, C., & Aktipis, A. (2019). Kombucha: A novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ, 2019(9), e7565. https://doi.org/10.7717/peerj.7565
  • Medveckiene, B., Kulaitiene, J., Jariene, E., Vaitkevičiene, N., & Hallman, E. (2020). Carotenoids, polyphenols, and ascorbic acid in organic rosehips (Rosa spp.) cultivated in Lithuania. Applied Sciences (Switzerland), 10(15), 5337. https://doi.org/10.3390/APP10155337
  • Miranda, B., Lawton, N. M., Tachibana, S. R., Swartz, N. A., & Hall, W. P. (2016). Titration and HPLC Characterization of Kombucha Fermentation: A Laboratory Experiment in Food Analysis. Journal of Chemical Education, 93(10), 1770–1775. https://doi.org/10.1021/ACS.JCHEMED.6B00329/ASSET/IMAGES/ACS.JCHEMED.6B00329.SOCIAL.JPEG_V03
  • Mukadam, T. A., Punjabi, K., Deshpande, S. D., Vaidya, S. P., & Chowdhary, A. S. (2016). Isolation and Characterization of Bacteria and Yeast from Kombucha Tea. International Journal of Current Microbiology and Applied Sciences, 5(6), 32–41. https://doi.org/10.20546/ijcmas.2016.506.004
  • Oh, J., Jo, H., Cho, A. R., Kim, S. J., & Han, J. (2013). Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control, 31(2), 403–409. https://doi.org/10.1016/J.FOODCONT.2012.10.021
  • Poveda-Castillo, G. D. C., Rodrigo, D., Martínez, A., & Pina-Pérez, M. C. (2018). Bioactivity of Fucoidan as an antimicrobial agent in a new functional beverage. Beverages, 4(3), 64. https://doi.org/10.3390/beverages4030064
  • Ramaswamy, H. S., & Richards, J. F. (1980). A Reflectance Method to Study the Green-Yellow Changes in Fruits and Vegetables. Canadian Institute of Food Science and Technology Journal, 13(3), 107–111. https://doi.org/10.1016/s0315-5463(80)73346-1
  • Ramírez Tapias, Y. A., Peltzer, M. A., Delgado, J. F., & Salvay, A. G. (2020). Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films. Food and Bioprocess Technology, 13(7), 1166–1180. https://doi.org/10.1007/S11947-020-02471-4/FIGURES/8
  • Record, I. R., & Lane, J. M. (2001). Simulated intestinal digestion of green and black teas. Food Chemistry, 73(4), 481–486. https://doi.org/10.1016/S0308-8146(01)00131-5
  • Rojo-Poveda, O., Barbosa-Pereira, L., Mateus-Reguengo, L., Bertolino, M., Stévigny, C., & Zeppa, G. (2019). Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients, 11(4), 867. https://doi.org/10.3390/nu11040867
  • Sethi, S., Tyagi, S. K., & Anurag, R. K. (2016). Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology, 53(9), 3408–3423. https://doi.org/10.1007/S13197-016-2328-3/FIGURES/4
  • Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008
  • Silva, K. A., Uekane, T. M., Miranda, J. F. de, Ruiz, L. F., Motta, J. C. B. da, Silva, C. B., Pitangui, N. de S., Gonzalez, A. G. M., Fernandes, F. F., & Lima, A. R. (2021). Kombucha beverage from non-conventional edible plant infusion and green tea: Characterization, toxicity, antioxidant activities and antimicrobial properties. Biocatalysis and Agricultural Biotechnology, 34, 102032. https://doi.org/10.1016/J.BCAB.2021.102032
  • Sreeramulu, G., Zhu, Y., & Knol, W. (2001). Characterization of antimicrobial activity in Kombucha fermentation. Acta Biotechnologica, 21(1), 49–56. https://doi.org/10.1002/1521-3846(200102)21:1<49::AID-ABIO49>3.0.CO;2-G
  • Sun-Waterhouse, D. (2011). The development of fruit-based functional foods targeting the health and wellness market: A review. International Journal of Food Science and Technology, 46(5), 899–920. https://doi.org/10.1111/j.1365-2621.2010.02499.x
  • Sun, T. Y., Li, J. S., & Chen, C. (2015). Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of Food and Drug Analysis, 23(4), 709–718. https://doi.org/10.1016/J.JFDA.2015.01.009
  • Torán-Pereg, P., del Noval, B., Valenzuela, S., Martinez, J., Prado, D., Perisé, R., & Arboleya, J. C. (2021). Microbiological and sensory characterization of kombucha SCOBY for culinary applications. International Journal of Gastronomy and Food Science, 23, 100314. https://doi.org/10.1016/j.ijgfs.2021.100314
  • Velićanski, A. S., Cvetković, D. D., Markov, S. L., Tumbas Šaponjac, V. T., & Vulić, J. J. (2014). Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa offi cinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts. Food Technology and Biotechnology, 52(4), 420–429. https://doi.org/10.17113/FTB.52.04.14.3611
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., Renard, T., Rollan, S., & Taillandier, P. (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry, 83, 44–54. https://doi.org/10.1016/J.PROCBIO.2019.05.004
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., & Taillandier, P. (2018). Understanding Kombucha Tea Fermentation: A Review. Journal of Food Science, 83(3), 580–588. https://doi.org/10.1111/1750-3841.14068
  • Villarreal-Soto, S. A., Bouajila, J., Pace, M., Leech, J., Cotter, P. D., Souchard, J. P., Taillandier, P., & Beaufort, S. (2020). Metabolome-microbiome signatures in the fermented beverage, Kombucha. International Journal of Food Microbiology, 333, 108778. https://doi.org/10.1016/J.IJFOODMICRO.2020.108778
  • Vitas, J., Vukmanović, S., Čakarević, J., Popović, L., & Malbaša, R. (2020). Kombucha fermentation of six medicinal herbs: Chemical profile and biological activity. Chemical Industry and Chemical Engineering Quarterly, 26(2), 157–170. https://doi.org/10.2298/CICEQ190708034V
  • Wang, Z., Zhao, X., Zu, Y., Wu, W., Li, Y., Guo, Z., Wang, L., & Wang, L. (2019). Licorice flavonoids nanoparticles prepared by liquid antisolvent re-crystallization exhibit higher oral bioavailability and antioxidant activity in rat. Journal of Functional Foods, 57, 190–201. https://doi.org/10.1016/J.JFF.2019.04.010
  • Watawana, M. I., Jayawardena, N., & Waisundara, V. Y. (2018). Value-added tea (Camellia sinesis) as a functional food using the Kombucha ‘tea fungus.’ Chiang Mai Journal of Science, 45(1), 136–146. http://epg.science.cmu.ac.th/ejournal/
  • Yang, F., Chu, T., Zhang, Y., Liu, X., Sun, G., & Chen, Z. (2020). Quality assessment of licorice (Glycyrrhiza glabra L.) from different sources by multiple fingerprint profiles combined with quantitative analysis, antioxidant activity and chemometric methods. Food Chemistry, 324, 126854. https://doi.org/10.1016/j.foodchem.2020.126854
Year 2023, , 15 - 27, 06.03.2023
https://doi.org/10.28979/jarnas.1140573

Abstract

Project Number

-

References

  • AOAC. (2002). Official Methods of Analysis of AOAC International, 17th ed. Methods 976.05, 923.03, 962.09, 920.39. USA: Association of Official Analytical Chemists
  • AOAC. (1975). Association of Official Analytical Chemists. Official Methods of analysis. In Methods in Enzymology (Vol. 299, pp. 152–178). Academic Press. https://doi.org/10.1016/S0076-6879(99)99017-1
  • Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems, 3, 7. https://doi.org/10.3389/FSUFS.2019.00007/BIBTEX
  • Battikh, H., Chaieb, K., Bakhrouf, A., & Ammar, E. (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry, 37(2), 231–236. https://doi.org/10.1111/j.1745-4514.2011.00629.x
  • Bhattacharya, S., Gachhui, R., & Sil, P. C. (2013). Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food and Chemical Toxicology, 60, 328–340. https://doi.org/10.1016/J.FCT.2013.07.051
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Cardoso, R. R., Neto, R. O., dos Santos D’Almeida, C. T., do Nascimento, T. P., Pressete, C. G., Azevedo, L., Martino, H. S. D., Cameron, L. C., Ferreira, M. S. L., & Barros, F. A. R. de. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782. https://doi.org/10.1016/J.FOODRES.2019.108782
  • Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63–72. https://doi.org/10.1016/J.IJFOODMICRO.2015.12.015
  • Chiu, C. T., Lai, C. H., Huang, Y. H., Yang, C. H., & Lin, J. N. (2021). Comparative analysis of gradient diffusion and disk diffusion with agar dilution for susceptibility testing of Elizabethkingia anophelis. Antibiotics, 10(4), 450. https://doi.org/10.3390/antibiotics10040450
  • Chrubasik, C., Roufogalis, B. D., Müller-Ladner, U., & Chrubasik, S. (2008). A systematic review on the Rosa canina effect and efficacy profiles. Phytotherapy Research, 22(6), 725–733. https://doi.org/10.1002/PTR.2400
  • Chu, S. C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98(3), 502–507. https://doi.org/10.1016/J.FOODCHEM.2005.05.080
  • Corbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206. https://doi.org/10.1111/1541-4337.12109
  • Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G., & Coton, E. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology, 93(5). https://doi.org/10.1093/FEMSEC/FIX048
  • Cottet, C., Ramirez-Tapias, Y. A., Delgado, J. F., la Osa, O. De, Salvay, A. G., & Peltzer, M. A. (2020). Biobased Materials from Microbial Biomass and Its Derivatives. Materials 2020, Vol. 13, Page 1263, 13(6), 1263. https://doi.org/10.3390/MA13061263
  • De Roos, J., & De Vuyst, L. (2018). Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology, 49, 115–119. https://doi.org/10.1016/j.copbio.2017.08.007
  • Demir, N., Yildiz, O., Alpaslan, M., & Hayaloglu, A. A. (2014). Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT - Food Science and Technology, 57(1), 126–133. https://doi.org/10.1016/j.lwt.2013.12.038
  • Dufresne, C., & Farnworth, E. (2000). Tea, Kombucha, and health: A review. Food Research International, 33(6), 409–421. https://doi.org/10.1016/S0963-9969(00)00067-3
  • Emiljanowicz, K. E., & Malinowska-Pańczyk, E. (2020). Kombucha from alternative raw materials–The review. In Critical Reviews in Food Science and Nutrition (Vol. 60, Issue 19, pp. 3185–3194). Taylor & Francis. https://doi.org/10.1080/10408398.2019.1679714
  • Fujii, S., Morinaga, O., Uto, T., Nomura, S., & Shoyama, Y. (2014). Development of a monoclonal antibody-based immunochemical assay for liquiritin and its application to the quality control of licorice products. Journal of Agricultural and Food Chemistry, 62(15), 3377–3383. https://doi.org/10.1021/JF404731Z/ASSET/IMAGES/JF404731Z.SOCIAL.JPEG_V03
  • Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D. S., Jakobsen, R. R., Castro-Mejía, J. L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., & Di Gioia, D. (2018). Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2019, Vol. 11, Page 1, 11(1), 1. https://doi.org/10.3390/NU11010001
  • Greenwalt, C. J., Ledford, R. A., & Steinkraus, K. H. (1998). Determination and characterization of the antimicrobial activity of the fermented tea Kombucha. LWT - Food Science and Technology, 31(3), 291–296. https://doi.org/10.1006/fstl.1997.0354
  • Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, Vol. 9, Page 447, 9(5), 447. https://doi.org/10.3390/ANTIOX9050447
  • Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007a). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392–398. https://doi.org/10.1016/J.FOODCHEM.2006.05.032
  • Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007b). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392–398. https://doi.org/10.1016/j.foodchem.2006.05.032
  • Jayabalan, Rasu, Chen, P.-N., Hsieh, Y.-S., Prabhakaran, K., Pitchai, P., Marimuthu, S., Thangaraj, P., Swaminathan, K., & Eok Yun, S. (2011). Effect of solvent fractions of kombucha tea on viability and invasiveness of cancer cells-Characterization of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin. Indian Journal of Biotechnology, 10, 75–82.
  • Jayabalan, Rasu, Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. In Comprehensive Reviews in Food Science and Food Safety (Vol. 13, Issue 4, pp. 538–550). John Wiley & Sons, Ltd. https://doi.org/10.1111/1541-4337.12073
  • Kamal, D. A. M., Salamt, N., Zaid, S. S. M., & Mokhtar, M. H. (2021). Beneficial effects of green tea catechins on female reproductive disorders: A review. Molecules, 26(9), 2675. https://doi.org/10.3390/molecules26092675
  • Khan, N., & Mukhtar, H. (2019). Tea polyphenols in promotion of human health. In Nutrients (Vol. 11, Issue 1, p. 39). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/nu11010039
  • Kim, J., & Adhikari, K. (2020). Current trends in kombucha: Marketing perspectives and the need for improved sensory research. In Beverages (Vol. 6, Issue 1, pp. 1–19). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/beverages6010015
  • Liu, C. H., Hsu, W. H., Lee, F. L., & Liao, C. C. (1996). The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13(6), 407–415. https://doi.org/10.1006/FMIC.1996.0047
  • Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38, 171–178. https://doi.org/10.1016/j.fm.2013.09.003
  • Massoud, R., Jafari-Dastjerdeh, R., Naghavi, N., & Khosravi-Darani, K. (2022). All aspects of antioxidant properties of kombucha drink. In Biointerface Research in Applied Chemistry (Vol. 12, Issue 3, pp. 4018–4027). https://doi.org/10.33263/BRIAC123.40184027
  • Maughan, C., Tansawat, R., Cornforth, D., Ward, R., & Martini, S. (2012). Development of a beef flavor lexicon and its application to compare the flavor profile and consumer acceptance of rib steaks from grass- or grain-fed cattle. Meat Science, 90(1), 116–121. https://doi.org/10.1016/J.MEATSCI.2011.06.006
  • May, A., Narayanan, S., Alcock, J., Varsani, A., Maley, C., & Aktipis, A. (2019). Kombucha: A novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ, 2019(9), e7565. https://doi.org/10.7717/peerj.7565
  • Medveckiene, B., Kulaitiene, J., Jariene, E., Vaitkevičiene, N., & Hallman, E. (2020). Carotenoids, polyphenols, and ascorbic acid in organic rosehips (Rosa spp.) cultivated in Lithuania. Applied Sciences (Switzerland), 10(15), 5337. https://doi.org/10.3390/APP10155337
  • Miranda, B., Lawton, N. M., Tachibana, S. R., Swartz, N. A., & Hall, W. P. (2016). Titration and HPLC Characterization of Kombucha Fermentation: A Laboratory Experiment in Food Analysis. Journal of Chemical Education, 93(10), 1770–1775. https://doi.org/10.1021/ACS.JCHEMED.6B00329/ASSET/IMAGES/ACS.JCHEMED.6B00329.SOCIAL.JPEG_V03
  • Mukadam, T. A., Punjabi, K., Deshpande, S. D., Vaidya, S. P., & Chowdhary, A. S. (2016). Isolation and Characterization of Bacteria and Yeast from Kombucha Tea. International Journal of Current Microbiology and Applied Sciences, 5(6), 32–41. https://doi.org/10.20546/ijcmas.2016.506.004
  • Oh, J., Jo, H., Cho, A. R., Kim, S. J., & Han, J. (2013). Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control, 31(2), 403–409. https://doi.org/10.1016/J.FOODCONT.2012.10.021
  • Poveda-Castillo, G. D. C., Rodrigo, D., Martínez, A., & Pina-Pérez, M. C. (2018). Bioactivity of Fucoidan as an antimicrobial agent in a new functional beverage. Beverages, 4(3), 64. https://doi.org/10.3390/beverages4030064
  • Ramaswamy, H. S., & Richards, J. F. (1980). A Reflectance Method to Study the Green-Yellow Changes in Fruits and Vegetables. Canadian Institute of Food Science and Technology Journal, 13(3), 107–111. https://doi.org/10.1016/s0315-5463(80)73346-1
  • Ramírez Tapias, Y. A., Peltzer, M. A., Delgado, J. F., & Salvay, A. G. (2020). Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films. Food and Bioprocess Technology, 13(7), 1166–1180. https://doi.org/10.1007/S11947-020-02471-4/FIGURES/8
  • Record, I. R., & Lane, J. M. (2001). Simulated intestinal digestion of green and black teas. Food Chemistry, 73(4), 481–486. https://doi.org/10.1016/S0308-8146(01)00131-5
  • Rojo-Poveda, O., Barbosa-Pereira, L., Mateus-Reguengo, L., Bertolino, M., Stévigny, C., & Zeppa, G. (2019). Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients, 11(4), 867. https://doi.org/10.3390/nu11040867
  • Sethi, S., Tyagi, S. K., & Anurag, R. K. (2016). Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology, 53(9), 3408–3423. https://doi.org/10.1007/S13197-016-2328-3/FIGURES/4
  • Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008
  • Silva, K. A., Uekane, T. M., Miranda, J. F. de, Ruiz, L. F., Motta, J. C. B. da, Silva, C. B., Pitangui, N. de S., Gonzalez, A. G. M., Fernandes, F. F., & Lima, A. R. (2021). Kombucha beverage from non-conventional edible plant infusion and green tea: Characterization, toxicity, antioxidant activities and antimicrobial properties. Biocatalysis and Agricultural Biotechnology, 34, 102032. https://doi.org/10.1016/J.BCAB.2021.102032
  • Sreeramulu, G., Zhu, Y., & Knol, W. (2001). Characterization of antimicrobial activity in Kombucha fermentation. Acta Biotechnologica, 21(1), 49–56. https://doi.org/10.1002/1521-3846(200102)21:1<49::AID-ABIO49>3.0.CO;2-G
  • Sun-Waterhouse, D. (2011). The development of fruit-based functional foods targeting the health and wellness market: A review. International Journal of Food Science and Technology, 46(5), 899–920. https://doi.org/10.1111/j.1365-2621.2010.02499.x
  • Sun, T. Y., Li, J. S., & Chen, C. (2015). Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of Food and Drug Analysis, 23(4), 709–718. https://doi.org/10.1016/J.JFDA.2015.01.009
  • Torán-Pereg, P., del Noval, B., Valenzuela, S., Martinez, J., Prado, D., Perisé, R., & Arboleya, J. C. (2021). Microbiological and sensory characterization of kombucha SCOBY for culinary applications. International Journal of Gastronomy and Food Science, 23, 100314. https://doi.org/10.1016/j.ijgfs.2021.100314
  • Velićanski, A. S., Cvetković, D. D., Markov, S. L., Tumbas Šaponjac, V. T., & Vulić, J. J. (2014). Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa offi cinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts. Food Technology and Biotechnology, 52(4), 420–429. https://doi.org/10.17113/FTB.52.04.14.3611
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., Renard, T., Rollan, S., & Taillandier, P. (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry, 83, 44–54. https://doi.org/10.1016/J.PROCBIO.2019.05.004
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., & Taillandier, P. (2018). Understanding Kombucha Tea Fermentation: A Review. Journal of Food Science, 83(3), 580–588. https://doi.org/10.1111/1750-3841.14068
  • Villarreal-Soto, S. A., Bouajila, J., Pace, M., Leech, J., Cotter, P. D., Souchard, J. P., Taillandier, P., & Beaufort, S. (2020). Metabolome-microbiome signatures in the fermented beverage, Kombucha. International Journal of Food Microbiology, 333, 108778. https://doi.org/10.1016/J.IJFOODMICRO.2020.108778
  • Vitas, J., Vukmanović, S., Čakarević, J., Popović, L., & Malbaša, R. (2020). Kombucha fermentation of six medicinal herbs: Chemical profile and biological activity. Chemical Industry and Chemical Engineering Quarterly, 26(2), 157–170. https://doi.org/10.2298/CICEQ190708034V
  • Wang, Z., Zhao, X., Zu, Y., Wu, W., Li, Y., Guo, Z., Wang, L., & Wang, L. (2019). Licorice flavonoids nanoparticles prepared by liquid antisolvent re-crystallization exhibit higher oral bioavailability and antioxidant activity in rat. Journal of Functional Foods, 57, 190–201. https://doi.org/10.1016/J.JFF.2019.04.010
  • Watawana, M. I., Jayawardena, N., & Waisundara, V. Y. (2018). Value-added tea (Camellia sinesis) as a functional food using the Kombucha ‘tea fungus.’ Chiang Mai Journal of Science, 45(1), 136–146. http://epg.science.cmu.ac.th/ejournal/
  • Yang, F., Chu, T., Zhang, Y., Liu, X., Sun, G., & Chen, Z. (2020). Quality assessment of licorice (Glycyrrhiza glabra L.) from different sources by multiple fingerprint profiles combined with quantitative analysis, antioxidant activity and chemometric methods. Food Chemistry, 324, 126854. https://doi.org/10.1016/j.foodchem.2020.126854
There are 58 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Cemhan Doğan 0000-0002-9043-0949

Nurcan Doğan 0000-0001-5414-1819

Project Number -
Publication Date March 6, 2023
Submission Date July 4, 2022
Published in Issue Year 2023

Cite

APA Doğan, C., & Doğan, N. (2023). Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. Journal of Advanced Research in Natural and Applied Sciences, 9(1), 15-27. https://doi.org/10.28979/jarnas.1140573
AMA Doğan C, Doğan N. Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. JARNAS. March 2023;9(1):15-27. doi:10.28979/jarnas.1140573
Chicago Doğan, Cemhan, and Nurcan Doğan. “Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 1 (March 2023): 15-27. https://doi.org/10.28979/jarnas.1140573.
EndNote Doğan C, Doğan N (March 1, 2023) Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. Journal of Advanced Research in Natural and Applied Sciences 9 1 15–27.
IEEE C. Doğan and N. Doğan, “Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion”, JARNAS, vol. 9, no. 1, pp. 15–27, 2023, doi: 10.28979/jarnas.1140573.
ISNAD Doğan, Cemhan - Doğan, Nurcan. “Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion”. Journal of Advanced Research in Natural and Applied Sciences 9/1 (March 2023), 15-27. https://doi.org/10.28979/jarnas.1140573.
JAMA Doğan C, Doğan N. Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. JARNAS. 2023;9:15–27.
MLA Doğan, Cemhan and Nurcan Doğan. “Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 1, 2023, pp. 15-27, doi:10.28979/jarnas.1140573.
Vancouver Doğan C, Doğan N. Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. JARNAS. 2023;9(1):15-27.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).