Research Article
BibTex RIS Cite

Optimization of Mucilage Removal from Cress Seeds (L. sativum)

Year 2023, , 648 - 656, 20.09.2023
https://doi.org/10.28979/jarnas.1239790

Abstract

In this study, optimum removal conditions of the cress seed mucilage by a chemical method were deter-mined. Moreover, proximate analysis (moisture, fat, protein, ash and total carbohydrate) of the cress seed was carried out. The independent process variables were sodium bicarbonate concentration (0-0.5 M), solvent-to-seeds ratio (25-75 ml/g) and soaking time (3-9 hours). A central composite design having 24 points for given independent variables was used and the optimization of the process conditions was done by desirability function approach. The results showed that proximate analysis results of the cress seed were in accordance with the previous reports in literature, and fat and protein percentage was found to be higher than 20%. The mucilage removal study results showed that higher concentrations of sodium bicar-bonate enhanced the mucilage removal. Also, higher soaking times increased the solubility of the seed coat polysaccharides of the cress seeds, resulting in better mucilage removal. The optimum chemical mucilage removal conditions were determined as 0.43 M sodium bicarbonate, solvent-to-seeds ratio of 75 ml/g and 8.96 hours of soaking time. At these conditions, total carbohydrate (determined using Anthrone method) in the final extract was predicted as 2.47 g/ml. Verification tests were carried out at the optimum conditions and there was no statistical difference between experimental (2.64±0.43 mg/ml) and predicted values.

Supporting Institution

Tokat Gaziosmanpasa University Scientific Research Projects Committee

Project Number

2022/22

References

  • Albakry, Z., Karrar, E., Ahmed, I. A. M., Oz, E., Proestos, C., El Sheikha, A. F., ... & Wang, X. (2022). Nutritional composition and volatile compounds of black cumin (Nigella sativa L.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae, 8(7), 575. DOI: https://doi.org/10.3390/horticulturae8070575
  • AOAC. (2000). Official methods of analysis of AOAC international. 17th edn. AOAC International, Md., USA. Balke, D. T., & Diosady, L. L. (2000). Rapid aqueous extraction of mucilage from whole white mustard seed. Food Research International, 33(5), 347-356. DOI: https://doi.org/10.1016/S0963-9969(00)00055-7
  • Behrouzian, F., Razavi, S. M., & Phillips, G. O. (2014). Cress seed (Lepidium sativum) mucilage, an over-view. Bioactive Carbohydrates and Dietary Fibre, 3(1), 17-28. DOI: https://doi.org/10.1016/j.bcdf.2014.01.001
  • Beikzadeh, S., Khezerlou, A., Jafari, S. M., Pilevar, Z., & Mortazavian, A. M. (2020). Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Advances in Colloid and Interface Science, 280, 102164, DOI: https://doi.org/10.1016/j.cis.2020.102164
  • Castejón, N., Luna, P., & Señoráns, F. J. (2017). Ultrasonic removal of mucilage for pressurized liquid extraction of omega-3 rich oil from chia seeds (Salvia hispanica L.). Journal of Agricultural and Food Chemistry, 65(12), 2572-2579. DOI: https://doi.org/10.1021/acs.jafc.6b05726
  • Chen, Y., & Vaidyanathan, S. (2013). Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae. Analytica Chimica Acta, 776, 31-40. DOI: https://doi.org/10.1016/j.aca.2013.03.005
  • Dash, K. K., Kumar, A., Kumari, S., & Malik, M. A. (2021). Silver Nanoparticle Incorporated Flaxseed Protein-Alginate Composite Films: Effect on Physicochemical, Mechanical, and Thermal Proper-ties. Journal of Polymers and the Environment, 29(11), 3649-3659. DOI: https://doi.org/10.1007/s10924-021-02137-y
  • Divekar, V. B., & Mohan, K. (2010). Isolation and characterization of mucilage from Lepidium sativum Linn. seeds. International Journal of Pharma Research and Development, 2(1), 1-5.
  • Eknayake, S., Jansz, E. R., & Nair, B. M. (1999). Proximate composition, mineral and amino acid content of mature Canavalia gladiata seeds. Food Chemistry, 66(1), 115-119. DOI: https://doi.org/10.1016/S0308-8146(99)00041-2
  • Gokavi, S. S., Malleshi, N. G., & Guo, M. (2004). Chemical composition of garden cress (Lepidium sa-tivum) seeds and its fractions and use of bran as a functional ingredient. Plant Foods for Human Nu-trition, 59(3), 105-111. DOI: https://doi.org/10.1007/s11130-004-4308-4
  • Karazhiyan, H., Razavi, S. M., & Phillips, G. O. (2011). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocolloids, 25(5), 915-920. DOI: https://doi.org/10.1016/j.foodhyd.2010.08.022
  • Khoddami, A., Ghazali, H. M., Yassoralipour, A., Ramakrishnan, Y., & Ganjloo, A. (2011). Physicochem-ical characteristics of nigella seed (Nigella sativa L.) oil as affected by different extraction meth-ods. Journal of the American Oil Chemists' Society, 88(4), 533-540. DOI: https://doi.org/10.1007/s11746-010-1687-6
  • Loewus, F. A. (1952). Improvement in anthrone method for determination of carbohydrates. Analytical Chemistry, 24(1), 219-219. DOI: https://doi.org/10.1021/ac60061a050
  • Marambe, H. K., Shand, P. J., & Wanasundara, J. P. (2013). In vitro digestibility of flaxseed (Linum usita-tissimum L.) protein: effect of seed mucilage, oil and thermal processing. International Journal of Food Science & Technology, 48(3), 628-635. DOI: https://doi.org/10.1111/ijfs.12008
  • Marambe, P. W. M. L. H. K., Shand, P. J., & Wanasundara, J. P. D. (2008). An in-vitro investigation of selected biological activities of hydrolysed flaxseed (Linum usitatissimum L.) proteins. Journal of the American Oil Chemists' Society, 85(12), 1155-1164. DOI: https://doi.org/10.1007/s11746-008-1293-z
  • Mathews, S., Singhal, R. S., & Kulkarni, P. R. (1993). Some physicochemical characteristics of Lepidium sativum (haliv) seeds. Food/Nahrung, 37(1), 69-71. DOI: https://doi.org/10.1002/food.19930370113
  • Mohammed Ali, R. F. (2013). Preparation and characterization of protein isolate and biodiesel from garden cress seed. European Journal of Chemistry, 4(2), 85-91.
  • Mulla, M., & Ahmed, J. (2019). Modulating functional and antioxidant properties of proteins from defat-ted garden cress (Lepidium sativum) seed meal by Alcalase hydrolysis. Journal of Food Measurement and Characterization, 13(4), 3257-3266. DOI: https://doi.org/10.1007/s11694-019-00248-8
  • Myers, R.H., Montgomery, D.C. (eds.) (1995). Response Surface Methodology, Process and Product Opti-mization Using Designed Experiments, 2nd ed. John Wiley and Sons, New York, USA, 700 p.
  • Özcan, M. M., & Al Juhaimi, F. Y. (2011). Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Turkey. International Journal of food Sciences and Nutri-tion, 62(5), 533-536. DOI: https://doi.org/10.3109/09637486.2011.552569
  • Paranjape, A. N., & Mehta, A. A. (2006). A study on clinical efficacy of Lepidium sativum seeds in treat-ment of bronchial asthma. Iranian Journal of Pharmacology & Therapeutics, 5(1), 55-59.
  • Razavi, S. M. A., Bostan, A., Niknia, S., & Razmkhah, S. (2011). Functional properties of hydrocolloid extracted from selected domestic Iranian seeds. Journal of Food Research, 21(3), 379-389.
  • Sharma, S., & Agarwal, N. (2011). Nourishing and healing prowess of garden cress (Lepidium sativum Linn.)-A review. Indian Journal of Natural Products and Resources, 2(3), 292-297.
  • Tehrani, M. H. H., Batal, R., Kamalinejad, M., & Mahbubi, A. (2014). Extraction and purification of flax-seed proteins and studying their antibacterial activities. Journal of Plant Sciences, 2(1), 70-76. DOI: https://doi.org/10.11648/j.jps.20140201.21
  • Timilsena, Y. P., Adhikari, R., Barrow, C. J., & Adhikari, B. (2016). Physicochemical and functional prop-erties of protein isolate produced from Australian chia seeds. Food Chemistry, 212, 648-656. DOI: https://doi.org/10.1016/j.foodchem.2016.06.017
  • Tosif, M. M., Najda, A., Bains, A., Kaushik, R., Dhull, S. B., Chawla, P., & Walasek-Janusz, M. (2021). A comprehensive review on plant-derived mucilage: Characterization, functional properties, applica-tions, and its utilization for nanocarrier fabrication. Polymers, 13(7), 1066. DOI: https://doi.org/10.3390/polym13071066
  • Wanasundara, P. K. J. P. D., & Shahidi, F. (1997). Removal of flaxseed mucilage by chemical and enzy-matic treatments. Food Chemistry, 59(1), 47-55. DOI: https://doi.org/10.1016/S0308-8146(96)00093-3
  • Zia-Ul-Haq, M., Ahmad, S., Calani, L., Mazzeo, T., Rio, D. D., Pellegrini, N., & Feo, V. D. (2012). Com-positional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds. Molecules, 17(9), 10306-10321. DOI: https://doi.org/10.3390/molecules170910306
Year 2023, , 648 - 656, 20.09.2023
https://doi.org/10.28979/jarnas.1239790

Abstract

Project Number

2022/22

References

  • Albakry, Z., Karrar, E., Ahmed, I. A. M., Oz, E., Proestos, C., El Sheikha, A. F., ... & Wang, X. (2022). Nutritional composition and volatile compounds of black cumin (Nigella sativa L.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae, 8(7), 575. DOI: https://doi.org/10.3390/horticulturae8070575
  • AOAC. (2000). Official methods of analysis of AOAC international. 17th edn. AOAC International, Md., USA. Balke, D. T., & Diosady, L. L. (2000). Rapid aqueous extraction of mucilage from whole white mustard seed. Food Research International, 33(5), 347-356. DOI: https://doi.org/10.1016/S0963-9969(00)00055-7
  • Behrouzian, F., Razavi, S. M., & Phillips, G. O. (2014). Cress seed (Lepidium sativum) mucilage, an over-view. Bioactive Carbohydrates and Dietary Fibre, 3(1), 17-28. DOI: https://doi.org/10.1016/j.bcdf.2014.01.001
  • Beikzadeh, S., Khezerlou, A., Jafari, S. M., Pilevar, Z., & Mortazavian, A. M. (2020). Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Advances in Colloid and Interface Science, 280, 102164, DOI: https://doi.org/10.1016/j.cis.2020.102164
  • Castejón, N., Luna, P., & Señoráns, F. J. (2017). Ultrasonic removal of mucilage for pressurized liquid extraction of omega-3 rich oil from chia seeds (Salvia hispanica L.). Journal of Agricultural and Food Chemistry, 65(12), 2572-2579. DOI: https://doi.org/10.1021/acs.jafc.6b05726
  • Chen, Y., & Vaidyanathan, S. (2013). Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae. Analytica Chimica Acta, 776, 31-40. DOI: https://doi.org/10.1016/j.aca.2013.03.005
  • Dash, K. K., Kumar, A., Kumari, S., & Malik, M. A. (2021). Silver Nanoparticle Incorporated Flaxseed Protein-Alginate Composite Films: Effect on Physicochemical, Mechanical, and Thermal Proper-ties. Journal of Polymers and the Environment, 29(11), 3649-3659. DOI: https://doi.org/10.1007/s10924-021-02137-y
  • Divekar, V. B., & Mohan, K. (2010). Isolation and characterization of mucilage from Lepidium sativum Linn. seeds. International Journal of Pharma Research and Development, 2(1), 1-5.
  • Eknayake, S., Jansz, E. R., & Nair, B. M. (1999). Proximate composition, mineral and amino acid content of mature Canavalia gladiata seeds. Food Chemistry, 66(1), 115-119. DOI: https://doi.org/10.1016/S0308-8146(99)00041-2
  • Gokavi, S. S., Malleshi, N. G., & Guo, M. (2004). Chemical composition of garden cress (Lepidium sa-tivum) seeds and its fractions and use of bran as a functional ingredient. Plant Foods for Human Nu-trition, 59(3), 105-111. DOI: https://doi.org/10.1007/s11130-004-4308-4
  • Karazhiyan, H., Razavi, S. M., & Phillips, G. O. (2011). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocolloids, 25(5), 915-920. DOI: https://doi.org/10.1016/j.foodhyd.2010.08.022
  • Khoddami, A., Ghazali, H. M., Yassoralipour, A., Ramakrishnan, Y., & Ganjloo, A. (2011). Physicochem-ical characteristics of nigella seed (Nigella sativa L.) oil as affected by different extraction meth-ods. Journal of the American Oil Chemists' Society, 88(4), 533-540. DOI: https://doi.org/10.1007/s11746-010-1687-6
  • Loewus, F. A. (1952). Improvement in anthrone method for determination of carbohydrates. Analytical Chemistry, 24(1), 219-219. DOI: https://doi.org/10.1021/ac60061a050
  • Marambe, H. K., Shand, P. J., & Wanasundara, J. P. (2013). In vitro digestibility of flaxseed (Linum usita-tissimum L.) protein: effect of seed mucilage, oil and thermal processing. International Journal of Food Science & Technology, 48(3), 628-635. DOI: https://doi.org/10.1111/ijfs.12008
  • Marambe, P. W. M. L. H. K., Shand, P. J., & Wanasundara, J. P. D. (2008). An in-vitro investigation of selected biological activities of hydrolysed flaxseed (Linum usitatissimum L.) proteins. Journal of the American Oil Chemists' Society, 85(12), 1155-1164. DOI: https://doi.org/10.1007/s11746-008-1293-z
  • Mathews, S., Singhal, R. S., & Kulkarni, P. R. (1993). Some physicochemical characteristics of Lepidium sativum (haliv) seeds. Food/Nahrung, 37(1), 69-71. DOI: https://doi.org/10.1002/food.19930370113
  • Mohammed Ali, R. F. (2013). Preparation and characterization of protein isolate and biodiesel from garden cress seed. European Journal of Chemistry, 4(2), 85-91.
  • Mulla, M., & Ahmed, J. (2019). Modulating functional and antioxidant properties of proteins from defat-ted garden cress (Lepidium sativum) seed meal by Alcalase hydrolysis. Journal of Food Measurement and Characterization, 13(4), 3257-3266. DOI: https://doi.org/10.1007/s11694-019-00248-8
  • Myers, R.H., Montgomery, D.C. (eds.) (1995). Response Surface Methodology, Process and Product Opti-mization Using Designed Experiments, 2nd ed. John Wiley and Sons, New York, USA, 700 p.
  • Özcan, M. M., & Al Juhaimi, F. Y. (2011). Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Turkey. International Journal of food Sciences and Nutri-tion, 62(5), 533-536. DOI: https://doi.org/10.3109/09637486.2011.552569
  • Paranjape, A. N., & Mehta, A. A. (2006). A study on clinical efficacy of Lepidium sativum seeds in treat-ment of bronchial asthma. Iranian Journal of Pharmacology & Therapeutics, 5(1), 55-59.
  • Razavi, S. M. A., Bostan, A., Niknia, S., & Razmkhah, S. (2011). Functional properties of hydrocolloid extracted from selected domestic Iranian seeds. Journal of Food Research, 21(3), 379-389.
  • Sharma, S., & Agarwal, N. (2011). Nourishing and healing prowess of garden cress (Lepidium sativum Linn.)-A review. Indian Journal of Natural Products and Resources, 2(3), 292-297.
  • Tehrani, M. H. H., Batal, R., Kamalinejad, M., & Mahbubi, A. (2014). Extraction and purification of flax-seed proteins and studying their antibacterial activities. Journal of Plant Sciences, 2(1), 70-76. DOI: https://doi.org/10.11648/j.jps.20140201.21
  • Timilsena, Y. P., Adhikari, R., Barrow, C. J., & Adhikari, B. (2016). Physicochemical and functional prop-erties of protein isolate produced from Australian chia seeds. Food Chemistry, 212, 648-656. DOI: https://doi.org/10.1016/j.foodchem.2016.06.017
  • Tosif, M. M., Najda, A., Bains, A., Kaushik, R., Dhull, S. B., Chawla, P., & Walasek-Janusz, M. (2021). A comprehensive review on plant-derived mucilage: Characterization, functional properties, applica-tions, and its utilization for nanocarrier fabrication. Polymers, 13(7), 1066. DOI: https://doi.org/10.3390/polym13071066
  • Wanasundara, P. K. J. P. D., & Shahidi, F. (1997). Removal of flaxseed mucilage by chemical and enzy-matic treatments. Food Chemistry, 59(1), 47-55. DOI: https://doi.org/10.1016/S0308-8146(96)00093-3
  • Zia-Ul-Haq, M., Ahmad, S., Calani, L., Mazzeo, T., Rio, D. D., Pellegrini, N., & Feo, V. D. (2012). Com-positional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds. Molecules, 17(9), 10306-10321. DOI: https://doi.org/10.3390/molecules170910306
There are 28 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

İzzet Türker 0000-0003-0107-1962

Hilal İşleroğlu 0000-0002-4338-9242

Project Number 2022/22
Early Pub Date September 19, 2023
Publication Date September 20, 2023
Submission Date January 20, 2023
Published in Issue Year 2023

Cite

APA Türker, İ., & İşleroğlu, H. (2023). Optimization of Mucilage Removal from Cress Seeds (L. sativum). Journal of Advanced Research in Natural and Applied Sciences, 9(3), 648-656. https://doi.org/10.28979/jarnas.1239790
AMA Türker İ, İşleroğlu H. Optimization of Mucilage Removal from Cress Seeds (L. sativum). JARNAS. September 2023;9(3):648-656. doi:10.28979/jarnas.1239790
Chicago Türker, İzzet, and Hilal İşleroğlu. “Optimization of Mucilage Removal from Cress Seeds (L. Sativum)”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 3 (September 2023): 648-56. https://doi.org/10.28979/jarnas.1239790.
EndNote Türker İ, İşleroğlu H (September 1, 2023) Optimization of Mucilage Removal from Cress Seeds (L. sativum). Journal of Advanced Research in Natural and Applied Sciences 9 3 648–656.
IEEE İ. Türker and H. İşleroğlu, “Optimization of Mucilage Removal from Cress Seeds (L. sativum)”, JARNAS, vol. 9, no. 3, pp. 648–656, 2023, doi: 10.28979/jarnas.1239790.
ISNAD Türker, İzzet - İşleroğlu, Hilal. “Optimization of Mucilage Removal from Cress Seeds (L. Sativum)”. Journal of Advanced Research in Natural and Applied Sciences 9/3 (September 2023), 648-656. https://doi.org/10.28979/jarnas.1239790.
JAMA Türker İ, İşleroğlu H. Optimization of Mucilage Removal from Cress Seeds (L. sativum). JARNAS. 2023;9:648–656.
MLA Türker, İzzet and Hilal İşleroğlu. “Optimization of Mucilage Removal from Cress Seeds (L. Sativum)”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 3, 2023, pp. 648-56, doi:10.28979/jarnas.1239790.
Vancouver Türker İ, İşleroğlu H. Optimization of Mucilage Removal from Cress Seeds (L. sativum). JARNAS. 2023;9(3):648-56.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).