Research Article
BibTex RIS Cite

Fuzzy Xbar and S Control Charts Based on Confidence Intervals

Year 2021, , 114 - 131, 20.03.2021
https://doi.org/10.28979/jarnas.890356

Abstract

There have been changes since the companies have realized the important role of quality improvement in their success. If they are able to produce high quality products and satisfy demands, then they can survive in competitive global markets. Quality improvement applications aim to decrease variability, which leads to less cost, production time, number of defects, scrap, rework and more customer satisfaction. Quality can be improved by reducing product variability. On the other hand, uncertainty or subjectivity is a part of many engineering and real life problems. However, these problems cannot be solved by traditional methods. This study focuses on constructing Xbar and S control charts in fuzzy environment. The approach is developed by considering the theoretical structure of the Shewhart control charts. The core of the approach depends on the combination of parametric interval estimation and fuzzy statistics. Control limits and samples are presented by fuzzy numbers which ensures to maintain fuzziness in control charts. An important property of the approach is that the fuzzy charts can be reduced to Shewhart control charts. A simulation study was conducted for the performance evaluation of fuzzy Xbar and S control charts. The proposed fuzzy control chart is sensitive to process mean shifts and variance changes, and outperforms the traditional control charts under the changes of variance. In addition, an example from the literature shows that the approach is an effective way of presenting fuzziness in the quality characteristics, which enables the approach to have high applicability to the real life problems.

Thanks

Dear Editor, Please find attached my manuscript entitled “Fuzzy X bar and S control Charts Based on Confidence Intervals” for your kind review. The paper demonstrates a new approach for monitoring fuzzy quality control charts and should be of interest to a broad readership including those interested in fuzzy theory and statistical quality control. The manuscript has never been published, or under the consideration for any other journal. Thank you for receiving the manuscript and considering it for review. I appreciate your time and look forward to your response. Most sincerely, Nilüfer PEKİN ALAKOÇ

References

  • Montgomery, D.C. (2019). Introduction to Statistical Quality Control (8th ed.). John Wiley & Sons Inc., NY, USA. Retrieved from: https://www.wiley.com/en-us/Introduction+to+Statistical+Quality+Control%2C+8th+Edition-p-9781119399308
  • Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–353. Retrieved from: https://doi.org/10.1016/S0019-9958(65)90241-X Raz, T. & Wang, J.H. (1990). Probabilistic and memberships approaches in the construction of control charts for linguistic data. Production Planning and Control, 1(3), 147–157. Retrieved from: https://doi.org/10.1080/09537289008919311
  • Wang, J.H. & Raz, T. (1990). On the construction of control charts using linguistic variables. Intelligent Journal of Production Research, 28(3), 477–487. Retrieved from: https://doi.org/10.1080/00207549008942731
  • Kanagawa, A., Tamaki, F. & Ohta, H. (1993). Control charts for process average and variability based on linguistic data. Intelligent Journal of Production Research, 31(4), 913–922. Retrieved from: https://doi.org/10.1080/00207549308956765
  • Gulbay, M., Kahraman, C. & Ruan, D. (2004). – Cuts fuzzy control charts for linguistic data. International Journal of Intelligent Systems, 19(12), 1173–1196. Retrieved from: https://onlinelibrary.wiley.com/doi/abs/10.1002/int.20044
  • Chen, Y.K. & Yeh, C. (2004). An enhancement of DSI X ̅ control charts using a fuzzy-genetic approach. International Journal of Advanced Manufacturing Technology, 24, 32–40. Retrieved from: https://doi.org/10.1007/s00170-003-1706-y
  • Cheng, C. B. (2005). Fuzzy process control: construction of control charts with fuzzy numbers. Fuzzy Sets and Systems, 154(2), 287–303. Retrieved from: https://doi.org/10.1016/j.fss.2005.03.002
  • Gulbay, M. & Kahraman, C. (2007). An alternative approach to fuzzy control charts: direct fuzzy approach. Information Sciences, 77(6), 1463–1480. Retrieved from: https://doi.org/10.1016/j.ins.2006.08.013
  • Hsieh, K.L., Tong, L.I. & Wang, M.C. (2007). The application of control chart for defects and defect clustering in IC manufacturing based on fuzzy theory. Expert Systems and Applications, 32(3), 765–776. Retrieved from: https://doi.org/10.1016/j.eswa.2006.01.050
  • Engin, O., Elik, A.C. & Kaya, I. (2008). A fuzzy approach to define sample size for attributes control chart in multistage processes: an application in engine valve manufacturing process. Applied Soft Computing, 8(4), 1654–1663. Retrieved from: https://doi.org/10.1016/j.asoc.2008.01.005
  • Amirzadeh, V., Mashinchi, M. & Parchami, A. (2009). Construction of p - charts using degree of nonconformity. Information Sciences, 179(1–2), 150–160. Retrieved from: https://doi.org/10.1016/j.ins.2008.09.010
  • Shu, M.H. &. Wu, H.C. (2010). Monitoring imprecise fraction of nonconforming items using p control charts. Journal of Applied Statistics, 37(8), 1283–1297. Retrieved from: https://doi.org/10.1080/02664760903030205
  • Wang, D., Li, P. & Yasuda, M. (2014). Construction of fuzzy control charts based on weighted possibilistic mean. Communications in Statistics—Theory and Methods, 43(15), 3186–3207. Retrieved from: https://doi.org/10.1080/03610926.2012.695852
  • Thaga, K. & Sivasamy, R. (2015). Control chart based on transition probability approach. Journal of Statistical and Econometric Methods, 4(2), 61– 82. Retrieved from: https://www.researchgate.net/publication/279770408_Control_Chart_Based_on_Transition_Probability_Approach
  • Senturk, & Antucheviciene, J. (2017). Interval type-2 fuzzy c-control charts: Na application in a food company. Informatica, 28(2), 269–283. Retrieved from: https://doi.org/10.15388/Informatica.2017.129
  • Aslam, M., Bantan, R.A.R. & Khan, N. (2020). Design of NEWMA np control chart for monitoring neutrosophic nonconforming items Soft Computing volume 24, 16617–16626. Retrieved from: https://doi.org/10.1007/s00500-020-04964-y
  • Fazel Zarandi, M.H., Turksen, I.B. & Kashan, H. (2006). Fuzzy control charts for variable and attribute quality characteristic. Iranian Journal of Fuzzy Systems, 3(1), 31–44. Retrieved from: https://dx.doi.org/10.22111/ijfs.2006.429
  • Faraz, A. & Moghadam, M.B. (2007). Fuzzy control chart a better alternative for Shewhart average chart. Quality and Quantity, 41, 375–385. Retrieved from: https://doi.org/10.1007/s11135-006-9007-9
  • Senturk, S. & Erginel, N. (2009). Development of fuzzy X ̅ ̃-R ̃ and X ̅ ̃-S ̃ control charts using - cuts. Information Sciences, 179(10), 1542–1551. Retrieved from: https://doi.org/10.1016/j.ins.2008.09.022
  • Faraz, A. & Shapiro, A.F. (2010). An application of fuzzy random variables to control charts. Fuzzy Sets and Systems, 161(20), 2684–2694. Retrieved from: https://doi.org/10.1016/j.fss.2010.05.004
  • Shu, M.H. &Wu, H.C. (2011). Fuzzy X ̅ and R control charts: fuzzy dominance approach. Computers & Industrial Engineering, 61(3), 676–686. Retrieved from: https://doi.org/10.1016/j.cie.2011.05.001
  • Mojtaba Zabihinpour, S., Ariffin, M.K.A., Tang S.H. & Azfanizam, A.S. (2014). Fuzzy based approach for monitoring the mean and range of the products quality. Journal of Applied Environmental and Biological Sciences, 4(9), 1–7. Retrieved from: https://www.textroad.com/pdf/JAEBS/J.%20Appl.%20Environ.%20Biol.%20Sci.,%204(9)1-7,%202014.pdf
  • Mojtaba Zabihinpour, S., Arif, M., Tang, S. H. & Azfanizam, A. (2015). Construction of fuzzy Xbar-S control charts with an unbiased estimation of standard deviation for a triangular fuzzy random variable. Journal of Intelligent Fuzzy Systems, 28(6), 2735–2747. Retrieved from: https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs1551
  • Panthong C. & Pongpullponsak, A. (2016). Non-normality and the fuzzy theory for variable parameters control charts. Thai Journal of Mathematics, 14(1), 203–213. Retrieved from: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/viewFile/1590/779
  • Shu, M.H., Dang, D.C., Nguyen, T.L., Hsu, B.M. & Phan, N.S., (2017). Fuzzy x ̅ and s control charts: a data-adaptability and human-acceptance approach. Journal Complex, 17, Retrieved from: https://doi.org/10.1155/2017/4376809
  • Soleymani, P. & Amiri, A. (2017). Fuzzy cause selecting control chart for monitoring multistage processes. International Journal of Industrial and Systems Engineering, 25(3), 404–422. Retrieved from: http://www.inderscience.com/offer.php?id=81920
  • Ercan Teksen, H. & Anagun, A.S. (2018). Different methods to fuzzy X ̅-R control charts used in production: Interval type-2 fuzzy set example. Journal of enterprise Information Management, 31(6), 848–866. Retrieved from: https://doi.org/10.1108/JEIM-01-2018-0011
  • Mendes, A.D.S., Machado, M.A.G. & Rizol, P.M.S.R., (2019). Fuzzy control chart for monitoring mean and range of univariate processess. Pesquisa Operacional, 39(2), 339–357. Retrieved from: http://dx.doi.org/10.1590/0101-7438.2019.039.02.0339
  • Al-Refaie, A., Obaidat, A., Fouad, R.H., & Hanayneh, B., (2019). A fuzzy-logic approach for developing variables control charts and process capability indices under linguistic measurements. Journal of Engineering and Applied Sciences, 14 (6). Retrieved from: http://www.arpnjournals.org/jeas/research_papers/rp_2019/jeas_0319_7662.pdf
  • Atta, A.A., Shoraim, M.H.A., Yahaya, S.S.S., Zain, Z. & Ali, H.A. (2016). Scaled weighted variance S control chart for skewed populations. Journal of Theoretical and Applied Information Technology, 91(1), 61–74. Retrieved from: http://www.jatit.org/volumes/Vol91No1/7Vol91No1.pdf
  • Yimnak, K. & Intaramo, R. (2020). An fuzzy scaled weighted variance S control chart for skewed populations. Thai Journal of Mathematics, 18(1), 53–62. Retrieved from: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/viewFile/4035/354354600
  • Momeni, F. & Shokri, S. (2019). Nonparametric Shewhart–type quality control charts in fuzzy environment. International Journal of Applied Operational Research, 9(3), 28–44. Retrieved from: http://ijorlu.liau.ac.ir/article-1-581-en.html
  • Wang, D. & Hryniewicz, O. (2015). A fuzzy nonparametric Shewhart chart based on the bootstrap approach. International Journal of Applied Mathematics and Computer Science, 25(2), 389–401. Retrieved from: https://doi.org/10.1515/amcs-2015-0030 Pekin Alakoc, N. & Apaydin, A. (2018). A fuzzy control chart approach for attributes and variables. Engineering Technology and Applied Science Research, 8(5), 3360–3365. Retrieved from: https://doi.org/10.48084/etasr.2192
  • Wang, J.H. and Chen, C.H. (1995). Economic statistical np-control chart designs based on fuzzy optimization. International Journal of Quality and Reliability Management, 12(1), 88–92. Retrieved from: https://doi.org/10.1108/02656719510076276
  • Chen, Y.K., Chang, H.H. & Chiu, F.R. (2008). Optimization design of control charts based on minimax decision criterion and fuzzy process shifts. Expert Systems with Applications, 35(1–2), 207–213. Retrieved from: https://doi.org/10.1016/j.eswa.2007.06.003
  • Saricicek, I. & Cimen, O. (2011). A new diagnosis system based on fuzzy reasoning to detect mean and/or variance shifts in a Process. International Journal of Innovative Computing, Information and Control, 7(12), 6935–6948. Retrieved from: http://www.ijicic.org/10-08098-1.pdf
  • Sadeghpour Gildeh, B. & Shafiee, N. (2015). X-MR control chart for autocorrelated fuzzy data using Dp,q-distance. International Journal of Advanced Manufacturing Technology, 18(1), 1047–1054. Retrieved from: https://doi.org/10.1007/s00170-015-7199-7
  • Intaramo, R. & Pongpullponsak, A. AUD (2012). Development of fuzzy extreme value theory control charts using α-cuts for skewed populations. Applied Mathematical Sciences, 6(117), 5811–5834. Retrieved from:https://www.researchgate.net/publication/234102973_Development_of_Fuzzy_Extreme_Value_Theory_Control_Charts_Using_a_-cuts_for_Skewed_Populations
  • Hsu, H.M. & Chen. Y.K. (2001). A fuzzy reasoning based diagnosis system for Xbar control charts. Journal Intellectual Manufacturing, 12. Retrieved from: https://www.researchgate.net/publication/233645353_A_fuzzy_reasoning_based_diagnosis_system_for_bar_X_control_charts
  • Tannock, J.D.T. (2003). A fuzzy control charting method for individuals. International Journal of Production Research, 41(5), 1017–1032. Retrieved from: https://doi.org/10.1080/0020754021000049808
  • Gulbay, M. & Kahraman, C. (2006). Development of fuzzy process control charts and fuzzy unnatural pattern analyses. Computational Statistics and Data Analysis, 51(1), 434–451. Retrieved from: https://doi.org/10.1016/j.csda.2006.04.031
  • Chih, H.W. & Kuo, W. (2007). Identification of control chart patterns using wavelet filtering and robust fuzzy clustering. Journal of Intelligent Manufacturing, 18, 343–350. Retrieved from: https://doi.org/10.1007/s10845-007-0028-6
  • Fazel Zarandi, M. H., Alaeddini, A. & Turksen, I.B. (2008). A hybrid fuzzy adaptive sampling - Run rules for Shewhart control charts. Information Sciences. 178(4), 1152–1170. Retrieved from: https://doi.org/10.1016/j.ins.2007.09.028
  • Demirli, K. & Vijayakumar, S. (2010). Fuzzy logic based assignable cause diagnosis using control chart patterns. Information Sciences, 180(17), 3258–3272. Retrieved from: https://doi.org/10.1016/j.ins.2010.05.009
  • Pekin Alakoc, N. & Apaydin, A. (2013). Sensitizing rules for fuzzy control charts. World Academy Science Engineering Technology, 77, 679–683. Retrieved from: https://publications.waset.org/429/sensitizing-rules-for-fuzzy-control-charts
  • Chang, S.I. & Aw, C.A. (1996). A neural fuzzy control chart for detecting and classifying process mean shifts. International Journal of Production Research, 34(8), 2265–2278. Retrieved from: https://doi.org/10.1080/00207549608905024
  • Moameni, M., Saghaei, A. & Ghorbani Salnghooch, M. (2012). The effect of measurement error on X ̃-R ̃ Fuzzy Control Charts. Engineering, Technology & Applied Science Research, 2(1), 173–176. Retrieved from: https://etasr.com/index.php/ETASR/article/view/127
  • Kaya, I., Erdogan, M. & Yildiz, C. (2017). Analysis and control of variability by using fuzzy individual control charts. Applied Soft Computing, 51, 370–381. Retrieved from: https://doi.org/10.1016/j.asoc.2016.11.048
  • Taleb, H., Limam, M. & Hirota, K. (2006). Multivariate fuzzy multinomial control charts. Quality Technology & Quantitative Management, 3(4), 437–453. Retrieved from: https://doi.org/10.1080/16843703.2006.11673125
  • Moheb Alizadeh, H., Arshadi Khamseh, A.R. & Fatemi Ghomi, S.M.T. (2010). Fuzzy development of multivariate variable control charts using the fuzzy likelihood ratio test. Scientia Iranica, 17(2), 150–163. Retrieved from: http://scientiairanica.sharif.edu/article_3364.html
  • Pastuizaca Fernandez, M.N., Carrion Garcia, A. & Ruiz Barzola, O. (2015). Multivariate multinomial T2 control chart using fuzzy approach. International Journal of Production Research, 53(7), 2225–2238. Retrieved from: https://doi.org/10.1080/00207543.2014.983617
  • Morabi, Z.S., Owlia, M.S., Bashiri, M. & Doroudyan, M.H. (2015). Multi-objective design of X ̅ control charts with fuzzy process parameters using the hybrid epsilon constraint PSO. Applied Soft Computing Journal, 30, 390–399. Retrieved from: https://doi.org/10.1016/j.asoc.2015.01.065
  • Senturk, S., Erginel, N., Kaya, I. & Kahraman, C. (2014). Fuzzy exponentially weighted moving average control chart for univariate data with a real case application. Applied Soft Computing, 22, 1–10. Retrieved from: https://doi.org/10.1016/j.asoc.2014.04.022
  • Akhundjanov, S.B. & Pascual, F. (2015). Moving range EWMA control charts for monitoring the Weibull shape parameter. Journal of Statistical Computation and Simulation, 85(9), 1864–1882. Retrieved from: https://doi.org/10.1080/00949655.2014.907574
  • Buckley, J.J. (2006). Fuzzy Probability and Statistics. Springer-Verlag, Berlin, Germany. Retrieved from: https://www.springer.com/gp/book/9783540308416
  • Mood, A.M., Graybill, A.F. & Boes, D.C. (2001). Introduction to the theory of Statistics (3rd ed.) McGraw-Hill, New York. Retrieved from: https://www.mheducation.co.in/introduction-to-the-theory-of-statistics-9780070445208-india

Güven Aralıklarına Dayalı Bulanık Xbar ve S Kontrol Grafikleri

Year 2021, , 114 - 131, 20.03.2021
https://doi.org/10.28979/jarnas.890356

Abstract

Şirketler, başarılarında kalite iyileştirmenin önemli rolünü fark ettiklerinden beri değişiklikler olmuştur. Yüksek kaliteli ürünler üretebilir ve talepleri karşılayabilirlerse, rekabetçi küresel pazarlarda hayatta kalabilirler. Ürün değişkenliği azaltılarak kalite artırılabilir. Sonuç olarak, kalite iyileştirme uygulamaları, daha az maliyet, üretim süresi, hata sayısı, hurda, yeniden işleme ve daha fazla müşteri memnuniyetine yol açan değişkenliği azaltmayı amaçlamaktadır. Öte yandan, belirsizlik veya öznellik birçok mühendislik ve gerçek yaşam probleminin bir parçasıdır. Ancak, bu sorunlar geleneksel yöntemlerle çözülemez. Bu çalışma bulanık ortamda Xbar ve S kontrol grafiklerinin oluşturulmasına odaklanmıştır. Yaklaşım, Shewhart kontrol grafiklerinin teorik yapısı dikkate alınarak geliştirilmiştir. Yaklaşımın özü, parametrik aralık tahmini ve bulanık istatistiklerin kombinasyonuna bağlıdır. Kontrol limitleri ve örneklemler, kontrol grafiklerinde bulanıklığın korunmasını sağlayan bulanık sayılarla gösterilir. Yaklaşımın önemli bir özelliği, bulanık grafiklerin Shewhart kontrol grafiklerine indirgenebilmesidir. Bulanık Xbar ve S kontrol grafiklerinin performans değerlendirmesi için bir simülasyon çalışması yapılmıştır. Önerilen bulanık kontrol grafiği, süreç ortalaması kaymaları ve varyans değişikliklerine duyarlıdır ve varyans değişiklikleri altında geleneksel kontrol grafiklerinden daha iyi sonuç verir. Ek olarak, literatürden bir örnek, yaklaşımın kalite özelliklerinde bulanıklığı sunmanın etkili bir yolu olduğunu ve gerçek yaşam problemlerinde yüksek uygulanabilirliğe sahip olduğunu göstermektedir.

References

  • Montgomery, D.C. (2019). Introduction to Statistical Quality Control (8th ed.). John Wiley & Sons Inc., NY, USA. Retrieved from: https://www.wiley.com/en-us/Introduction+to+Statistical+Quality+Control%2C+8th+Edition-p-9781119399308
  • Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–353. Retrieved from: https://doi.org/10.1016/S0019-9958(65)90241-X Raz, T. & Wang, J.H. (1990). Probabilistic and memberships approaches in the construction of control charts for linguistic data. Production Planning and Control, 1(3), 147–157. Retrieved from: https://doi.org/10.1080/09537289008919311
  • Wang, J.H. & Raz, T. (1990). On the construction of control charts using linguistic variables. Intelligent Journal of Production Research, 28(3), 477–487. Retrieved from: https://doi.org/10.1080/00207549008942731
  • Kanagawa, A., Tamaki, F. & Ohta, H. (1993). Control charts for process average and variability based on linguistic data. Intelligent Journal of Production Research, 31(4), 913–922. Retrieved from: https://doi.org/10.1080/00207549308956765
  • Gulbay, M., Kahraman, C. & Ruan, D. (2004). – Cuts fuzzy control charts for linguistic data. International Journal of Intelligent Systems, 19(12), 1173–1196. Retrieved from: https://onlinelibrary.wiley.com/doi/abs/10.1002/int.20044
  • Chen, Y.K. & Yeh, C. (2004). An enhancement of DSI X ̅ control charts using a fuzzy-genetic approach. International Journal of Advanced Manufacturing Technology, 24, 32–40. Retrieved from: https://doi.org/10.1007/s00170-003-1706-y
  • Cheng, C. B. (2005). Fuzzy process control: construction of control charts with fuzzy numbers. Fuzzy Sets and Systems, 154(2), 287–303. Retrieved from: https://doi.org/10.1016/j.fss.2005.03.002
  • Gulbay, M. & Kahraman, C. (2007). An alternative approach to fuzzy control charts: direct fuzzy approach. Information Sciences, 77(6), 1463–1480. Retrieved from: https://doi.org/10.1016/j.ins.2006.08.013
  • Hsieh, K.L., Tong, L.I. & Wang, M.C. (2007). The application of control chart for defects and defect clustering in IC manufacturing based on fuzzy theory. Expert Systems and Applications, 32(3), 765–776. Retrieved from: https://doi.org/10.1016/j.eswa.2006.01.050
  • Engin, O., Elik, A.C. & Kaya, I. (2008). A fuzzy approach to define sample size for attributes control chart in multistage processes: an application in engine valve manufacturing process. Applied Soft Computing, 8(4), 1654–1663. Retrieved from: https://doi.org/10.1016/j.asoc.2008.01.005
  • Amirzadeh, V., Mashinchi, M. & Parchami, A. (2009). Construction of p - charts using degree of nonconformity. Information Sciences, 179(1–2), 150–160. Retrieved from: https://doi.org/10.1016/j.ins.2008.09.010
  • Shu, M.H. &. Wu, H.C. (2010). Monitoring imprecise fraction of nonconforming items using p control charts. Journal of Applied Statistics, 37(8), 1283–1297. Retrieved from: https://doi.org/10.1080/02664760903030205
  • Wang, D., Li, P. & Yasuda, M. (2014). Construction of fuzzy control charts based on weighted possibilistic mean. Communications in Statistics—Theory and Methods, 43(15), 3186–3207. Retrieved from: https://doi.org/10.1080/03610926.2012.695852
  • Thaga, K. & Sivasamy, R. (2015). Control chart based on transition probability approach. Journal of Statistical and Econometric Methods, 4(2), 61– 82. Retrieved from: https://www.researchgate.net/publication/279770408_Control_Chart_Based_on_Transition_Probability_Approach
  • Senturk, & Antucheviciene, J. (2017). Interval type-2 fuzzy c-control charts: Na application in a food company. Informatica, 28(2), 269–283. Retrieved from: https://doi.org/10.15388/Informatica.2017.129
  • Aslam, M., Bantan, R.A.R. & Khan, N. (2020). Design of NEWMA np control chart for monitoring neutrosophic nonconforming items Soft Computing volume 24, 16617–16626. Retrieved from: https://doi.org/10.1007/s00500-020-04964-y
  • Fazel Zarandi, M.H., Turksen, I.B. & Kashan, H. (2006). Fuzzy control charts for variable and attribute quality characteristic. Iranian Journal of Fuzzy Systems, 3(1), 31–44. Retrieved from: https://dx.doi.org/10.22111/ijfs.2006.429
  • Faraz, A. & Moghadam, M.B. (2007). Fuzzy control chart a better alternative for Shewhart average chart. Quality and Quantity, 41, 375–385. Retrieved from: https://doi.org/10.1007/s11135-006-9007-9
  • Senturk, S. & Erginel, N. (2009). Development of fuzzy X ̅ ̃-R ̃ and X ̅ ̃-S ̃ control charts using - cuts. Information Sciences, 179(10), 1542–1551. Retrieved from: https://doi.org/10.1016/j.ins.2008.09.022
  • Faraz, A. & Shapiro, A.F. (2010). An application of fuzzy random variables to control charts. Fuzzy Sets and Systems, 161(20), 2684–2694. Retrieved from: https://doi.org/10.1016/j.fss.2010.05.004
  • Shu, M.H. &Wu, H.C. (2011). Fuzzy X ̅ and R control charts: fuzzy dominance approach. Computers & Industrial Engineering, 61(3), 676–686. Retrieved from: https://doi.org/10.1016/j.cie.2011.05.001
  • Mojtaba Zabihinpour, S., Ariffin, M.K.A., Tang S.H. & Azfanizam, A.S. (2014). Fuzzy based approach for monitoring the mean and range of the products quality. Journal of Applied Environmental and Biological Sciences, 4(9), 1–7. Retrieved from: https://www.textroad.com/pdf/JAEBS/J.%20Appl.%20Environ.%20Biol.%20Sci.,%204(9)1-7,%202014.pdf
  • Mojtaba Zabihinpour, S., Arif, M., Tang, S. H. & Azfanizam, A. (2015). Construction of fuzzy Xbar-S control charts with an unbiased estimation of standard deviation for a triangular fuzzy random variable. Journal of Intelligent Fuzzy Systems, 28(6), 2735–2747. Retrieved from: https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs1551
  • Panthong C. & Pongpullponsak, A. (2016). Non-normality and the fuzzy theory for variable parameters control charts. Thai Journal of Mathematics, 14(1), 203–213. Retrieved from: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/viewFile/1590/779
  • Shu, M.H., Dang, D.C., Nguyen, T.L., Hsu, B.M. & Phan, N.S., (2017). Fuzzy x ̅ and s control charts: a data-adaptability and human-acceptance approach. Journal Complex, 17, Retrieved from: https://doi.org/10.1155/2017/4376809
  • Soleymani, P. & Amiri, A. (2017). Fuzzy cause selecting control chart for monitoring multistage processes. International Journal of Industrial and Systems Engineering, 25(3), 404–422. Retrieved from: http://www.inderscience.com/offer.php?id=81920
  • Ercan Teksen, H. & Anagun, A.S. (2018). Different methods to fuzzy X ̅-R control charts used in production: Interval type-2 fuzzy set example. Journal of enterprise Information Management, 31(6), 848–866. Retrieved from: https://doi.org/10.1108/JEIM-01-2018-0011
  • Mendes, A.D.S., Machado, M.A.G. & Rizol, P.M.S.R., (2019). Fuzzy control chart for monitoring mean and range of univariate processess. Pesquisa Operacional, 39(2), 339–357. Retrieved from: http://dx.doi.org/10.1590/0101-7438.2019.039.02.0339
  • Al-Refaie, A., Obaidat, A., Fouad, R.H., & Hanayneh, B., (2019). A fuzzy-logic approach for developing variables control charts and process capability indices under linguistic measurements. Journal of Engineering and Applied Sciences, 14 (6). Retrieved from: http://www.arpnjournals.org/jeas/research_papers/rp_2019/jeas_0319_7662.pdf
  • Atta, A.A., Shoraim, M.H.A., Yahaya, S.S.S., Zain, Z. & Ali, H.A. (2016). Scaled weighted variance S control chart for skewed populations. Journal of Theoretical and Applied Information Technology, 91(1), 61–74. Retrieved from: http://www.jatit.org/volumes/Vol91No1/7Vol91No1.pdf
  • Yimnak, K. & Intaramo, R. (2020). An fuzzy scaled weighted variance S control chart for skewed populations. Thai Journal of Mathematics, 18(1), 53–62. Retrieved from: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/viewFile/4035/354354600
  • Momeni, F. & Shokri, S. (2019). Nonparametric Shewhart–type quality control charts in fuzzy environment. International Journal of Applied Operational Research, 9(3), 28–44. Retrieved from: http://ijorlu.liau.ac.ir/article-1-581-en.html
  • Wang, D. & Hryniewicz, O. (2015). A fuzzy nonparametric Shewhart chart based on the bootstrap approach. International Journal of Applied Mathematics and Computer Science, 25(2), 389–401. Retrieved from: https://doi.org/10.1515/amcs-2015-0030 Pekin Alakoc, N. & Apaydin, A. (2018). A fuzzy control chart approach for attributes and variables. Engineering Technology and Applied Science Research, 8(5), 3360–3365. Retrieved from: https://doi.org/10.48084/etasr.2192
  • Wang, J.H. and Chen, C.H. (1995). Economic statistical np-control chart designs based on fuzzy optimization. International Journal of Quality and Reliability Management, 12(1), 88–92. Retrieved from: https://doi.org/10.1108/02656719510076276
  • Chen, Y.K., Chang, H.H. & Chiu, F.R. (2008). Optimization design of control charts based on minimax decision criterion and fuzzy process shifts. Expert Systems with Applications, 35(1–2), 207–213. Retrieved from: https://doi.org/10.1016/j.eswa.2007.06.003
  • Saricicek, I. & Cimen, O. (2011). A new diagnosis system based on fuzzy reasoning to detect mean and/or variance shifts in a Process. International Journal of Innovative Computing, Information and Control, 7(12), 6935–6948. Retrieved from: http://www.ijicic.org/10-08098-1.pdf
  • Sadeghpour Gildeh, B. & Shafiee, N. (2015). X-MR control chart for autocorrelated fuzzy data using Dp,q-distance. International Journal of Advanced Manufacturing Technology, 18(1), 1047–1054. Retrieved from: https://doi.org/10.1007/s00170-015-7199-7
  • Intaramo, R. & Pongpullponsak, A. AUD (2012). Development of fuzzy extreme value theory control charts using α-cuts for skewed populations. Applied Mathematical Sciences, 6(117), 5811–5834. Retrieved from:https://www.researchgate.net/publication/234102973_Development_of_Fuzzy_Extreme_Value_Theory_Control_Charts_Using_a_-cuts_for_Skewed_Populations
  • Hsu, H.M. & Chen. Y.K. (2001). A fuzzy reasoning based diagnosis system for Xbar control charts. Journal Intellectual Manufacturing, 12. Retrieved from: https://www.researchgate.net/publication/233645353_A_fuzzy_reasoning_based_diagnosis_system_for_bar_X_control_charts
  • Tannock, J.D.T. (2003). A fuzzy control charting method for individuals. International Journal of Production Research, 41(5), 1017–1032. Retrieved from: https://doi.org/10.1080/0020754021000049808
  • Gulbay, M. & Kahraman, C. (2006). Development of fuzzy process control charts and fuzzy unnatural pattern analyses. Computational Statistics and Data Analysis, 51(1), 434–451. Retrieved from: https://doi.org/10.1016/j.csda.2006.04.031
  • Chih, H.W. & Kuo, W. (2007). Identification of control chart patterns using wavelet filtering and robust fuzzy clustering. Journal of Intelligent Manufacturing, 18, 343–350. Retrieved from: https://doi.org/10.1007/s10845-007-0028-6
  • Fazel Zarandi, M. H., Alaeddini, A. & Turksen, I.B. (2008). A hybrid fuzzy adaptive sampling - Run rules for Shewhart control charts. Information Sciences. 178(4), 1152–1170. Retrieved from: https://doi.org/10.1016/j.ins.2007.09.028
  • Demirli, K. & Vijayakumar, S. (2010). Fuzzy logic based assignable cause diagnosis using control chart patterns. Information Sciences, 180(17), 3258–3272. Retrieved from: https://doi.org/10.1016/j.ins.2010.05.009
  • Pekin Alakoc, N. & Apaydin, A. (2013). Sensitizing rules for fuzzy control charts. World Academy Science Engineering Technology, 77, 679–683. Retrieved from: https://publications.waset.org/429/sensitizing-rules-for-fuzzy-control-charts
  • Chang, S.I. & Aw, C.A. (1996). A neural fuzzy control chart for detecting and classifying process mean shifts. International Journal of Production Research, 34(8), 2265–2278. Retrieved from: https://doi.org/10.1080/00207549608905024
  • Moameni, M., Saghaei, A. & Ghorbani Salnghooch, M. (2012). The effect of measurement error on X ̃-R ̃ Fuzzy Control Charts. Engineering, Technology & Applied Science Research, 2(1), 173–176. Retrieved from: https://etasr.com/index.php/ETASR/article/view/127
  • Kaya, I., Erdogan, M. & Yildiz, C. (2017). Analysis and control of variability by using fuzzy individual control charts. Applied Soft Computing, 51, 370–381. Retrieved from: https://doi.org/10.1016/j.asoc.2016.11.048
  • Taleb, H., Limam, M. & Hirota, K. (2006). Multivariate fuzzy multinomial control charts. Quality Technology & Quantitative Management, 3(4), 437–453. Retrieved from: https://doi.org/10.1080/16843703.2006.11673125
  • Moheb Alizadeh, H., Arshadi Khamseh, A.R. & Fatemi Ghomi, S.M.T. (2010). Fuzzy development of multivariate variable control charts using the fuzzy likelihood ratio test. Scientia Iranica, 17(2), 150–163. Retrieved from: http://scientiairanica.sharif.edu/article_3364.html
  • Pastuizaca Fernandez, M.N., Carrion Garcia, A. & Ruiz Barzola, O. (2015). Multivariate multinomial T2 control chart using fuzzy approach. International Journal of Production Research, 53(7), 2225–2238. Retrieved from: https://doi.org/10.1080/00207543.2014.983617
  • Morabi, Z.S., Owlia, M.S., Bashiri, M. & Doroudyan, M.H. (2015). Multi-objective design of X ̅ control charts with fuzzy process parameters using the hybrid epsilon constraint PSO. Applied Soft Computing Journal, 30, 390–399. Retrieved from: https://doi.org/10.1016/j.asoc.2015.01.065
  • Senturk, S., Erginel, N., Kaya, I. & Kahraman, C. (2014). Fuzzy exponentially weighted moving average control chart for univariate data with a real case application. Applied Soft Computing, 22, 1–10. Retrieved from: https://doi.org/10.1016/j.asoc.2014.04.022
  • Akhundjanov, S.B. & Pascual, F. (2015). Moving range EWMA control charts for monitoring the Weibull shape parameter. Journal of Statistical Computation and Simulation, 85(9), 1864–1882. Retrieved from: https://doi.org/10.1080/00949655.2014.907574
  • Buckley, J.J. (2006). Fuzzy Probability and Statistics. Springer-Verlag, Berlin, Germany. Retrieved from: https://www.springer.com/gp/book/9783540308416
  • Mood, A.M., Graybill, A.F. & Boes, D.C. (2001). Introduction to the theory of Statistics (3rd ed.) McGraw-Hill, New York. Retrieved from: https://www.mheducation.co.in/introduction-to-the-theory-of-statistics-9780070445208-india
There are 56 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Nilufer Pekin Alakoc This is me

Publication Date March 20, 2021
Submission Date July 28, 2020
Published in Issue Year 2021

Cite

APA Pekin Alakoc, N. (2021). Fuzzy Xbar and S Control Charts Based on Confidence Intervals. Journal of Advanced Research in Natural and Applied Sciences, 7(1), 114-131. https://doi.org/10.28979/jarnas.890356
AMA Pekin Alakoc N. Fuzzy Xbar and S Control Charts Based on Confidence Intervals. JARNAS. March 2021;7(1):114-131. doi:10.28979/jarnas.890356
Chicago Pekin Alakoc, Nilufer. “Fuzzy Xbar and S Control Charts Based on Confidence Intervals”. Journal of Advanced Research in Natural and Applied Sciences 7, no. 1 (March 2021): 114-31. https://doi.org/10.28979/jarnas.890356.
EndNote Pekin Alakoc N (March 1, 2021) Fuzzy Xbar and S Control Charts Based on Confidence Intervals. Journal of Advanced Research in Natural and Applied Sciences 7 1 114–131.
IEEE N. Pekin Alakoc, “Fuzzy Xbar and S Control Charts Based on Confidence Intervals”, JARNAS, vol. 7, no. 1, pp. 114–131, 2021, doi: 10.28979/jarnas.890356.
ISNAD Pekin Alakoc, Nilufer. “Fuzzy Xbar and S Control Charts Based on Confidence Intervals”. Journal of Advanced Research in Natural and Applied Sciences 7/1 (March 2021), 114-131. https://doi.org/10.28979/jarnas.890356.
JAMA Pekin Alakoc N. Fuzzy Xbar and S Control Charts Based on Confidence Intervals. JARNAS. 2021;7:114–131.
MLA Pekin Alakoc, Nilufer. “Fuzzy Xbar and S Control Charts Based on Confidence Intervals”. Journal of Advanced Research in Natural and Applied Sciences, vol. 7, no. 1, 2021, pp. 114-31, doi:10.28979/jarnas.890356.
Vancouver Pekin Alakoc N. Fuzzy Xbar and S Control Charts Based on Confidence Intervals. JARNAS. 2021;7(1):114-31.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).