Research Article
BibTex RIS Cite

Estimation of PM10 Concentration with Machine Learning Algorithms

Year 2022, , 201 - 213, 23.06.2022
https://doi.org/10.28979/jarnas.981202

Abstract

Particulate matter (PM) pollution causes significant environmental problems. The adverse effects of PM pollution have become a common problem due to its risks to living health. Due to all these negative effects of PM pollution and its complex interaction in the atmosphere, it is important that it be the subject of more studies. In particular, studies on monitoring and estimating PM pollution are important. In recent years, studies on estimating PM pollu-tion have increased by considering meteorological factors. Especially with machine learning methods, PM pollution estimating has accelerated. In this study, PM10 pollution is estimated with various machine learning algorithms considering meteorological factors. The meteorological data used in the study were obtained from the Ankara Regional Station of Turkish State Meteorological Service (latitude: 39,9727, longitude: 32,8637, altitude: 891 m.). PM10 pollution data were obtained from the Ministry of Environment, Urbanization and Climate Change Ankara Keçiören-Sanatorium air quality station (latitude: 39,999, longitude: 32,856, altitude: 1009 m.). In the machine learning phase, different machine learning (decision tree regression, support vector regression, lasso regression and neural network) were used, considering temperature, dew point temperature, precipitation, relative humidity, wind speed, pressure, cloud cover and PM10 measurements of the previous day. Algorithms were studied separately and the consistencies of these algorithms were compared. Various statistical metrics were used to examine their con-sistency. As a result, considering the test section, the determination coefficient was found to be ̴0,6, root mean square error ̴18, and mean absolute error ̴12 for artificial neural network algorithm, and it was seen that the artifi-cial neural network algorithm gave better results than other algorithms.

References

  • Abuella, M., Chowdhury, B. (2016). Solar Power Forecasting Using Support Vector Regression. American Society for Engineering Management International Annual Conference, USA.
  • Adhani, G., Buono, A., Faqih, A. (2013). Support Vector Regression modelling for rainfall prediction in dry season based on Southern Oscillation Index and NINO3.4. International Conference on Advanced Computer Science and Information Systems (ICACSIS), Sanur Bali, Indonesia.
  • Alizamir, M., Kisi, O., Ahmed, A.N., Mert, C., Fai, C.M., Kim, S., et al. (2020). Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS ONE, 15(4), 1:25. https://doi.org/10.1371/journal. pone.0231055.
  • Aljanabi, M., Shkoukani, M., Hijjawi, M. (2020). Ground-level Ozone Prediction Using Machine Learning Techniques: A Case Study in Amman, Jordan. International Journal of Automation and Computing, 17(5), 667-677. https://doi:10.1007/s11633-020-1233-4.
  • Alpaydin, E. (2010). Introduction to Machine Learning. The MIT Press, Cambridge, MA, USA.
  • Aydoğan, İ., Zırhlıoğlu, G. (2018). Öğrenci Başarılarının Yapay Sinir Ağları ile Kestirilmesi. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 577-610.
  • Badarpura, S., Jain, A., Gupta, A., Patil, D. (2020). Rainfall Prediction using Linear approach & Neural Networks and Crop Recommendation based on Decision Tree, International Journal of Engineering Research & Technology, 09(04), 394-399, http://dx.doi.org/10.17577/IJERTV9IS040314.
  • Carro-Calvo, L., Casanova-Mateo, C., Sanz-Justo, J., Casanova-Roqueb, J.L., Salcedo-Sanz, S. (2017). Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data. Atmosfera, 30(1), 1-10, https://doi:10.20937/ATM.2017.30.01.01.
  • Castelli, M., Clemente, F.C., Popovič, A., Silva, S., Vanneschi, L. (2020). A Machine Learning Approach to Predict Air Quality in California. Complexity 2020(2020), 1-23. https://doi.org/10.1155/2020/8049504.
  • Czernecki, B., Marosz, M., Jędruszkiewicz, J. (2021). Assessment of Machine Learning Algorithms in Short-term Forecasting of PM10 and PM2.5 Concentrations in Selected Polish Agglomerations. Aerosol Air Qual. Res., 21(7), 1-18. https://doi.org/10.4209/aaqr.200586.
  • Ei-Sharkawy MF., Zaki G.R. (2015). Effect of meteorological factors on the daily average levels of particulate matter in the Eastern Province of Saudi Arabia: a cross-sectional study. J Sci Technol, 5(1), 18–29.
  • Gagliardi, R.V., Andenna, C. (2020). A Machine Learning Approach to Investigate the Surface Ozone Behavior. Atmosphere, 11(11), 1173. https://doi:10.3390/atmos11111173.
  • Gültepe, Y. (2019). Makine Öğrenmesi Algoritmaları ile Hava Kirliliği Tahmini Üzerine Karşılaştırmalı Bir Değerlendirme. Avrupa Bilim ve Teknoloji Dergisi, (16), 8-15. https://10.31590/ejosat.530347.
  • Harishkumar, K. S., Yogesh, K. M., Gad, I. (2020). Forecasting air pollution particulate matter (PM2. 5) using machine learning regression models. Procedia Computer Science, 171, 2057–2066. https://doi.org/10.1016/j.procs.2020.04.221.
  • Haykin S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall, USA.
  • Hrdlickova, Z., Michalek, J., Kolar, M., et al. (2008). Identification of factors affecting air pollution by dust aerosol PM10 in Brno City, Czech Republic. Atmos Environ, 42(37), 8661–8673. https://doi:10.1016/j.atmosenv.2008.08.017.
  • Karaatlı, M., Helvacıoğlu, Ö., Ömürbek, N., Tokgöz, G. (2012). Yapay Sinir Ağları Yöntemi İle Otomobil Satış Tahmini. Uluslararası Yönetim İktisat ve İşletme Dergisi, 8(17), 87-100. https://10.11122/ijmeb.2012.8.17.290.
  • Musoro, J.Z., Zwinderman, A.H., Puhan, M.A., Riet, G., Geskus, R.B. (2014). Validation of prediction models based on lasso regression with multiply imputed data. BMC Med Res Methodol, 14(116), 1-13. https://doi.org/10.1186/1471-2288-14-116.
  • Oğuz, K. (2020). Nevşehir İlinde Hava Kalitesinin ve Meteorolojik Faktörlerin Hava Kirliliği Üzerine Etkilerinin İncelenmesi. Doğal Afetler ve Çevre Dergisi, 6(2), 391-404. https://doi:10.21324/dacd.686052.
  • Özdemir, U., Taner, S. (2014). Impacts of Meteorological Factors on PM10: Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) Approaches. Environmental Forensics, 15(4), 329–336. https://doi:10.1080/15275922.2014.950774.
  • Panda, N., Osthus, D., Srinivasan, G., O’Malley, D., Chau, V., Oyen, D., Godinez, H. (2020). Mesoscale informed parameter estimation through machine learning: A case-study in fracture modeling. Journal of Computational Physics, 420, 1-15. https://doi.org/10.1016/j.jcp.2020.109719.
  • Qin, Y.-G., Yi, C., Dong, G.-L., Min, J.-Z. (2019). Investigating the influence of meteorological factors on particulate matters: A case study based on path analysis. Energy & Environment, 31(3), 1-13. https://doi:10.1177/0958305x19876696. Singh, D., Singh, B. (2019). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524. https://doi:10.1016/j.asoc.2019.105524.
  • Smola, A. J., Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. https://doi:10.1023/B:STC0.0000035301.49549.88.
  • Suleiman, A., Tight, M.R., Quinn, A.D. (2019). Applying machine learning methods in managing urban concentrations of traffic-related particulate matter (PM10 and PM2.5). Atmospheric Pollution Research, 10(1), 134–144. https://doi.org/https://doi.org/10.1016/j.apr.2018.07.001.
  • Sun, Z., Tao, Y., Li, S., Ferguson, K. K., Meeker, J. D., Park, S. K., Batterman, S. A., Mukherjee, B. (2013). Statistical strategies for constructing health risk models with multiple pollutants and their interactions: possible choices and comparisons. Environ Health, 12(1), 1-19. https://doi: 10.1186/1476-069X-12-85.
  • US EPA, U.S. Environmental Protection Agency, (2021). Erişim tarihi: 02.08.2021, https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm.
  • Yaseen, Z.M., El-Shafie, A., Jaafar, O., Afan, H.A., Sayl, K.N. (2015). Artificial intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol., 530, 829–844. https://doi.org/10.1016/j.jhydrol.2015.10.038.

Makine Öğrenme Algoritmaları ile PM10 Konsantrasyon Tahmini

Year 2022, , 201 - 213, 23.06.2022
https://doi.org/10.28979/jarnas.981202

Abstract

Partikül madde (PM) kirliliği önemli çevresel sorunlara sebep olmaktadır. PM kirliliğinin olumsuz etkileri, canlı sağlığına yönelik riskleri nedeniyle yaygın bir sorun haline gelmiştir. PM kirliliğinin tüm bu olumsuz etkileri ve atmosferdeki karmaşık etkileşimi sebebiyle, daha fazla çalışmaya konu olması önemlidir. Özellikle, PM kirliliğinin izlenmesi ve tahmin edilmesi konusunda yapılacak çalışmalar önemlidir. Son yıllarda meteorolojik faktörler göz önüne alınarak PM kirliliğinin tahmin edilmesi çalışmaları artmıştır. Özellikle makine öğrenme yöntemleri ile PM kirliliği tahmini çalışmaları hız kazanmıştır. Bu çalışmada, meteorolojik faktörler göz önüne alınarak çeşitli makine öğrenme algoritmaları ile PM10 kirliliği tahmin edilmiştir. Çalışmada kullanılan meteoroloji verileri Meteoroloji Genel Müdürlüğü Ankara Bölge istasyonundan (enlem:39,9727, boylam:32,8637, rakım:891 m.) elde edilmiştir. PM10 kirlilik verileri ise Çevre, Şehircilik ve İklim Değişikliği Bakanlığı Ankara Keçiören-Sanatoryum hava kalitesi istasyonundan (enlem: 39,999, boylam: 32,856, rakım: 1009 m.) elde edilmiştir. Makine öğrenme çalışması aşamasında, sıcaklık, çiğ noktası sıcaklığı, yağış, bağıl nem, rüzgar hızı, basınç, bulut kapalılığı ve bir önceki güne ait PM10 ölçümleri göz önüne alınarak, farklı makine öğrenme (karar ağacı regresyonu, destek vektör regresyonu, lasso regresyonu ve yapay sinir ağı) algoritmalarıyla ayrı ayrı çalışma yapılmış ve bu algoritmaların tutarlılıkları karşılaştırılmıştır. Tutarlılıklarının incelenmesi aşamasında çeşitli istatistiksel metrikler kullanılmıştır. Sonuçta, test bölümü göz önüne alındığında, yapay sinir ağı algoritmasının belirleme katsayısı ̴0,6, kök ortalama kare hatası ̴18 ve ortalama mutlak hata ̴12 olarak bulunmuş ve yapay sinir ağı algoritmasının diğer algoritmalara göre daha iyi sonuç verdiği görülmüştür.

References

  • Abuella, M., Chowdhury, B. (2016). Solar Power Forecasting Using Support Vector Regression. American Society for Engineering Management International Annual Conference, USA.
  • Adhani, G., Buono, A., Faqih, A. (2013). Support Vector Regression modelling for rainfall prediction in dry season based on Southern Oscillation Index and NINO3.4. International Conference on Advanced Computer Science and Information Systems (ICACSIS), Sanur Bali, Indonesia.
  • Alizamir, M., Kisi, O., Ahmed, A.N., Mert, C., Fai, C.M., Kim, S., et al. (2020). Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS ONE, 15(4), 1:25. https://doi.org/10.1371/journal. pone.0231055.
  • Aljanabi, M., Shkoukani, M., Hijjawi, M. (2020). Ground-level Ozone Prediction Using Machine Learning Techniques: A Case Study in Amman, Jordan. International Journal of Automation and Computing, 17(5), 667-677. https://doi:10.1007/s11633-020-1233-4.
  • Alpaydin, E. (2010). Introduction to Machine Learning. The MIT Press, Cambridge, MA, USA.
  • Aydoğan, İ., Zırhlıoğlu, G. (2018). Öğrenci Başarılarının Yapay Sinir Ağları ile Kestirilmesi. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 577-610.
  • Badarpura, S., Jain, A., Gupta, A., Patil, D. (2020). Rainfall Prediction using Linear approach & Neural Networks and Crop Recommendation based on Decision Tree, International Journal of Engineering Research & Technology, 09(04), 394-399, http://dx.doi.org/10.17577/IJERTV9IS040314.
  • Carro-Calvo, L., Casanova-Mateo, C., Sanz-Justo, J., Casanova-Roqueb, J.L., Salcedo-Sanz, S. (2017). Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data. Atmosfera, 30(1), 1-10, https://doi:10.20937/ATM.2017.30.01.01.
  • Castelli, M., Clemente, F.C., Popovič, A., Silva, S., Vanneschi, L. (2020). A Machine Learning Approach to Predict Air Quality in California. Complexity 2020(2020), 1-23. https://doi.org/10.1155/2020/8049504.
  • Czernecki, B., Marosz, M., Jędruszkiewicz, J. (2021). Assessment of Machine Learning Algorithms in Short-term Forecasting of PM10 and PM2.5 Concentrations in Selected Polish Agglomerations. Aerosol Air Qual. Res., 21(7), 1-18. https://doi.org/10.4209/aaqr.200586.
  • Ei-Sharkawy MF., Zaki G.R. (2015). Effect of meteorological factors on the daily average levels of particulate matter in the Eastern Province of Saudi Arabia: a cross-sectional study. J Sci Technol, 5(1), 18–29.
  • Gagliardi, R.V., Andenna, C. (2020). A Machine Learning Approach to Investigate the Surface Ozone Behavior. Atmosphere, 11(11), 1173. https://doi:10.3390/atmos11111173.
  • Gültepe, Y. (2019). Makine Öğrenmesi Algoritmaları ile Hava Kirliliği Tahmini Üzerine Karşılaştırmalı Bir Değerlendirme. Avrupa Bilim ve Teknoloji Dergisi, (16), 8-15. https://10.31590/ejosat.530347.
  • Harishkumar, K. S., Yogesh, K. M., Gad, I. (2020). Forecasting air pollution particulate matter (PM2. 5) using machine learning regression models. Procedia Computer Science, 171, 2057–2066. https://doi.org/10.1016/j.procs.2020.04.221.
  • Haykin S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall, USA.
  • Hrdlickova, Z., Michalek, J., Kolar, M., et al. (2008). Identification of factors affecting air pollution by dust aerosol PM10 in Brno City, Czech Republic. Atmos Environ, 42(37), 8661–8673. https://doi:10.1016/j.atmosenv.2008.08.017.
  • Karaatlı, M., Helvacıoğlu, Ö., Ömürbek, N., Tokgöz, G. (2012). Yapay Sinir Ağları Yöntemi İle Otomobil Satış Tahmini. Uluslararası Yönetim İktisat ve İşletme Dergisi, 8(17), 87-100. https://10.11122/ijmeb.2012.8.17.290.
  • Musoro, J.Z., Zwinderman, A.H., Puhan, M.A., Riet, G., Geskus, R.B. (2014). Validation of prediction models based on lasso regression with multiply imputed data. BMC Med Res Methodol, 14(116), 1-13. https://doi.org/10.1186/1471-2288-14-116.
  • Oğuz, K. (2020). Nevşehir İlinde Hava Kalitesinin ve Meteorolojik Faktörlerin Hava Kirliliği Üzerine Etkilerinin İncelenmesi. Doğal Afetler ve Çevre Dergisi, 6(2), 391-404. https://doi:10.21324/dacd.686052.
  • Özdemir, U., Taner, S. (2014). Impacts of Meteorological Factors on PM10: Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) Approaches. Environmental Forensics, 15(4), 329–336. https://doi:10.1080/15275922.2014.950774.
  • Panda, N., Osthus, D., Srinivasan, G., O’Malley, D., Chau, V., Oyen, D., Godinez, H. (2020). Mesoscale informed parameter estimation through machine learning: A case-study in fracture modeling. Journal of Computational Physics, 420, 1-15. https://doi.org/10.1016/j.jcp.2020.109719.
  • Qin, Y.-G., Yi, C., Dong, G.-L., Min, J.-Z. (2019). Investigating the influence of meteorological factors on particulate matters: A case study based on path analysis. Energy & Environment, 31(3), 1-13. https://doi:10.1177/0958305x19876696. Singh, D., Singh, B. (2019). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524. https://doi:10.1016/j.asoc.2019.105524.
  • Smola, A. J., Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. https://doi:10.1023/B:STC0.0000035301.49549.88.
  • Suleiman, A., Tight, M.R., Quinn, A.D. (2019). Applying machine learning methods in managing urban concentrations of traffic-related particulate matter (PM10 and PM2.5). Atmospheric Pollution Research, 10(1), 134–144. https://doi.org/https://doi.org/10.1016/j.apr.2018.07.001.
  • Sun, Z., Tao, Y., Li, S., Ferguson, K. K., Meeker, J. D., Park, S. K., Batterman, S. A., Mukherjee, B. (2013). Statistical strategies for constructing health risk models with multiple pollutants and their interactions: possible choices and comparisons. Environ Health, 12(1), 1-19. https://doi: 10.1186/1476-069X-12-85.
  • US EPA, U.S. Environmental Protection Agency, (2021). Erişim tarihi: 02.08.2021, https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm.
  • Yaseen, Z.M., El-Shafie, A., Jaafar, O., Afan, H.A., Sayl, K.N. (2015). Artificial intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol., 530, 829–844. https://doi.org/10.1016/j.jhydrol.2015.10.038.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Artificial Intelligence, Engineering, Environmental Engineering
Journal Section Research Article
Authors

Kahraman Oğuz 0000-0001-5305-6145

Muhammet Ali Pekin 0000-0002-6807-890X

Publication Date June 23, 2022
Submission Date August 10, 2021
Published in Issue Year 2022

Cite

APA Oğuz, K., & Pekin, M. A. (2022). Makine Öğrenme Algoritmaları ile PM10 Konsantrasyon Tahmini. Journal of Advanced Research in Natural and Applied Sciences, 8(2), 201-213. https://doi.org/10.28979/jarnas.981202
AMA Oğuz K, Pekin MA. Makine Öğrenme Algoritmaları ile PM10 Konsantrasyon Tahmini. JARNAS. June 2022;8(2):201-213. doi:10.28979/jarnas.981202
Chicago Oğuz, Kahraman, and Muhammet Ali Pekin. “Makine Öğrenme Algoritmaları Ile PM10 Konsantrasyon Tahmini”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 2 (June 2022): 201-13. https://doi.org/10.28979/jarnas.981202.
EndNote Oğuz K, Pekin MA (June 1, 2022) Makine Öğrenme Algoritmaları ile PM10 Konsantrasyon Tahmini. Journal of Advanced Research in Natural and Applied Sciences 8 2 201–213.
IEEE K. Oğuz and M. A. Pekin, “Makine Öğrenme Algoritmaları ile PM10 Konsantrasyon Tahmini”, JARNAS, vol. 8, no. 2, pp. 201–213, 2022, doi: 10.28979/jarnas.981202.
ISNAD Oğuz, Kahraman - Pekin, Muhammet Ali. “Makine Öğrenme Algoritmaları Ile PM10 Konsantrasyon Tahmini”. Journal of Advanced Research in Natural and Applied Sciences 8/2 (June 2022), 201-213. https://doi.org/10.28979/jarnas.981202.
JAMA Oğuz K, Pekin MA. Makine Öğrenme Algoritmaları ile PM10 Konsantrasyon Tahmini. JARNAS. 2022;8:201–213.
MLA Oğuz, Kahraman and Muhammet Ali Pekin. “Makine Öğrenme Algoritmaları Ile PM10 Konsantrasyon Tahmini”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 2, 2022, pp. 201-13, doi:10.28979/jarnas.981202.
Vancouver Oğuz K, Pekin MA. Makine Öğrenme Algoritmaları ile PM10 Konsantrasyon Tahmini. JARNAS. 2022;8(2):201-13.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).