Research Article
BibTex RIS Cite

Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees

Year 2022, Volume: 8 Issue: 2, 309 - 321, 23.06.2022
https://doi.org/10.28979/jarnas.984312

Abstract

Meteorology stations sold in the market have various difficulties in terms of their use, also these systems are costly to obtain. With state of the art sensor technologies, the development of mini weather stations has become easier. This study focuses on the development of a model weather station device using temperature, relative humidity, UV, LDR Light, rain and soil moisture sensors to collect major environmental data. The measured data were wirelessly transmitted to the remote station for logging via the GSM module and the information was sent to the database in the internet environment. In addition, the data from the sensors are organized by correlation. The classification was made according to the data obtained from the rain sensor and the relationship between the other 5 sensors used in the device to the rain classification was examined. Sensor data were scaled between 0-1 with min-max normalization before being subjected to deep learning and machine learning training. In the Decision Tree (DT) a model score of 0.96 was obtained by choosing the maximum depth of 20. The artificial neural network (ANN) yielded a classification score of 0.92 using 4 hidden layers and 100 epochs in the artificial neural network model.

References

  • Abyaneh, H.Z., Varkeshi, M.B., Golmohammadi, G., & Mohammadi, K. (2016). Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates. Arab. J. Geosci. 9(5), 377. DOI: https://doi.org/10.1007/s12517-016-2388-8
  • Anitescu, C., Atroshchenko, E., Alajlan, N., & Rabczuk, T. (2019). Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, vol. 59, no.1, pp. 345–359. https://doi.org/10.32604/cmc.2019.06641
  • Ardiansyah, A. Y., Sarno, R., & Giandi, O. (2018). Rain detection system for estimate weather level using Mamdani fuzzy inference system. International conference on information and communications technology (pp. 848-854).Yogyakarta, Indonesia. Retrieved from: https://www.researchgate.net/publication/324962319_Rain_detection_system_for_estimate_weather_level_using_Mamdani_fuzzy_inference_system
  • Barik, L. (2019). IoT based temperature and humidity controlling using arduino and raspberry pi. International Journal of Advanced Computer Science and Applications, 10(9), 494-502. DOI: https://dx.doi.org/10.14569/IJACSA.2019.0100966
  • Bhagat, S.K., Tung, T.M., & Yaseen, Z.M. (2020). Development of artificial intelligence for modeling wastewater heavy metal removal: state of the art, application assessment and possible future re-search. J. Clean. Prod. 250, 119473. DOI: https://doi.org/10.1016/j.jclepro.2019.119473
  • Bochtis, D., Liakos, G.K., Busato, P., Moshou, D., & Pearson, S. (2018). Machine learning in agriculture: a review. Sensors, 18(8), 2674. DOI: https://doi.org/10.3390/s18082674
  • Bounsaythip, C., & Esa, R.R. (2001). Overview of data mining for customer behavior modeling. VTT Information Technology Research Report, Version:1, pp. 1-53. Retrieved from: http://www.vtt.fi/inf/julkaisut/muut/2001/customerprofiling.pdf
  • Cover, T. M., & Thomas, J. A. (1991). Elements of ınformation theory. New York: Wiley & Sons. Retrieved from: http://staff.ustc.edu.cn/~cgong821/Wiley.Interscience.Elements.of.Information.Theory.Jul.2006.eBook-DDU.pdf
  • Dongare, A.D., Kharde, R.R., & Kachare, A.D. (2012). Introduction to artificial neural network. International Journal of Engineering and Innovative Technology, 2(1), 189-194. Retrieved from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1082.1323&rep=rep1&type=pdf
  • Durrani, A., Khurram, M., & Khan, H. R. (2019). Smart weather alert system for dwellers of different areas, in Proc. 16th Int. Bhurban Conf. Applied Sciences & Technology (pp.333-339). Islamabad, Pakistan. DOI: https://doi.org/10.1109/ıbcast.2019.8667190
  • Gotmare, V., Kolte, R., & Thengodkar, R. (2021). Weather monitoring system using arduino uno. International Engineering Journal For Research & Development, 5(5), 1-8. DOI: https://doi.org/10.17605/OSF.IO/R8XWP
  • Hwang, J., Orenstein, P., Cohen, J., Pfeiffer, K., & Mackey, L. (2019). Improving subseasonal forecasting in the western U.S. with machine learning. The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19). New York, USA. DOI: https://doi.org/10.1145/3292500.3330674
  • Joshi, P., Mistry, N., Khan, A., Motekar, H., & Chaugule,A. (2021). Weather data accumulation using Arduino. International Journal of Innovative Research in Computer and Communication Engineering. Volume 9, Issue 4, April 2021. DOI: https://doi.org/10.15680/IJIRCCE.2021.0904041
  • Kızıl, Ü., Aksu, S., & Çamoğlu, G. (2018). Kontrollü ortamda bitkisel yetiştiricilik için arduino uyumlu bir toprak nemi izleme sistemi tasarımı. ÇOMÜ Ziraat Fakültesi Dergisi, 6 (2), 131-139. Retrieved from: https://dergipark.org.tr/tr/pub/comuagri/issue/41582/434661
  • Ko C-M, Jeong YY, Lee Y-M, & Kim B-S. (2020). The Development of a Quantitative Precipitation Forecast Correction Technique Based on Machine Learning for Hydrological Applications. Atmosphere. 2020; 11(1), 111. DOI: https://doi.org/10.3390/atmos11010111
  • Kumari, S., Kasliwal, M. H., & Valakunde, N. D. (2018). An android based smart environmental monitoring system using IoT. In Singh M., Gupta P., Tyagi V., Flusser J., & Ören T. (Eds.), Advances in Computing and Data Sciences. ICACDS 2018. Communications in Computer and Information Science, vol 906. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-13-1813-9_53
  • Laskar, M. R., Bhattacharjee, R., Giri, M. S., & Bhattacharya, P. (2016). Weather Forecasting Using Arduino Based Cube-Sat. Procedia Computer Science, 89, 320–323. DOI: https://doi.org/10.1016/j.procs.2016.06.078
  • Mehr, A. D. (2021). Drought classification using gradient boosting decision tree. Acta Geophys. 69, 909–918. DOI: https://doi.org/10.1007/s11600-021-00584-8
  • Miao, Q., Pan, B., Wang, H., Hsu, K., & Sorooshian, S. (2019). Improving Monsoon Precipitation Prediction Using Combined Convolutional and Long Short Term Memory Neural Network. Water, 11(5), 977. https://doi.org/10.3390/w11050977
  • Mitchell, S., Weersink, A., & Erickson, B. (2018). Adoption of precision agriculture technologies in Ontario crop production. Canadian Journal of Plant Science, 98(6), 1384-1388. DOI: https://doi.org/10.1139/cjps-2017-0342
  • Mohapatra, G., Rakesh, V., Purwar, S., & Dimri, A.P. (2021). et al. Spatio-temporal rainfall variability over different meteorological subdivisions in India: analysis using different machine learning techniques. Theoretical and Applied Climatology, 145(1-2), 673-686. DOI: https://doi.org/10.1007/s00704-021-03644-7
  • Murray J., & Mackinnon, N.G. (1999). Data mining and knowledge discovery in databases- an overview. J.Statists, Vol.41, No.3, p.260. DOI: https://doi.org/10.1111/1467-842X.00081
  • Pal, M., & Mather, P.M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26, 1007-1011. DOI: https://doi.org/10.1080/01431160512331314083
  • Sirohi, K., Tanwar, A., Himanshu, Jindal, P. (2016). Automated irrigation and fire alert system based on Hargreaves equation using weather forecast and Zigbee protocol. IEEE 2nd International Conference on Communication, Control and Intelligent Systems (CCIS), Mathura, India. DOI: https://doi.org/10.1109/CCIntelS.2016.7878191
  • Tiyasha, Minh Tung, T., Mundher Yaseen, Z. (2020). A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol., 124670. DOI: https://doi.org/10.1016/j.jhydrol.2020.124670.
Year 2022, Volume: 8 Issue: 2, 309 - 321, 23.06.2022
https://doi.org/10.28979/jarnas.984312

Abstract

References

  • Abyaneh, H.Z., Varkeshi, M.B., Golmohammadi, G., & Mohammadi, K. (2016). Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates. Arab. J. Geosci. 9(5), 377. DOI: https://doi.org/10.1007/s12517-016-2388-8
  • Anitescu, C., Atroshchenko, E., Alajlan, N., & Rabczuk, T. (2019). Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, vol. 59, no.1, pp. 345–359. https://doi.org/10.32604/cmc.2019.06641
  • Ardiansyah, A. Y., Sarno, R., & Giandi, O. (2018). Rain detection system for estimate weather level using Mamdani fuzzy inference system. International conference on information and communications technology (pp. 848-854).Yogyakarta, Indonesia. Retrieved from: https://www.researchgate.net/publication/324962319_Rain_detection_system_for_estimate_weather_level_using_Mamdani_fuzzy_inference_system
  • Barik, L. (2019). IoT based temperature and humidity controlling using arduino and raspberry pi. International Journal of Advanced Computer Science and Applications, 10(9), 494-502. DOI: https://dx.doi.org/10.14569/IJACSA.2019.0100966
  • Bhagat, S.K., Tung, T.M., & Yaseen, Z.M. (2020). Development of artificial intelligence for modeling wastewater heavy metal removal: state of the art, application assessment and possible future re-search. J. Clean. Prod. 250, 119473. DOI: https://doi.org/10.1016/j.jclepro.2019.119473
  • Bochtis, D., Liakos, G.K., Busato, P., Moshou, D., & Pearson, S. (2018). Machine learning in agriculture: a review. Sensors, 18(8), 2674. DOI: https://doi.org/10.3390/s18082674
  • Bounsaythip, C., & Esa, R.R. (2001). Overview of data mining for customer behavior modeling. VTT Information Technology Research Report, Version:1, pp. 1-53. Retrieved from: http://www.vtt.fi/inf/julkaisut/muut/2001/customerprofiling.pdf
  • Cover, T. M., & Thomas, J. A. (1991). Elements of ınformation theory. New York: Wiley & Sons. Retrieved from: http://staff.ustc.edu.cn/~cgong821/Wiley.Interscience.Elements.of.Information.Theory.Jul.2006.eBook-DDU.pdf
  • Dongare, A.D., Kharde, R.R., & Kachare, A.D. (2012). Introduction to artificial neural network. International Journal of Engineering and Innovative Technology, 2(1), 189-194. Retrieved from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1082.1323&rep=rep1&type=pdf
  • Durrani, A., Khurram, M., & Khan, H. R. (2019). Smart weather alert system for dwellers of different areas, in Proc. 16th Int. Bhurban Conf. Applied Sciences & Technology (pp.333-339). Islamabad, Pakistan. DOI: https://doi.org/10.1109/ıbcast.2019.8667190
  • Gotmare, V., Kolte, R., & Thengodkar, R. (2021). Weather monitoring system using arduino uno. International Engineering Journal For Research & Development, 5(5), 1-8. DOI: https://doi.org/10.17605/OSF.IO/R8XWP
  • Hwang, J., Orenstein, P., Cohen, J., Pfeiffer, K., & Mackey, L. (2019). Improving subseasonal forecasting in the western U.S. with machine learning. The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19). New York, USA. DOI: https://doi.org/10.1145/3292500.3330674
  • Joshi, P., Mistry, N., Khan, A., Motekar, H., & Chaugule,A. (2021). Weather data accumulation using Arduino. International Journal of Innovative Research in Computer and Communication Engineering. Volume 9, Issue 4, April 2021. DOI: https://doi.org/10.15680/IJIRCCE.2021.0904041
  • Kızıl, Ü., Aksu, S., & Çamoğlu, G. (2018). Kontrollü ortamda bitkisel yetiştiricilik için arduino uyumlu bir toprak nemi izleme sistemi tasarımı. ÇOMÜ Ziraat Fakültesi Dergisi, 6 (2), 131-139. Retrieved from: https://dergipark.org.tr/tr/pub/comuagri/issue/41582/434661
  • Ko C-M, Jeong YY, Lee Y-M, & Kim B-S. (2020). The Development of a Quantitative Precipitation Forecast Correction Technique Based on Machine Learning for Hydrological Applications. Atmosphere. 2020; 11(1), 111. DOI: https://doi.org/10.3390/atmos11010111
  • Kumari, S., Kasliwal, M. H., & Valakunde, N. D. (2018). An android based smart environmental monitoring system using IoT. In Singh M., Gupta P., Tyagi V., Flusser J., & Ören T. (Eds.), Advances in Computing and Data Sciences. ICACDS 2018. Communications in Computer and Information Science, vol 906. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-13-1813-9_53
  • Laskar, M. R., Bhattacharjee, R., Giri, M. S., & Bhattacharya, P. (2016). Weather Forecasting Using Arduino Based Cube-Sat. Procedia Computer Science, 89, 320–323. DOI: https://doi.org/10.1016/j.procs.2016.06.078
  • Mehr, A. D. (2021). Drought classification using gradient boosting decision tree. Acta Geophys. 69, 909–918. DOI: https://doi.org/10.1007/s11600-021-00584-8
  • Miao, Q., Pan, B., Wang, H., Hsu, K., & Sorooshian, S. (2019). Improving Monsoon Precipitation Prediction Using Combined Convolutional and Long Short Term Memory Neural Network. Water, 11(5), 977. https://doi.org/10.3390/w11050977
  • Mitchell, S., Weersink, A., & Erickson, B. (2018). Adoption of precision agriculture technologies in Ontario crop production. Canadian Journal of Plant Science, 98(6), 1384-1388. DOI: https://doi.org/10.1139/cjps-2017-0342
  • Mohapatra, G., Rakesh, V., Purwar, S., & Dimri, A.P. (2021). et al. Spatio-temporal rainfall variability over different meteorological subdivisions in India: analysis using different machine learning techniques. Theoretical and Applied Climatology, 145(1-2), 673-686. DOI: https://doi.org/10.1007/s00704-021-03644-7
  • Murray J., & Mackinnon, N.G. (1999). Data mining and knowledge discovery in databases- an overview. J.Statists, Vol.41, No.3, p.260. DOI: https://doi.org/10.1111/1467-842X.00081
  • Pal, M., & Mather, P.M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26, 1007-1011. DOI: https://doi.org/10.1080/01431160512331314083
  • Sirohi, K., Tanwar, A., Himanshu, Jindal, P. (2016). Automated irrigation and fire alert system based on Hargreaves equation using weather forecast and Zigbee protocol. IEEE 2nd International Conference on Communication, Control and Intelligent Systems (CCIS), Mathura, India. DOI: https://doi.org/10.1109/CCIntelS.2016.7878191
  • Tiyasha, Minh Tung, T., Mundher Yaseen, Z. (2020). A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol., 124670. DOI: https://doi.org/10.1016/j.jhydrol.2020.124670.
There are 25 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Article
Authors

Hakkı Fırat Altınbilek 0000-0001-6761-1445

Hakan Nar 0000-0002-5354-6379

Sefa Aksu 0000-0002-2348-4082

Ünal Kızıl 0000-0002-8512-3899

Early Pub Date June 10, 2022
Publication Date June 23, 2022
Submission Date August 19, 2021
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

APA Altınbilek, H. F., Nar, H., Aksu, S., Kızıl, Ü. (2022). Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees. Journal of Advanced Research in Natural and Applied Sciences, 8(2), 309-321. https://doi.org/10.28979/jarnas.984312
AMA Altınbilek HF, Nar H, Aksu S, Kızıl Ü. Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees. JARNAS. June 2022;8(2):309-321. doi:10.28979/jarnas.984312
Chicago Altınbilek, Hakkı Fırat, Hakan Nar, Sefa Aksu, and Ünal Kızıl. “Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 2 (June 2022): 309-21. https://doi.org/10.28979/jarnas.984312.
EndNote Altınbilek HF, Nar H, Aksu S, Kızıl Ü (June 1, 2022) Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees. Journal of Advanced Research in Natural and Applied Sciences 8 2 309–321.
IEEE H. F. Altınbilek, H. Nar, S. Aksu, and Ü. Kızıl, “Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees”, JARNAS, vol. 8, no. 2, pp. 309–321, 2022, doi: 10.28979/jarnas.984312.
ISNAD Altınbilek, Hakkı Fırat et al. “Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees”. Journal of Advanced Research in Natural and Applied Sciences 8/2 (June 2022), 309-321. https://doi.org/10.28979/jarnas.984312.
JAMA Altınbilek HF, Nar H, Aksu S, Kızıl Ü. Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees. JARNAS. 2022;8:309–321.
MLA Altınbilek, Hakkı Fırat et al. “Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 2, 2022, pp. 309-21, doi:10.28979/jarnas.984312.
Vancouver Altınbilek HF, Nar H, Aksu S, Kızıl Ü. Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees. JARNAS. 2022;8(2):309-21.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).