Research Article
BibTex RIS Cite

Modeling the War of Militarily Inequivalent Two Countries by Game Theory

Year 2023, Volume: 9 Issue: 2, 268 - 275, 30.06.2023
https://doi.org/10.28979/jarnas.1204904

Abstract

In this study, we model the international conflict that has evolved into a war that causes material and moral losses between two countries, one strong and the other weak militarily, using matrix games with matrix entries. In order to create our model, we first examined the international events that took place in the past and recent and turned into a state of war. In light of the information we have obtained, we explain in detail the scenario of the game that we present in the study. According to the scenario we presented, we model our game in the form of a matrix game with matrix entries, which can turn into three different matrix games. According to the created model, the active war situation turns into a ceasefire or continuation of the war. In the event of a ceasefire, the game ends, while in the event of a continuation of the war, the game turns into a matrix game with a new matrix entry in the form of holding the occupied places or returning to the previous border. While this game, which actually occurs in the event of a return to the previous borders, ends, if the occupied places are held, a new game arises in which the war strategies of these two warring countries will be determined. In this last game, countries have to choose between strategies to move to one of the defensive or offensive situations, and this decision is finally solved by the final state of the war. Thus, by considering each situation of the matrix game model with matrix entries containing three different games separately, we reach the solution to the actual problem by obtaining their solutions and determining the ideal strategies by which the countries in the scenario can protect the interests of the country in a crisis. Therefore, we model the war between the two countries by using game theory and present the results.

References

  • Ahmad, A. (2022). Land for Peace? Game Theory and the Strategic Impediments to a Resolution in Israel-Palestine. Defence and Peace Economics, 1-25. DOI: 10.1080/10242694.2022.2031445
  • Alzawahreh, A. S. (2021). Prisoner’s Dilemma Theory in International Relations: A Theoretical and Practical Study on Saudi-Iranian Relations. Canadian Social Science, 17(5), 30-34. DOI:10.3968/12291
  • Archetti, M. & Pienta, K. J. (2019). Cooperation among cancer cells: applying game theory to cancer. Nature Reviews Cancer, 19(2), 110-117. DOI: 10.1038/s41568-018-0083-7
  • Aumann, R. & Schelling, T. (2005), Contributions to game theory: Analysis of conflict and cooperation. Nobel Prize in Economics Documents, 2005-1.
  • Babaei, S. & Gordji, M. E. (2022). Modeling Political and economic relations between Norway and Russia: A behavioral game theory approach. The Pure and Applied Mathematics, 29(2), 141-160.
  • Beebe, R.P. (1957). Military decision from the viewpoint pf game theory. Naval War College Review, 10(2), 27-76.
  • Berkovitz, L. D. & Dresher, M. (1959). A game-theory analysis of tactical air war. Operation Research, 7(5), 599-620. DOI: 10.1287/opre.7.5.599
  • Bshary, R. & Oliveira, R. F. (2015). Cooperation in animals: toward a game theory within the framework of social competence. Current Opinion in Behavioral Sciences, 3, 31-37. DOI: 10.1016/j.cobeha.2015.01.008 Chung, N. (2005). The Sino-Taiwanese crisis: A game theoretic analysis. Sigma: Journal of Political and International Studies, 23(1), 7. Correa, H. (2001). Game theory as an instrument for the analysis of international relations. Ritsumeikan Annual Review of International Studies, 14(2), 187-208.
  • Elimam, L., Rheinheimer, D., Connell, C., & Madani, K. (2008). An Ancient Struggle: A Game Theory Approach to Resolving the Nile Conflict. World Environmental and Water Resources Congress 2008
  • Ferguson, Thomas S. (2014). Game theory Part II, Mathematics Depart¬ment UCLA, 2nd Edition.
  • Gill, Q. S. (2020). Arms rivalry in South Asia: The prisoner’s dilemma paradigm. Pakistan Social Sciences Review, 4(4), 160-170.
  • Hansen, M. (1990). Airline competition in a hub-dominated environment: An application of noncooperative game theory. Transportation Research Part B: Methodological, 24(1), 27-43. DOI: 10.1016/0191-2615(90)90030-3 Haywood, Jr, O. G. (1954). Military decision and game the¬ory. Journal of the Operations Research Society of America,¬ 2(4), 365-385.
  • İzgi, B. & Özkaya, M. (2020). Tarım Sigortası Gerekliliğinin Oyun Teorisi Yardımıyla Gösterilmesi: Matris Norm Yaklaşımı. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20 (5) , 824-831. DOI: 10.35414/akufemubid.677349
  • Levi, N. (2017). Applying game theory to North Korea-China relations. Journal of Modern Science, 2(33), 35-366. Maynard Smith, J. & Price, G.R. (1973). The logic of animal conflict. Nature, 246, 15-18. DOI: 10.1038/246015a0
  • Nam, C. & Kim, W. (2000). North Korea-Japan negotiations for diplomatic normalization: A game-theoretic analysis, Korean Journal of Defense Analysis, 12(1), 109-130. DOI: 10.1080/10163270009463980
  • Mousavi, M. A. (2015). Iran-US nuclear standoff: A game theory approach. Iranian Review of Foreign Affairs, 1(1). Nash, J. F. (1950). The bargaining problem. Econometrica: Journal of the Econometric Society, 18(2), 155-162. DOI: 10.2307/1907266
  • Osborne, M. J. & Rubinstein, A. (1994). A course in game theory. MIT press, London. Oh, J. H. & Ryu, J. Y. (2011). The Effectiveness of Economic Sanctions on North Korea: Chinas Vital Role. Korean Journal of Defense Analysis, 23(1), 117-131.
  • Özkaya , M. & İzgi , B. (2021a). Uluslararası Bir Krizin Oyun Teorisi ile Matematiksel Olarak Modellenmesi, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(4), 1334-1341. DOI: 10.17798/bitlisfen.942655
  • Özkaya, M. & İzgi, B. (2021b). Effects of the quarantine on the individuals’ risk of Covid-19 infection: Game theoretical approach. Alexandria Engineering Journal, 60(4), 4157-4165. DOI: 10.1016/j.aej.2021.02.021 Peters, H. (2015). Game theory: A Multi-leveled approach. Springer, London.
  • Pramanik, S. & Roy, T. K. (2013). Game theoretic model to the Jammu-Kashmir conflict between India and Pakistan. International Journal of Mathematical Archive, 4(8), 162-170.
  • Reynolds, P. W. (2012). Modeling conflict between China and the United States. Naval Postgraduate School Monterey Ca Defense Analysis Dept.
  • Rzeczpospolita,(2008). https://web.archive.org/web/20140917145807/http://www.rp.pl/artykul/2,174204.html. Erişim Tarihi: 29.12.2022
  • Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V. & Wu, Q. (2010). A survey of game theory as applied to network security. 43rd Hawaii International Conference on System Sciences (pp. 1-10). IEEE. DOI: 10.1109/HICSS.2010.35
  • Savunen, T. (2009). Application of the cooperative game theory to global strategic alliances. Helsinki University of Technology Finland.
  • Snidal, D. (1985). The game theory of international politics. World Politics, 38(1), 25-57. DOI: 10.2307/2010350 Şahiner, M. K. & Özbuğday, F. C. (2022). Oyun teorisi bağlamında Suriye İç Savaşı'nın geleceği. Ulisa: Uluslararası Çalışmalar Dergisi, 6(1), 51-65. Von Neumann, J. & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton university press. Wang, L. Z., Fang, L. & Hipel, K. W. (2003). Water resources allocation: a cooperative game theoretic approach. Journal of Environmental Informatics, 2(2), 11-22. DOI:10.3808/jei.200300019
  • Zolfaghari, V. (2020). The nuclear issue and Iran-US relations: Perspectives and different natures. Iranian Review of Foreign Affairs, 11(32), 591-619.

Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi ile Modellenmesi

Year 2023, Volume: 9 Issue: 2, 268 - 275, 30.06.2023
https://doi.org/10.28979/jarnas.1204904

Abstract

Bu çalışmada, askeri açıdan biri güçlü diğeri zayıf olan iki ülke arasında yaşanan maddi ve manevi kayıplara neden olan savaşa dönüşmüş bir uluslararası çıkmazı matris girdili matris oyunları kullanarak modelledik. Modelimizi kurmak için ilk olarak geçmişte ve günümüzde yaşanan ve savaş durumuna dönüşen uluslararası olayları inceledik. Elde ettiğimiz bilgiler ışığında çalışmada sunacağımız oyunun senaryosunu detaylı bir şekilde açıkladık. Sunduğumuz senaryoya göre oyunumuzu üç farklı matris oyuna dönüşebilecek bir matris girdili matris oyunu şeklinde modelledik. Oluşturulan modele göre yaşanan aktif savaş durumu, ateşkes durumuna veya savaşa devam etme durumlarına dönüşmektedir. Ateşkes durumunda oyun biter-ken, savaşa devam etme durumunda ise oyun işgal edilen yerleri tut veya de facto duruma geri dön şeklinde yeni bir matris girdili matris oyununa dönüşmektedir. De facto sınırlara dönülmesi durumunda ortaya çıkan bu oyun sona ererken, işgal edilen yerlerin tutulması durumunda ise savaşan bu iki ülkenin savaş stratejilerinin belirleneceği yeni bir oyun ortaya çıkmaktadır. Oluşan bu son oyunda ise ülkelerin savunma veya saldırı durumlarından birine geçeceği stratejiler arasından seçim yapmaları gerekmektedir ve bunun sonunda savaşın son durumu belirlenmektedir. Böylece içinde üç farklı oyun içeren matris girdili matris oyun modelinin her bir durumunu ayrı ayrı ele alıp, çözümlerini elde ederek gerçek problemin çözümüne ulaştık ve senaryodaki ülkelerin kriz durumunda ülke menfaatlerini koruyabilecekleri en ideal stratejileri belirledik. Böylece iki ülke arasında yaşanan bir savaşı oyun teorisi kullanarak modelledik ve sonuçlarını sunduk.

References

  • Ahmad, A. (2022). Land for Peace? Game Theory and the Strategic Impediments to a Resolution in Israel-Palestine. Defence and Peace Economics, 1-25. DOI: 10.1080/10242694.2022.2031445
  • Alzawahreh, A. S. (2021). Prisoner’s Dilemma Theory in International Relations: A Theoretical and Practical Study on Saudi-Iranian Relations. Canadian Social Science, 17(5), 30-34. DOI:10.3968/12291
  • Archetti, M. & Pienta, K. J. (2019). Cooperation among cancer cells: applying game theory to cancer. Nature Reviews Cancer, 19(2), 110-117. DOI: 10.1038/s41568-018-0083-7
  • Aumann, R. & Schelling, T. (2005), Contributions to game theory: Analysis of conflict and cooperation. Nobel Prize in Economics Documents, 2005-1.
  • Babaei, S. & Gordji, M. E. (2022). Modeling Political and economic relations between Norway and Russia: A behavioral game theory approach. The Pure and Applied Mathematics, 29(2), 141-160.
  • Beebe, R.P. (1957). Military decision from the viewpoint pf game theory. Naval War College Review, 10(2), 27-76.
  • Berkovitz, L. D. & Dresher, M. (1959). A game-theory analysis of tactical air war. Operation Research, 7(5), 599-620. DOI: 10.1287/opre.7.5.599
  • Bshary, R. & Oliveira, R. F. (2015). Cooperation in animals: toward a game theory within the framework of social competence. Current Opinion in Behavioral Sciences, 3, 31-37. DOI: 10.1016/j.cobeha.2015.01.008 Chung, N. (2005). The Sino-Taiwanese crisis: A game theoretic analysis. Sigma: Journal of Political and International Studies, 23(1), 7. Correa, H. (2001). Game theory as an instrument for the analysis of international relations. Ritsumeikan Annual Review of International Studies, 14(2), 187-208.
  • Elimam, L., Rheinheimer, D., Connell, C., & Madani, K. (2008). An Ancient Struggle: A Game Theory Approach to Resolving the Nile Conflict. World Environmental and Water Resources Congress 2008
  • Ferguson, Thomas S. (2014). Game theory Part II, Mathematics Depart¬ment UCLA, 2nd Edition.
  • Gill, Q. S. (2020). Arms rivalry in South Asia: The prisoner’s dilemma paradigm. Pakistan Social Sciences Review, 4(4), 160-170.
  • Hansen, M. (1990). Airline competition in a hub-dominated environment: An application of noncooperative game theory. Transportation Research Part B: Methodological, 24(1), 27-43. DOI: 10.1016/0191-2615(90)90030-3 Haywood, Jr, O. G. (1954). Military decision and game the¬ory. Journal of the Operations Research Society of America,¬ 2(4), 365-385.
  • İzgi, B. & Özkaya, M. (2020). Tarım Sigortası Gerekliliğinin Oyun Teorisi Yardımıyla Gösterilmesi: Matris Norm Yaklaşımı. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20 (5) , 824-831. DOI: 10.35414/akufemubid.677349
  • Levi, N. (2017). Applying game theory to North Korea-China relations. Journal of Modern Science, 2(33), 35-366. Maynard Smith, J. & Price, G.R. (1973). The logic of animal conflict. Nature, 246, 15-18. DOI: 10.1038/246015a0
  • Nam, C. & Kim, W. (2000). North Korea-Japan negotiations for diplomatic normalization: A game-theoretic analysis, Korean Journal of Defense Analysis, 12(1), 109-130. DOI: 10.1080/10163270009463980
  • Mousavi, M. A. (2015). Iran-US nuclear standoff: A game theory approach. Iranian Review of Foreign Affairs, 1(1). Nash, J. F. (1950). The bargaining problem. Econometrica: Journal of the Econometric Society, 18(2), 155-162. DOI: 10.2307/1907266
  • Osborne, M. J. & Rubinstein, A. (1994). A course in game theory. MIT press, London. Oh, J. H. & Ryu, J. Y. (2011). The Effectiveness of Economic Sanctions on North Korea: Chinas Vital Role. Korean Journal of Defense Analysis, 23(1), 117-131.
  • Özkaya , M. & İzgi , B. (2021a). Uluslararası Bir Krizin Oyun Teorisi ile Matematiksel Olarak Modellenmesi, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(4), 1334-1341. DOI: 10.17798/bitlisfen.942655
  • Özkaya, M. & İzgi, B. (2021b). Effects of the quarantine on the individuals’ risk of Covid-19 infection: Game theoretical approach. Alexandria Engineering Journal, 60(4), 4157-4165. DOI: 10.1016/j.aej.2021.02.021 Peters, H. (2015). Game theory: A Multi-leveled approach. Springer, London.
  • Pramanik, S. & Roy, T. K. (2013). Game theoretic model to the Jammu-Kashmir conflict between India and Pakistan. International Journal of Mathematical Archive, 4(8), 162-170.
  • Reynolds, P. W. (2012). Modeling conflict between China and the United States. Naval Postgraduate School Monterey Ca Defense Analysis Dept.
  • Rzeczpospolita,(2008). https://web.archive.org/web/20140917145807/http://www.rp.pl/artykul/2,174204.html. Erişim Tarihi: 29.12.2022
  • Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V. & Wu, Q. (2010). A survey of game theory as applied to network security. 43rd Hawaii International Conference on System Sciences (pp. 1-10). IEEE. DOI: 10.1109/HICSS.2010.35
  • Savunen, T. (2009). Application of the cooperative game theory to global strategic alliances. Helsinki University of Technology Finland.
  • Snidal, D. (1985). The game theory of international politics. World Politics, 38(1), 25-57. DOI: 10.2307/2010350 Şahiner, M. K. & Özbuğday, F. C. (2022). Oyun teorisi bağlamında Suriye İç Savaşı'nın geleceği. Ulisa: Uluslararası Çalışmalar Dergisi, 6(1), 51-65. Von Neumann, J. & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton university press. Wang, L. Z., Fang, L. & Hipel, K. W. (2003). Water resources allocation: a cooperative game theoretic approach. Journal of Environmental Informatics, 2(2), 11-22. DOI:10.3808/jei.200300019
  • Zolfaghari, V. (2020). The nuclear issue and Iran-US relations: Perspectives and different natures. Iranian Review of Foreign Affairs, 11(32), 591-619.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Software Engineering (Other)
Journal Section Research Article
Authors

Murat Özkaya 0000-0001-7241-4710

Ahmet Bakkaloğlu 0000-0003-3531-3587

Early Pub Date June 21, 2023
Publication Date June 30, 2023
Submission Date November 15, 2022
Published in Issue Year 2023 Volume: 9 Issue: 2

Cite

APA Özkaya, M., & Bakkaloğlu, A. (2023). Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi ile Modellenmesi. Journal of Advanced Research in Natural and Applied Sciences, 9(2), 268-275. https://doi.org/10.28979/jarnas.1204904
AMA Özkaya M, Bakkaloğlu A. Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi ile Modellenmesi. JARNAS. June 2023;9(2):268-275. doi:10.28979/jarnas.1204904
Chicago Özkaya, Murat, and Ahmet Bakkaloğlu. “Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi Ile Modellenmesi”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 2 (June 2023): 268-75. https://doi.org/10.28979/jarnas.1204904.
EndNote Özkaya M, Bakkaloğlu A (June 1, 2023) Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi ile Modellenmesi. Journal of Advanced Research in Natural and Applied Sciences 9 2 268–275.
IEEE M. Özkaya and A. Bakkaloğlu, “Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi ile Modellenmesi”, JARNAS, vol. 9, no. 2, pp. 268–275, 2023, doi: 10.28979/jarnas.1204904.
ISNAD Özkaya, Murat - Bakkaloğlu, Ahmet. “Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi Ile Modellenmesi”. Journal of Advanced Research in Natural and Applied Sciences 9/2 (June 2023), 268-275. https://doi.org/10.28979/jarnas.1204904.
JAMA Özkaya M, Bakkaloğlu A. Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi ile Modellenmesi. JARNAS. 2023;9:268–275.
MLA Özkaya, Murat and Ahmet Bakkaloğlu. “Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi Ile Modellenmesi”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 2, 2023, pp. 268-75, doi:10.28979/jarnas.1204904.
Vancouver Özkaya M, Bakkaloğlu A. Askeri Açıdan Denk Olmayan İki Ülke Savaşının Oyun Teorisi ile Modellenmesi. JARNAS. 2023;9(2):268-75.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).