Determination of Structural and Optical Properties of Zn1-xCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique
Year 2023,
Volume: 9 Issue: 3, 710 - 718, 20.09.2023
Emin Yakar
Abstract
In this work, Zn1-xCuxO nanoparticles (x= 0.025, x=0.050, and x=0.075) were synthesized by co-precipitation technique using chemical bath deposition wastes of Cu:ZnO thin films. The XRD evaluation showed that the well-crystalline hexagonal wurtzite ZnO indexed peaks. Average crystallite sizes were found to be around 35.6-42.9 nm range by using the Debye-Scherrer equation. Surface morphology results showed that dense layer of nano-roses and fewer nanorods formations in low Cu-concentrated (x=0.025 and x=0.050) samples. The optical absorption edge shifted slightly to the higher wavelength from 350 nm to 375 nm with decreasing copper concentration, as mentioned the blue shift. Blue shift might be caused an increase in the optical band gap from 3.14 eV to 3.28 eV due to the decrease in Cu concentration.
References
-
Anitha, S., & Muthukumaran, S. (2020). Structural, optical and antibacterial investigation of La, Cu dual
doped ZnO nanoparticles prepared by co-precipitation method. Materials Science and Engine-ering:
C, 108, 110387. doi:10.1016/j.msec.2019.110387
-
Bordbar, M. , Khodadadi1, B., Mollatayefe, N., Yeganeh A., (2017). Influence of metal (Ag, Cd, Cu)-doping
on the optical properties of ZnO nanopowder: Variation of band gap Journal of Applied Che-mistry, 8
(2013) 43-47
-
Chu, V. B., Siopa, D., Debot, A., Adeleye, D., Sood, M., Lomuscio, A., … Dale, P. J. (2021). Waste- and
Cd-Free Inkjet-Printed Zn(O,S) Buffer for Cu(In,Ga)(S,Se)2 Thin-Film Solar Cells. ACS Applied
Materials & Interfaces, 13(11), 13009–13021. doi:10.1021/acsami.0c16860
-
Das, B. K., Das, T., Parashar, K., Thirumurugan, A., & Parashar, S. K. S. (2017). Structural, bandgap tuning
and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical allo-ying. Journal of Materials Science: Materials in Electronics, 28, 15127-15134.
-
Debanath, M. K., & Karmakar, S. (2013). Study of blueshift of optical band gap in zinc oxide (ZnO) nano
particles prepared by low-temperature wet chemical method. Materials Letters, 111, 116–119.
doi:10.1016/j.matlet.2013.08.069
-
Drummer, S., Madzimbamuto T., and Chowdhury M. (2021). Green Synthesis of Transition-Metal Nanopar
ticles and Their Oxides: A Review Materials 14, no. 11: 2700. https://doi.org/10.3390/ma14112700
Gahlaut, U.P.S., Kumar V., Pandey R.K., & Goswami Y.C. (2016) Highly luminescent ultra-small Cu doped
ZnO nanostructures grown by ultrasonicated sol-gel route, Optik 127 4292–4295.
-
Istrate, AI., Mihalache, I., Romanitan, C. et al. (2021). Copper doping effect on the properties in ZnO films
deposited by sol–gel. J Mater Sci: Mater Electron 32, 4021–4033 (2021). https://doi.org/10.1007/s10854-020-05144-2
-
Kamarulzaman, N., Kasim, M.F. & Rusdi, R. (2015). Band Gap Narrowing and Widening of ZnO Na-nost
ructures and Doped Materials. Nanoscale Res Lett 10, 346. https://doi.org/10.1186/s11671-015-
1034-9
-
Kim, C. E., Moon, P., Kim, S., Myoung, J.-M., Jang, H. W., Bang, J., & Yun, I. (2010). Effect of car-rier
concentration on optical bandgap shift in ZnO:Ga thin films. Thin Solid Films, 518(22), 6304–6307. doi:10.1016/j.tsf.2010.03.042
-
Labhane, P. , Huse, V. , Patle, L. , Chaudhari, A. and Sonawane, G. (2015) Synthesis of Cu Doped ZnO Na
noparticles: Crystallographic, Optical, FTIR, Morphological and Photocatalytic Study. Journal of
Materials Science and Chemical Engineering, 3, 39-51. doi: 10.4236/msce.2015.37005.
-
Liu, W. L., & Zhang, Y. F. (2018). Blueshift of absorption edge and photoluminescence in Al doped ZnO
thin films. Integrated Ferroelectrics, 188(1), 112–120. doi:10.1080/10584587.2018.1454222
-
Ma, Z., Ren, F., Ming, X., Long, Y., & Volinsky, A. A. (2019). Cu-Doped ZnO Electronic Structure and
Optical Properties Studied by First-Principles Calculations and Experiments. Materials, 12(1).
doi:10.3390/ma12010196
-
Malinowska, B., Rakib, M. & Durand, G. (2002). Cadmium recovery and recycling from chemical bath de
position of CdS thin layers. Prog. Photovolt. Res. Appl. 10, 215–228.
https://doi.org/10.1002/pip.402.
-
Naik, E. I., Naik, H. S. B., Swamy, B. E. K., Viswanath, R., Gowda, I. K. S., Prabhakara, M. C., & Chetan
kumar, K. (2021). Influence of Cu doping on ZnO nanoparticles for improved structural, opti-cal, electrochemical properties and their applications in efficient detection of latent fingerp-rints. Chemical Data Collections, 33, 100671. doi:10.1016/j.cdc.2021.100671
-
Raji, R., & Gopchandran, K. G. (2017). ZnO:Cu nanorods with visible luminescence: copper induced defect
levels and its luminescence dynamics. Materials Research Express, 4(2), 025002. doi:10.1088/2053-1591/aa5762
-
Sarf, F., Karaduman E.I., Yakar, E., & Acar, S., (2021). Substrate critical effect on the structural and H2
Gas sensing characteristics of solution-processed Zn0.075Cu0.025O films, Mater. Res. Exp-ress, 8, 126401, DOI: 10.1088/2053-1591/ac3f09.
-
Sarf, F., & Kızıl, H., (2021). Defect Emission Energy and Particle Size Effects in Fe:ZnO Nanospheres Used
in Li-ion Batteries as Anode. Journal of Electronic Materials , vol.10, 111.
-
Vasudevan, J;, Johnson, S; Jeyakumar, B; et al, Materials Today: Proceedings, 2021, 12-19
-
Vasudevan, J., Johnson Jeyakumar, S., Arunkumar, B., Jothibas, M., Muthuvel, A., & Vijayalakshmi, S.
(2022). Optical and magnetic investigation of Cu doped ZnO nanoparticles synthesized by so-lid state method. Materials Today: Proceedings, 48, 438–442. doi:10.1016/j.matpr.2020.12.429
-
Wang, L.(2019). European Patent Application Bulletin 26, 26.06.2019
Wang, D.F., Zhang, T.,( 2009). Study on the defects of ZnO nanowire, Solid State Communications,
149:1947-1949