Research Article
BibTex RIS Cite

A Bibliometric Analysis on Federated Learning

Year 2024, Volume: 10 Issue: 4, 875 - 898, 31.12.2024
https://doi.org/10.28979/jarnas.1555351

Abstract

With the rapid advancement of technology and growing concerns about data privacy, federated learning (FL) has attracted considerable attention from the scientific community. The emergence of FL as a novel machine-learning approach and the volume of relevant papers and studies now call for a thorough investigation of FL. In the present research, an analysis was conducted on 3107 articles about federated learning exported from the Web of Science (WoS). The paper performs a bibliometric analysis to examine the productivity, citations, and bibliographic matching of significant authors, universities/institutions, and countries. The evolution of research material on federated learning over time was analyzed in the research. The study also provides comprehensive analysis by examining the most frequently used terms in the articles and attempting to identify trending areas of study with federated learning. This paper offers primary information on FL for readers worldwide and a comprehensive and accurate analysis of potential contributors.

References

  • L. Li, Y. Fan, M. Tse, K. Y. Lin, A review of applications in federated learning, Computers and Industrial Engineering 149 (2020) 106854 15 pages.
  • C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, Y. Gao, A survey on federated learning, Knowledge-Based Systems 216 (2021) 106775 11 pages.
  • C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, X. Liu, Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data, in: J. Leskovec, M. Grobelnik, M. Najork, J. Tang, L. Zia (Eds.), Proceedings of the Web Conference 2021, Ljubljana, 2021, pp. 935-946.
  • A. Imteaj, U. Thakker, S. Wang, J. Li, M. H. Amini, A survey on federated learning for resource-constrained IoT devices, IEEE Internet of Things Journal 9 (1) (2021) 1-24.
  • S. Savazzi, M. Nicoli, V. Rampa, Federated learning with cooperating devices: A consensus approach for massive IoT networks, IEEE Internet of Things Journal 7 (5) (2020) 4641-4654.
  • J. Pang, Y. Huang, Z. Xie, Q. Han, Z. Cai, Realizing the heterogeneity: A self-organized federated learning framework for IoT, IEEE Internet of Things Journal 8 (5) (2020) 3088-3098.
  • A. Qayyum, K. Ahmad, M. A. Ahsan, A. Al-Fuqaha, J. Qadir, Collaborative federated learning for healthcare: Multi-modal COVID-19 diagnosis at the edge, IEEE Open Journal of the Computer Society 3 (2022) 172–184.
  • L. Sun, J. Wu, A scalable and transferable federated learning system for classifying healthcare sensor data, IEEE Journal of Biomedical and Health Informatics 27 (2) (2022) 866–877.
  • A. Jiménez-Sánchez, M. Tardy, M. A. G. Ballester, D. Mateus, G. Piella, Memory-aware curriculum federated learning for breast cancer classification, Computer Methods and Programs in Biomedicine 229 (2023) 107318 10 pages.
  • J. Bian, J. Huang, S. Ji, Y. Liao, X. Li, Q. Wang, J. Zhou, D. Dou, Y. Wang, H. Xiong, Feynman: Federated learning-based advertising for ecosystems-oriented mobile apps recommendation, IEEE Transactions on Services Computing 16 (5) (2023) 3361–3372.
  • S. R. Pokhrel, J. A. Choi, Decentralized federated learning approach for connected autonomous vehicles, in: S. Bahk, Y. Kim, S. C. Bang, S. L. Kim, Y. J. Choi (Eds.), IEEE Wireless Communications and Networking Conference Workshops, Seoul, 2020, pp. 1–6
  • T. Zeng, O. Semiari, M. Chen, W. Saad, M. Bennis, Federated learning on the road autonomous controller design for connected and autonomous vehicles, IEEE Transactions on Wireless Communications 21 (12) (2022) 10407–10423.
  • Y. M. Saptura, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, M. D. Mueck, S. Srikanteswara, Energy demand prediction with federated learning for electric vehicle networks, in: V. Cerf, D. Zuckerman, T. Mooren, J. Hong (Eds.), IEEE Global Communications Conference, Waikoloa, 2019, pp. 1–6
  • M. Savi, F. Olivadese, Short-term energy consumption forecasting at the edge: A federated learning approach, IEEE Access 9 (2021) 95949–95969.
  • Y. Wang, I. L. Bennani, X. Liu, M. Sun, Y. Zhou, Electricity consumer characteristics identification: A federated learning approach, IEEE Transactions on Smart Grid 12 (4) (2021) 3637–3647.
  • Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: Concept and applications, ACM Transactions on Intelligent Systems and Technology 10 (2) (2019) 1–19.
  • H. Gupta, D. Patel, A. Makade, K. Gupta, O. P. Vyas, A. Puliafito, Risk prediction in the life insurance industry using federated learning approach, IEEE 21st Mediterranean Electrotechnical Conference, Palermo, 2022, pp. 948–953.
  • D. Jatain, V. Singh, N. Dahiya, A contemplative perspective on federated machine learning: Taxonomy, threats and vulnerability assessment and challenges, Journal of King Saud University-Computer and Information Sciences 34 (9) (2022) 6681–6698.
  • J. Li, T. Cui, K. Yang, R. Yuan, L. He, M. Li, Demand forecasting of e-commerce enterprises based on horizontal federated learning from the perspective of sustainable development, Sustainability 13 (23) (2021) 13050 29 pages.
  • M. V. Shenoy, HFedDI: A novel privacy preserving horizontal federated learning-based scheme for IoT device identification, Journal of Network and Computer Applications 214 (2023) 103616 12 pages.
  • H. Wang, F. Xie, Q. Duan, J. Li, Federated learning for supply chain demand forecasting, Mathematical Problems in Engineering 2022 (1) (2022) Article ID 4109070 8 pages.
  • Z. Mao, H. Li, Z. Huang, Y. Tian, P. Zhao, Y. Li, Full data-processing power load forecasting based on vertical federated learning, Journal of Electrical and Computer Engineering 2023 (1) (2023) Article ID 9914169 9 pages.
  • I. Kevin, K. Wang, X. Zhou, W. Liang, Z. Yan, J. She, Federated transfer learning based cross-domain prediction for smart manufacturing, IEEE Transactions on Industrial Informatics 18 (6) (2021) 4088–4096.
  • Y. Chen, X. Qin, J. Wang, C. Yu, W. Gao, Fedhealth: A federated transfer learning framework for wearable healthcare, IEEE Intelligent Systems 35 (4) (2020) 83–93.
  • D. Ye, R. Yu, M. Pan, Z. Han, Federated learning in vehicular edge computing: A selective model aggregation approach, IEEE Access 8 (2020) 23920–23935.
  • X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, K. Wang, Two-layer federated learning with heterogeneous model aggregation for 6g supported internet of vehicles, IEEE Transactions on Vehicular Technology 70 (6) (2021) 5308–5317.
  • W. Ou, J. Zeng, Z. Guo, W. Yan, D. Liu, S. Fuentes, A homomorphic-encryption-based vertical federated learning scheme for risk management, Computer Science and Information Systems 17 (3) (2020) 819–834.
  • L. Zhang, J. Xu, P. Vijayakumar, P. K. Sharma, U. Ghosh, Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system, IEEE Transactions on Network Science and Engineering 10 (5) (2022) 2864–2880.
  • Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, K. Y. Lam, Local differential privacy-based federated learning for the Internet of things, IEEE Internet of Things Journal 8 (11) (2021) 8836–8853.
  • M. Adnan, S. Kalra, J. C. Cresswell, G. W. Taylor, H. R. Tizhoosh, Federated learning and differential privacy for medical image analysis, Scientific Reports 12 (1) (2022) Article Number 1953 10 pages.
  • D. Jatain, V. Singh, N. Dahiya, A contemplative perspective on federated machine learning: Taxonomy, threats and vulnerability assessment and challenges, Journal of King Saud University-Computer and Information Sciences 34 (9) (2022) 6681–6698.
  • B. Jia, X. Zhang, J. Liu, Y. Zhang, K. Huang, Y. Liang, Blockchain-enabled federated learning data protection aggregation scheme with differential privacy and homomorphic encryption in IIoT, IEEE Transactions on Industrial Informatics 18 (6) (2021) 4049–4058.
  • Z. Chen, P. Tian, W. Liao, W. Yu, Zero-knowledge clustering based adversarial mitigation in heterogeneous federated learning, IEEE Transactions on Network Science and Engineering 8 (2) (2020) 1070–1083.
  • V. C. Gogineni, S. Werner, Y. F. Huang, A. Kuh, Communication-efficient online federated learning framework for nonlinear regression, in: H. Li, S. Furui, T. Chen (Eds.), IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 2022, pp. 5228–5232.
  • Q. Wei, Q. Li, Z. Zhou, Z. Q. Ge, Y. Zhang, Privacy-preserving two-parties logistic regression on vertically partitioned data using asynchronous gradient sharing, Peer-to-Peer Networking and Applications 14 (2021) 1379–1387.
  • J. Cai, X. Liu, Z. Yu, K. Guo, J. Li, Efficient vertical federated learning method for ridge regression of large-scale samples, IEEE Transactions on Emerging Topics in Computing 11 (2) (2022) 511–526.
  • F. Yamamoto, S. Ozawa, L. Wang, eFL-Boost: Efficient federated learning for gradient boosting decision trees, IEEE Access 10 (2022) 43954–43963.
  • X. Chen, S. Zhou, B. Guan, K. Yang, H. Fao, H. Wang, Y. Wang, Fed-eini: An efficient and interpretable inference framework for decision tree ensembles in vertical federated learning, in: U. Fayyad, X. Zhu (Eds.), IEEE International Conference on Big Data, Virtual Event, 2021, pp. 1242–1248
  • T. Markovic, M. Leon, D. Buffoni, S. Punnekkat, Random forest based on federated learning for intrusion detection, in: I. Maglogiannis, J. Macintyre (Eds.), International Conference on Artificial Intelligence Applications and Innovations, Springer, Cham, 2022, pp. 132–144.
  • T. U. Islam, R. Ghasemi, N. Mohammed, Privacy-preserving federated learning model for healthcare data, in: S. Vuong (Ed.), IEEE 12th Annual Computing and Communication Workshop and Conference, Las Vegas, 2022, pp. 0281–0287.
  • T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, W. Shi, Federated learning of predictive models from federated electronic health records, International Journal of Medical Informatics 112 (2018) 59–67.
  • A. Vaid, S. K Jaladanki, J. Xu, S. Teng, A. Kumar, S. Lee, S. Somani, I. Paranjpe, J. K De Freitas, T. Wanyan, K. W. Johnson, M. Bıçak, E. Klang, Y. J. Kwon, A. Costa, S. Zhao, R. Miotto, A. W. Charney, E. Böttinger, Z. A. Fayad, G. N. Nadkarni, F. Wang, B. S. Glicksberg, Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach, JMIR Medical Informatics 9 (1) (2021) e24207 11 pages.
  • P. Guo, P. Wang, J. Zhou, S. Jiang, V. M. Patel, Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning, in: M. S. Brown, R. Sukthankar, T. Tan, L. Zelnik (Eds.), Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021 pp. 2423–2432.
  • I. Khan, A. Guerrieri, G. Spezzano, A. Vinci, Occupancy prediction in buildings: An approach leveraging LSTM and Federated Learning, IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress, Calabria, 2022 pp. 1–7.
  • G. Zhang, S. Zhu, X. Bai, Federated learning-based multi-energy load forecasting method using CNN-Attention-LSTM model, Sustainability 14 (19) (2022) 12843 14 pages.
  • S. Agrawal, S. Sarkar, M. Alazab, P. K. R. Maddikunta, T. R. Gadekallu, Q. V. Pham, Genetic CFL: Hyperparameter optimization in clustered federated learning, Computational Intelligence and Neuroscience 2021 (1) (2021) Article ID 7156420 10 pages.
  • H. N. C. Neto, I. Dusparic, D. M. F. Mattos, N. C. Fernandes, FedSA: Accelerating intrusion detection in collaborative environments with federated simulated annealing, in: A. Clemm, G. Maier (Eds.), IEEE 8th International Conference on Network Softwarization, Milan, 2022, pp. 420–428.
  • S. Park, Y. Suh, J. Lee, FedPSO: Federated learning using particle swarm optimization to reduce communication costs, Sensors 21 (2) (2021) 600 13 pages.
  • F. Cui, Z. A. Al-Sudani, G. S. Hassan, H. A. Afan, S. J. Ahammed, Z. M. Yaseen, Boosted artificial intelligence model using improved alpha-guided grey wolf optimizer for groundwater level prediction: Comparative study and insight for federated learning technology, Journal of Hydrology 606 (2022) 127384 16 pages.
  • X. Zhu, D. Wang, W. Pedrycz, Z. Li, Horizontal federated learning of Takagi–Sugeno fuzzy rule-based models, IEEE Transactions on Fuzzy Systems 30 (9) (2021) 3537–3547.
  • N. Cha, Z. Du, C. Wu, T. Yoshinaga, L. Zhong, J. Ma, F. Liu, Y. Ji, Fuzzy logic-based client selection for federated learning in vehicular networks, IEEE Open Journal of the Computer Society 3 (2022) 39–50.
  • E. Yoo, H. Ko, S. Pack, Fuzzy clustered federated learning algorithm for solar power generation forecasting, IEEE Transactions on Emerging Topics in Computing 10 (4) (2022) 2092–2098.
  • F. A. KhoKhar, J. H. Shah, M. A. Khan, M. Sharif, U. Tariq, S. Kadry, A review on federated learning towards image processing, Computers and Electrical Engineering 99 (2022) 107818 19 pages.
  • E. M. Campos, P. F. Saura, A. González-Vidal, J. L. Hernández-Ramos, J. B. Bernabé, G. Baldini, A. Skarmeta, Evaluating federated learning for intrusion detection in internet of things: Review and challenges, Computer Networks 203 (2022) 108661 16 pages.
  • L. G. F. da Silva, D. F. H. Sadok, P. T. Endo, Resource optimizing federated learning for use with IoT: A systematic review, Journal of Parallel and Distributed Computing 175 (2023) 92–108.
  • H. Li, C. Li, J. Wang, A. Yang, Z. Ma, Z. Zhang, D. Hua, Review on security of federated learning and its application in healthcare, Future Generation Computer Systems 7144 (2023) 271–290.
  • F. Liu, M. Li, X. Liu, T. Xue, J. Ren, C. Zhang, A review of federated meta-learning and its application in cyberspace security, Electronics 12 (15) (2023) 3295 35 pages.
  • Z. Teimoori, A. Yassine, A review on intelligent energy management systems for future electric vehicle transportation, Sustainability 14 (21) (2022) 14100 23 pages.
  • Z. Yang, M. Chen, K. K. Wong, H. V. Poor, S. Cui, Federated learning for 6G: Applications, challenges, and opportunities, Engineering 8 (2022) 33–41.
  • A. R. Javed, M. A. Hassan, F. Shahzad, W. Ahmed, S. Singh, T. Baker, T. R. Gadekallu, Integration of blockchain technology and federated learning in vehicular (IoT) networks: A comprehensive survey, Sensors 22 (12) (2022) 4394 24 pages.
  • H. S. Sikandar, H. Waheed, S. Tahir, S. U. R. Malik, W. Rafique, A detailed survey on federated learning attacks and defenses, Electronics 12 (2) (2023) 260 18 pages.
  • N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, W. M. Lim, How to conduct a bibliometric analysis: An overview and guidelines, Journal of Business Research 133 (2021) 285–296.
  • M. Ulu, Y. S. Türkan, Bibliometric analysis of traffic accident prediction studies from 2003 to 2023: Trends, patterns, and future directions, Promet-Traffic and Transportation 36 (5) (2024) 1–21.
  • Y. Li, Z. Xu, X. Wang, X. Wang, A bibliometric analysis on deep learning during 2007–2019, International Journal of Machine Learning and Cybernetics 11 (2020) 2807–2826.
  • J. M. Merigó, J. B. Yang, A bibliometric analysis of operations research and management science, Omega 73 (2017) 37–48.
  • A. E. Ezugwu, A. K. Shukla, R. Nath, A. A. Akinyelu, J. O. Agushaka, H. Chiroma, P. K. Muhuri, Metaheuristics: A comprehensive overview and classification along with bibliometric analysis, Artificial Intelligence Review 54 (2021) 4237–4316.
  • A. K. Shukla, M. Janmaijaya, A. Abraham, P. K. Muhuri, Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988–2018), Engineering Applications of Artificial Intelligence 85 (2019) 517–532
  • J. Z. Zhang, P. R. Srivastava, D. Sharma, P. Eachempati, Big data analytics and machine learning: A retrospective overview and bibliometric analysis, Expert Systems with Applications 184 (2021) 115561 18 pages.
  • D. Yu, Z. Xu, W. Wang, A bibliometric analysis of Fuzzy Optimization and Decision Making (2002–2017), Fuzzy Optimization and Decision Making 18 (2019) 371–397.
  • Y. Zhang, H. Chen, J. Lu, G. Zhang, Detecting and predicting the topic change of knowledge-based systems: A topic-based bibliometric analysis from 1991 to 2016, Knowledge-Based Systems 133 (2017) 255–268.
  • Clarivate, (2023), https://clarivate.libguides.com/librarianresources/coverage, Accessed 15 Nov 2023.
  • W. Yang, Y. Zhang, K. Ye, L. Li, C. Z. Xu, Ffd: A federated learning based method for credit card fraud detection, in: K. Chen, S. Seshadri, L. J. Zhang (Eds.), Big Data–BigData 2019: 8th International Congress, Held as Part of the Services Conference Federation, San Diego, 2019, Springer, Proceedings 8, pp. 18–32.
Year 2024, Volume: 10 Issue: 4, 875 - 898, 31.12.2024
https://doi.org/10.28979/jarnas.1555351

Abstract

References

  • L. Li, Y. Fan, M. Tse, K. Y. Lin, A review of applications in federated learning, Computers and Industrial Engineering 149 (2020) 106854 15 pages.
  • C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, Y. Gao, A survey on federated learning, Knowledge-Based Systems 216 (2021) 106775 11 pages.
  • C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, X. Liu, Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data, in: J. Leskovec, M. Grobelnik, M. Najork, J. Tang, L. Zia (Eds.), Proceedings of the Web Conference 2021, Ljubljana, 2021, pp. 935-946.
  • A. Imteaj, U. Thakker, S. Wang, J. Li, M. H. Amini, A survey on federated learning for resource-constrained IoT devices, IEEE Internet of Things Journal 9 (1) (2021) 1-24.
  • S. Savazzi, M. Nicoli, V. Rampa, Federated learning with cooperating devices: A consensus approach for massive IoT networks, IEEE Internet of Things Journal 7 (5) (2020) 4641-4654.
  • J. Pang, Y. Huang, Z. Xie, Q. Han, Z. Cai, Realizing the heterogeneity: A self-organized federated learning framework for IoT, IEEE Internet of Things Journal 8 (5) (2020) 3088-3098.
  • A. Qayyum, K. Ahmad, M. A. Ahsan, A. Al-Fuqaha, J. Qadir, Collaborative federated learning for healthcare: Multi-modal COVID-19 diagnosis at the edge, IEEE Open Journal of the Computer Society 3 (2022) 172–184.
  • L. Sun, J. Wu, A scalable and transferable federated learning system for classifying healthcare sensor data, IEEE Journal of Biomedical and Health Informatics 27 (2) (2022) 866–877.
  • A. Jiménez-Sánchez, M. Tardy, M. A. G. Ballester, D. Mateus, G. Piella, Memory-aware curriculum federated learning for breast cancer classification, Computer Methods and Programs in Biomedicine 229 (2023) 107318 10 pages.
  • J. Bian, J. Huang, S. Ji, Y. Liao, X. Li, Q. Wang, J. Zhou, D. Dou, Y. Wang, H. Xiong, Feynman: Federated learning-based advertising for ecosystems-oriented mobile apps recommendation, IEEE Transactions on Services Computing 16 (5) (2023) 3361–3372.
  • S. R. Pokhrel, J. A. Choi, Decentralized federated learning approach for connected autonomous vehicles, in: S. Bahk, Y. Kim, S. C. Bang, S. L. Kim, Y. J. Choi (Eds.), IEEE Wireless Communications and Networking Conference Workshops, Seoul, 2020, pp. 1–6
  • T. Zeng, O. Semiari, M. Chen, W. Saad, M. Bennis, Federated learning on the road autonomous controller design for connected and autonomous vehicles, IEEE Transactions on Wireless Communications 21 (12) (2022) 10407–10423.
  • Y. M. Saptura, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, M. D. Mueck, S. Srikanteswara, Energy demand prediction with federated learning for electric vehicle networks, in: V. Cerf, D. Zuckerman, T. Mooren, J. Hong (Eds.), IEEE Global Communications Conference, Waikoloa, 2019, pp. 1–6
  • M. Savi, F. Olivadese, Short-term energy consumption forecasting at the edge: A federated learning approach, IEEE Access 9 (2021) 95949–95969.
  • Y. Wang, I. L. Bennani, X. Liu, M. Sun, Y. Zhou, Electricity consumer characteristics identification: A federated learning approach, IEEE Transactions on Smart Grid 12 (4) (2021) 3637–3647.
  • Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: Concept and applications, ACM Transactions on Intelligent Systems and Technology 10 (2) (2019) 1–19.
  • H. Gupta, D. Patel, A. Makade, K. Gupta, O. P. Vyas, A. Puliafito, Risk prediction in the life insurance industry using federated learning approach, IEEE 21st Mediterranean Electrotechnical Conference, Palermo, 2022, pp. 948–953.
  • D. Jatain, V. Singh, N. Dahiya, A contemplative perspective on federated machine learning: Taxonomy, threats and vulnerability assessment and challenges, Journal of King Saud University-Computer and Information Sciences 34 (9) (2022) 6681–6698.
  • J. Li, T. Cui, K. Yang, R. Yuan, L. He, M. Li, Demand forecasting of e-commerce enterprises based on horizontal federated learning from the perspective of sustainable development, Sustainability 13 (23) (2021) 13050 29 pages.
  • M. V. Shenoy, HFedDI: A novel privacy preserving horizontal federated learning-based scheme for IoT device identification, Journal of Network and Computer Applications 214 (2023) 103616 12 pages.
  • H. Wang, F. Xie, Q. Duan, J. Li, Federated learning for supply chain demand forecasting, Mathematical Problems in Engineering 2022 (1) (2022) Article ID 4109070 8 pages.
  • Z. Mao, H. Li, Z. Huang, Y. Tian, P. Zhao, Y. Li, Full data-processing power load forecasting based on vertical federated learning, Journal of Electrical and Computer Engineering 2023 (1) (2023) Article ID 9914169 9 pages.
  • I. Kevin, K. Wang, X. Zhou, W. Liang, Z. Yan, J. She, Federated transfer learning based cross-domain prediction for smart manufacturing, IEEE Transactions on Industrial Informatics 18 (6) (2021) 4088–4096.
  • Y. Chen, X. Qin, J. Wang, C. Yu, W. Gao, Fedhealth: A federated transfer learning framework for wearable healthcare, IEEE Intelligent Systems 35 (4) (2020) 83–93.
  • D. Ye, R. Yu, M. Pan, Z. Han, Federated learning in vehicular edge computing: A selective model aggregation approach, IEEE Access 8 (2020) 23920–23935.
  • X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, K. Wang, Two-layer federated learning with heterogeneous model aggregation for 6g supported internet of vehicles, IEEE Transactions on Vehicular Technology 70 (6) (2021) 5308–5317.
  • W. Ou, J. Zeng, Z. Guo, W. Yan, D. Liu, S. Fuentes, A homomorphic-encryption-based vertical federated learning scheme for risk management, Computer Science and Information Systems 17 (3) (2020) 819–834.
  • L. Zhang, J. Xu, P. Vijayakumar, P. K. Sharma, U. Ghosh, Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system, IEEE Transactions on Network Science and Engineering 10 (5) (2022) 2864–2880.
  • Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, K. Y. Lam, Local differential privacy-based federated learning for the Internet of things, IEEE Internet of Things Journal 8 (11) (2021) 8836–8853.
  • M. Adnan, S. Kalra, J. C. Cresswell, G. W. Taylor, H. R. Tizhoosh, Federated learning and differential privacy for medical image analysis, Scientific Reports 12 (1) (2022) Article Number 1953 10 pages.
  • D. Jatain, V. Singh, N. Dahiya, A contemplative perspective on federated machine learning: Taxonomy, threats and vulnerability assessment and challenges, Journal of King Saud University-Computer and Information Sciences 34 (9) (2022) 6681–6698.
  • B. Jia, X. Zhang, J. Liu, Y. Zhang, K. Huang, Y. Liang, Blockchain-enabled federated learning data protection aggregation scheme with differential privacy and homomorphic encryption in IIoT, IEEE Transactions on Industrial Informatics 18 (6) (2021) 4049–4058.
  • Z. Chen, P. Tian, W. Liao, W. Yu, Zero-knowledge clustering based adversarial mitigation in heterogeneous federated learning, IEEE Transactions on Network Science and Engineering 8 (2) (2020) 1070–1083.
  • V. C. Gogineni, S. Werner, Y. F. Huang, A. Kuh, Communication-efficient online federated learning framework for nonlinear regression, in: H. Li, S. Furui, T. Chen (Eds.), IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 2022, pp. 5228–5232.
  • Q. Wei, Q. Li, Z. Zhou, Z. Q. Ge, Y. Zhang, Privacy-preserving two-parties logistic regression on vertically partitioned data using asynchronous gradient sharing, Peer-to-Peer Networking and Applications 14 (2021) 1379–1387.
  • J. Cai, X. Liu, Z. Yu, K. Guo, J. Li, Efficient vertical federated learning method for ridge regression of large-scale samples, IEEE Transactions on Emerging Topics in Computing 11 (2) (2022) 511–526.
  • F. Yamamoto, S. Ozawa, L. Wang, eFL-Boost: Efficient federated learning for gradient boosting decision trees, IEEE Access 10 (2022) 43954–43963.
  • X. Chen, S. Zhou, B. Guan, K. Yang, H. Fao, H. Wang, Y. Wang, Fed-eini: An efficient and interpretable inference framework for decision tree ensembles in vertical federated learning, in: U. Fayyad, X. Zhu (Eds.), IEEE International Conference on Big Data, Virtual Event, 2021, pp. 1242–1248
  • T. Markovic, M. Leon, D. Buffoni, S. Punnekkat, Random forest based on federated learning for intrusion detection, in: I. Maglogiannis, J. Macintyre (Eds.), International Conference on Artificial Intelligence Applications and Innovations, Springer, Cham, 2022, pp. 132–144.
  • T. U. Islam, R. Ghasemi, N. Mohammed, Privacy-preserving federated learning model for healthcare data, in: S. Vuong (Ed.), IEEE 12th Annual Computing and Communication Workshop and Conference, Las Vegas, 2022, pp. 0281–0287.
  • T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, W. Shi, Federated learning of predictive models from federated electronic health records, International Journal of Medical Informatics 112 (2018) 59–67.
  • A. Vaid, S. K Jaladanki, J. Xu, S. Teng, A. Kumar, S. Lee, S. Somani, I. Paranjpe, J. K De Freitas, T. Wanyan, K. W. Johnson, M. Bıçak, E. Klang, Y. J. Kwon, A. Costa, S. Zhao, R. Miotto, A. W. Charney, E. Böttinger, Z. A. Fayad, G. N. Nadkarni, F. Wang, B. S. Glicksberg, Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach, JMIR Medical Informatics 9 (1) (2021) e24207 11 pages.
  • P. Guo, P. Wang, J. Zhou, S. Jiang, V. M. Patel, Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning, in: M. S. Brown, R. Sukthankar, T. Tan, L. Zelnik (Eds.), Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021 pp. 2423–2432.
  • I. Khan, A. Guerrieri, G. Spezzano, A. Vinci, Occupancy prediction in buildings: An approach leveraging LSTM and Federated Learning, IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress, Calabria, 2022 pp. 1–7.
  • G. Zhang, S. Zhu, X. Bai, Federated learning-based multi-energy load forecasting method using CNN-Attention-LSTM model, Sustainability 14 (19) (2022) 12843 14 pages.
  • S. Agrawal, S. Sarkar, M. Alazab, P. K. R. Maddikunta, T. R. Gadekallu, Q. V. Pham, Genetic CFL: Hyperparameter optimization in clustered federated learning, Computational Intelligence and Neuroscience 2021 (1) (2021) Article ID 7156420 10 pages.
  • H. N. C. Neto, I. Dusparic, D. M. F. Mattos, N. C. Fernandes, FedSA: Accelerating intrusion detection in collaborative environments with federated simulated annealing, in: A. Clemm, G. Maier (Eds.), IEEE 8th International Conference on Network Softwarization, Milan, 2022, pp. 420–428.
  • S. Park, Y. Suh, J. Lee, FedPSO: Federated learning using particle swarm optimization to reduce communication costs, Sensors 21 (2) (2021) 600 13 pages.
  • F. Cui, Z. A. Al-Sudani, G. S. Hassan, H. A. Afan, S. J. Ahammed, Z. M. Yaseen, Boosted artificial intelligence model using improved alpha-guided grey wolf optimizer for groundwater level prediction: Comparative study and insight for federated learning technology, Journal of Hydrology 606 (2022) 127384 16 pages.
  • X. Zhu, D. Wang, W. Pedrycz, Z. Li, Horizontal federated learning of Takagi–Sugeno fuzzy rule-based models, IEEE Transactions on Fuzzy Systems 30 (9) (2021) 3537–3547.
  • N. Cha, Z. Du, C. Wu, T. Yoshinaga, L. Zhong, J. Ma, F. Liu, Y. Ji, Fuzzy logic-based client selection for federated learning in vehicular networks, IEEE Open Journal of the Computer Society 3 (2022) 39–50.
  • E. Yoo, H. Ko, S. Pack, Fuzzy clustered federated learning algorithm for solar power generation forecasting, IEEE Transactions on Emerging Topics in Computing 10 (4) (2022) 2092–2098.
  • F. A. KhoKhar, J. H. Shah, M. A. Khan, M. Sharif, U. Tariq, S. Kadry, A review on federated learning towards image processing, Computers and Electrical Engineering 99 (2022) 107818 19 pages.
  • E. M. Campos, P. F. Saura, A. González-Vidal, J. L. Hernández-Ramos, J. B. Bernabé, G. Baldini, A. Skarmeta, Evaluating federated learning for intrusion detection in internet of things: Review and challenges, Computer Networks 203 (2022) 108661 16 pages.
  • L. G. F. da Silva, D. F. H. Sadok, P. T. Endo, Resource optimizing federated learning for use with IoT: A systematic review, Journal of Parallel and Distributed Computing 175 (2023) 92–108.
  • H. Li, C. Li, J. Wang, A. Yang, Z. Ma, Z. Zhang, D. Hua, Review on security of federated learning and its application in healthcare, Future Generation Computer Systems 7144 (2023) 271–290.
  • F. Liu, M. Li, X. Liu, T. Xue, J. Ren, C. Zhang, A review of federated meta-learning and its application in cyberspace security, Electronics 12 (15) (2023) 3295 35 pages.
  • Z. Teimoori, A. Yassine, A review on intelligent energy management systems for future electric vehicle transportation, Sustainability 14 (21) (2022) 14100 23 pages.
  • Z. Yang, M. Chen, K. K. Wong, H. V. Poor, S. Cui, Federated learning for 6G: Applications, challenges, and opportunities, Engineering 8 (2022) 33–41.
  • A. R. Javed, M. A. Hassan, F. Shahzad, W. Ahmed, S. Singh, T. Baker, T. R. Gadekallu, Integration of blockchain technology and federated learning in vehicular (IoT) networks: A comprehensive survey, Sensors 22 (12) (2022) 4394 24 pages.
  • H. S. Sikandar, H. Waheed, S. Tahir, S. U. R. Malik, W. Rafique, A detailed survey on federated learning attacks and defenses, Electronics 12 (2) (2023) 260 18 pages.
  • N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, W. M. Lim, How to conduct a bibliometric analysis: An overview and guidelines, Journal of Business Research 133 (2021) 285–296.
  • M. Ulu, Y. S. Türkan, Bibliometric analysis of traffic accident prediction studies from 2003 to 2023: Trends, patterns, and future directions, Promet-Traffic and Transportation 36 (5) (2024) 1–21.
  • Y. Li, Z. Xu, X. Wang, X. Wang, A bibliometric analysis on deep learning during 2007–2019, International Journal of Machine Learning and Cybernetics 11 (2020) 2807–2826.
  • J. M. Merigó, J. B. Yang, A bibliometric analysis of operations research and management science, Omega 73 (2017) 37–48.
  • A. E. Ezugwu, A. K. Shukla, R. Nath, A. A. Akinyelu, J. O. Agushaka, H. Chiroma, P. K. Muhuri, Metaheuristics: A comprehensive overview and classification along with bibliometric analysis, Artificial Intelligence Review 54 (2021) 4237–4316.
  • A. K. Shukla, M. Janmaijaya, A. Abraham, P. K. Muhuri, Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988–2018), Engineering Applications of Artificial Intelligence 85 (2019) 517–532
  • J. Z. Zhang, P. R. Srivastava, D. Sharma, P. Eachempati, Big data analytics and machine learning: A retrospective overview and bibliometric analysis, Expert Systems with Applications 184 (2021) 115561 18 pages.
  • D. Yu, Z. Xu, W. Wang, A bibliometric analysis of Fuzzy Optimization and Decision Making (2002–2017), Fuzzy Optimization and Decision Making 18 (2019) 371–397.
  • Y. Zhang, H. Chen, J. Lu, G. Zhang, Detecting and predicting the topic change of knowledge-based systems: A topic-based bibliometric analysis from 1991 to 2016, Knowledge-Based Systems 133 (2017) 255–268.
  • Clarivate, (2023), https://clarivate.libguides.com/librarianresources/coverage, Accessed 15 Nov 2023.
  • W. Yang, Y. Zhang, K. Ye, L. Li, C. Z. Xu, Ffd: A federated learning based method for credit card fraud detection, in: K. Chen, S. Seshadri, L. J. Zhang (Eds.), Big Data–BigData 2019: 8th International Congress, Held as Part of the Services Conference Federation, San Diego, 2019, Springer, Proceedings 8, pp. 18–32.
There are 72 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other)
Journal Section Research Article
Authors

Ömer Algorabi 0000-0002-2016-8674

Yusuf Sait Türkan 0000-0001-7240-183X

Mesut Ulu 0000-0002-5591-8674

Ersin Namlı 0000-0001-5980-9152

Publication Date December 31, 2024
Submission Date September 24, 2024
Acceptance Date December 22, 2024
Published in Issue Year 2024 Volume: 10 Issue: 4

Cite

APA Algorabi, Ö., Türkan, Y. S., Ulu, M., Namlı, E. (2024). A Bibliometric Analysis on Federated Learning. Journal of Advanced Research in Natural and Applied Sciences, 10(4), 875-898. https://doi.org/10.28979/jarnas.1555351
AMA Algorabi Ö, Türkan YS, Ulu M, Namlı E. A Bibliometric Analysis on Federated Learning. JARNAS. December 2024;10(4):875-898. doi:10.28979/jarnas.1555351
Chicago Algorabi, Ömer, Yusuf Sait Türkan, Mesut Ulu, and Ersin Namlı. “A Bibliometric Analysis on Federated Learning”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 4 (December 2024): 875-98. https://doi.org/10.28979/jarnas.1555351.
EndNote Algorabi Ö, Türkan YS, Ulu M, Namlı E (December 1, 2024) A Bibliometric Analysis on Federated Learning. Journal of Advanced Research in Natural and Applied Sciences 10 4 875–898.
IEEE Ö. Algorabi, Y. S. Türkan, M. Ulu, and E. Namlı, “A Bibliometric Analysis on Federated Learning”, JARNAS, vol. 10, no. 4, pp. 875–898, 2024, doi: 10.28979/jarnas.1555351.
ISNAD Algorabi, Ömer et al. “A Bibliometric Analysis on Federated Learning”. Journal of Advanced Research in Natural and Applied Sciences 10/4 (December 2024), 875-898. https://doi.org/10.28979/jarnas.1555351.
JAMA Algorabi Ö, Türkan YS, Ulu M, Namlı E. A Bibliometric Analysis on Federated Learning. JARNAS. 2024;10:875–898.
MLA Algorabi, Ömer et al. “A Bibliometric Analysis on Federated Learning”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 4, 2024, pp. 875-98, doi:10.28979/jarnas.1555351.
Vancouver Algorabi Ö, Türkan YS, Ulu M, Namlı E. A Bibliometric Analysis on Federated Learning. JARNAS. 2024;10(4):875-98.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).