Research Article
BibTex RIS Cite

Aspir Küspesine (Carthamus tinctorius) yem katkı maddesi olarak Çınar Yaprağının (Platanus orientalis L.) İkamesi; In Vitro Gaz Üretimi ve Sindirilebilirlik Üzerine Etkileri

Year 2025, Volume: 4 Issue: 2, 81 - 87, 24.07.2025
https://doi.org/10.5281/zenodo.16410013

Abstract

Bu çalışma, ruminant beslenmesinde alternatif yem katkı maddeleri kullanımı kapsamında, aspir küspesine (Carthamus tinctorius) ikame olarak çınar yaprağının (Platanus orientalis L.) potansiyelini değerlendirmek amacıyla yürütülmüştür. Çalışmada, aspir küspesine farklı oranlarda çınar yaprağı ilavesiyle oluşturulan deneme gruplarının in vitro gaz üretimi, tahmini sindirim ve enerji parametreleri, pH, TUYA ve NH3-N değerleri belirlenmiştir. Gaz üretimi, Hohenheim gaz üretim tekniğiyle 24 saatlik inkübasyon sürecinde ölçülmüş, elde edilen veriler doğrultusunda metabolik enerji (ME), net enerji laktasyon (NEL) ve organik madde sindirim derecesi hesaplanmıştır. Ayrıca rumen fermantasyonunu etkileyen tanen içeriği de dikkate alınarak mikrobiyal faaliyetler üzerindeki olası etkiler yorumlanmıştır. Elde edilen sonuçlar incelendiğinde gerçek sindirilen kuru madde miktarı, mikrobiyal protein, gerçek sindirim derecesi ve NH3-N parametrelerinin gruplar arasındaki farklılıklar linear olarak önemli bulunmuştur (p<0,05). Katkı maddesi olarak katılan çınar ağacı yaprağının yapısında bulunan tanenin anti-mikrobiyal ve anti-nutrisyonel özelliklerinden dolayı sindirimi ve sindirim sonucu oluşan parametreleri olumsuz etkilediği sadece hayvansal üretim açısından önem arz eden NH3-N değerin azalmasında destekleyici etki gösterdiği tespit edilmiştir. Bu bağlamda çınar yaprağı gibi tanen içeren kaynakların sürdürülebilir ve yerel kaynaklı bir yem katkı maddesi olarak protein içeriği yüksek yemlerde ya da rasyonlarda kullanılabileceği öngörülmüş olup in vivo çalışmalarla desteklenmesi kanaatine varılmıştır.

Ethical Statement

Çalışma için herhangi bir etik belgesine ihtiyaç yoktur.

Project Number

Çalışma proje ile desteklenmemiştir.

References

  • Amarowicz, R., & Pegg, R. B. (2024). Condensed tannins—Their content in plant foods, changes during processing, antioxidant and biological activities. Advances in Food and Nutrition Research, 110, 327–398. https://doi.org/10.1016/bs.afnr.2024.02.005
  • AOAC. (1990). Official method of analysis (15th ed.). Association of Official Analytical Chemists.
  • Arisya, W., Ridwan, R., Ridla, M., & Jayanegara, A. (2019, October). Tannin treatment for protecting feed protein degradation in the rumen in vitro. In Journal of Physics: Conference Series (Vol. 1360, No. 1, p. 012022). IOP Publishing. https://doi.org/10.1088/1742-6596/1360/1/012022
  • Ban, Y., & Guan, L. L. (2021). Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. Journal of Animal Science and Biotechnology, 12, 109. https://doi.org/10.1186/s40104-021-00617-3
  • Besharati, M., Maggiolino, A., Palangi, V., Kaya, A., Jabbar, M., Eseceli, H., ... & Lorenzo, J. M. (2022). Tannin in ruminant nutrition. Molecules, 27(23), 8273. https://doi.org/10.3390/molecules27238273
  • Blümmel, M., Steingaß, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6), 911–921. https://doi.org/10.1079/BJN19970089
  • Brutti, D. D., Canozzi, M. E. A., Sartori, E. D., Colombatto, D., & Barcellos, J. O. J. (2023). Effects of the use of tannins on the ruminal fermentation of cattle: A meta-analysis and meta-regression. Animal Feed Science and Technology, 306, 115806. https://doi.org/10.1016/j.anifeedsci.2023.115806
  • Chisoro, P., Jaja, I. F., & Assan, N. (2023). Incorporation of local novel feed resources in livestock feed for sustainable food security and circular economy in Africa. Frontiers in Sustainability, 4, 1251179. https://doi.org/10.3389/frsus.2023.1251179
  • Dumlu, B. (2024). Importance of nano-sized feed additives in animal nutrition. Journal of Agricultural Production, 5(1), 55–72.
  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1–42. https://doi.org/10.2307/3001478
  • Fonseca, N. V. B., da Silva Cardoso, A., Granja-Salcedo, Y. T., Siniscalchi, D., Camargo, K. D. V., Dornellas, I. A., ... & Reis, R. A. (2024). Effects of condensed tannin-enriched alternative energy feedstuff supplementation on performance, nitrogen utilization, and rumen microbial diversity in grazing beef cattle. Livestock Science, 287, 105529. https://doi.org/10.1016/j.livsci.2024.105529
  • Fouts, J. Q., Honan, M. C., Roque, B. M., Tricarico, J. M., & Kebreab, E. (2022). Enteric methane mitigation interventions. Translational Animal Science, 6(2), txac041. https://doi.org/10.1093/tas/txac041
  • Goel, G., Makkar, H. P., & Becker, K. (2008). Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1–3), 72–89.
  • Gümüş, E., & Küçükersan, S. (2016). The use of safflower in ruminant nutrition. Journal of Lalahan Livestock Research Institute, 56(1).
  • Habib, G., Khan, N. A., Sultan, A., & Ali, M. (2016). Nutritive value of common tree leaves for livestock in the semi-arid and arid rangelands of Northern Pakistan. Livestock Science, 184, 64–70.
  • Hassanat, F., & Benchaar, C. (2013). Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. Journal of the Science of Food and Agriculture, 93(2), 332–339.
  • Herrero, M., Havlik, P., McIntire, J., Palazzo, A., & Valin, H. (2014). African Livestock Futures: Realizing the potential of livestock for food security, poverty reduction and the environment in Sub-Saharan Africa. World Bank.
  • Irtiza, S., Bhat, G. A., Ahmad, M., Ganaie, H. A., Ganai, B. A., Kamili, A. N., ... & Tantry, M. A. (2016). Antioxidant and anti-inflammatory activities of Platanus orientalis: An oriental plant endemic to Kashmir plains. Pharmacologia, 7, 217–222.
  • Jayanegara, A., Ridla, M., Laconi, E. B., & Nahrowi, N. (2018, November). Tannin as a feed additive for mitigating enteric methane emission from livestock: Meta-analysis from RUSITEC experiments. In IOP Conference Series: Materials Science and Engineering (Vol. 434, No. 1, p. 012108). IOP Publishing.
  • Kamalak, A., & Ozkan, C. O. (2021). Potential nutritive value and anti-methanogenic potential of some fallen tree leaves in Turkey. Livestock Research for Rural Development, 33, 132.
  • Karabulut, A., & Canbolat, Ö. (2005). Yem değerlendirme ve analiz yöntemleri. Uludağ Üniversitesi Yayınları.
  • Makkar, H. P. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research, 49(3), 241–256.
  • Makkar, H. P. S., Blümmel, M., & Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73(3), 315–331.
  • Markham, R. (1942). A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochemical Journal, 36(10–12), 790.
  • Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7–55.
  • Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science, 93, 217–222.
  • Min, B. R., Barry, T. N., Attwood, G. T., & McNabb, W. C. (2003). The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Animal Feed Science and Technology, 106(1–4), 3–19.
  • Norris, A. B., Crossland, W. L., Tedeschi, L. O., Foster, J. L., Muir, J. P., Pinchak, W. E., & Fonseca, M. A. (2020). Inclusion of quebracho tannin extract in a high-roughage cattle diet alters digestibility, nitrogen balance, and energy partitioning. Journal of Animal Science, 98(3), skaa047.
  • Özek, K. (2017). Aspirin yem değeri ve çiftlik hayvanlarının beslenmesinde kullanılabilme olanakları: II. Ruminantların beslenmesinde kullanımı ve etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 20(1), 35–41.
  • Özel, O., & Sarıçiçek, B. (2009). Ruminantlarda rumen mikroorganizmalarının varlığı ve önemi (Derleme). TÜBAV Bilim Dergisi, 2(3), 277–285.
  • Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24–37.
  • Paul, B. K. (2019). At a crossroads: Potential impacts and trade-offs of improved livestock feeding and forages in smallholder farming systems of East Africa (Doctoral dissertation, Wageningen University and Research).
  • Salem, H. B., Makkar, H. P. S., Nefzaoui, A., Hassayoun, L., & Abidi, S. (2005). Benefit from the association of small amounts of tannin-rich shrub foliage (Acacia cyanophylla Lindl.) with soybean meal given as supplements to Barbarine sheep fed on oaten hay. Animal Feed Science and Technology, 122(1–2), 173–186.
  • Serrapica, F., Masucci, F., Raffrenato, E., Sannino, M., Vastolo, A., Barone, C. M. A., & Di Francia, A. (2019). High fiber cakes from Mediterranean multipurpose oilseeds as protein sources for ruminants. Animals, 9(11), 918. https://doi.org/10.3390/ani9110918
  • Singh, S., Singh, T., Kumar, N., Koli, P., Das, M. M., Mahanta, S. K., ... & Katiyar, R. (2025). Verim, besin özellikleri ve silajlama kalitesi açısından Sehima nervosum'daki genetik çeşitliliğin değerlendirilmesi. Heliyon, 11(2).
  • Tapio, I., Snelling, T. J., Strozzi, F., & Wallace, R. J. (2017). The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology, 8, 7.
  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.
  • Vercoe, P. E., Makkar, H. P. S., & Schlink, A. C. (Eds.). (2010). In vitro screening of plant resources for extra-nutritional attributes in ruminants: Nuclear and related methodologies. Springer.
  • Wang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q., ... & Ma, L. (2018). Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential. Journal of Cleaner Production, 195, 448–457.
  • Woodward, S. L., Waghorn, G. C., Ulyatt, M. J., & Lassey, K. R. (2001, April). Early indications that feeding Lotus will reduce methane emissions from ruminants. In Proceedings of the New Zealand Society of Animal Production (Vol. 61, pp. 23–26).
  • Xia, C., Rahman, M. A. U., Yang, H., Shao, T., Qiu, Q., Su, H., & Cao, B. (2018). Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls. Asian-Australasian Journal of Animal Sciences, 31(10), 1643–1652.
  • Yanza, Y. R., Fitri, A., Suwignyo, B., Elfahmi, Hidayatik, N., Kumalasari, N. R., Irawan, A., & Jayanegara, A. (2021). The utilisation of tannin extract as a dietary additive in ruminant nutrition: A meta-analysis. Animals, 11(11), 3317. https://doi.org/10.3390/ani11113317
  • National Research Council, Committee on Animal Nutrition, & Subcommittee on Dairy Cattle Nutrition. (2001). Nutrient requirements of dairy cattle: 2001. National Academies Press.

The Replacement of Safflower meal (Carthamus tinctorius) with Plane Tree Leaves (Platanus orientalis L.) as a Feed Additive; Effects on In Vitro Gas Production and Digestibility

Year 2025, Volume: 4 Issue: 2, 81 - 87, 24.07.2025
https://doi.org/10.5281/zenodo.16410013

Abstract

This study was conducted to evaluate the potential of plane tree leaves (Platanus orientalis L.) as an alternative feed additive to safflower meal (Carthamus tinctorius) in ruminant nutrition. The effects of incorporating different levels of plane tree leaves into safflower meal-based diets on in vitro gas production, estimated digestibility, energy parameters, pH, total volatile fatty acids (TVFA), and ammonia nitrogen (NH₃-N) levels were investigated. Gas production was measured over a 24-hour incubation period using the Hohenheim gas production technique. Based on the results, metabolic energy (ME), net energy for lactation (NEL), and organic matter digestibility (OMD) were calculated. In addition, considering the tannin content of the leaves, potential impacts on microbial activity during rumen fermentation were interpreted. The results showed that the parameters including truly digested dry matter, microbial protein, true digestibility, and NH₃-N levels differed significantly among the experimental groups in a linear manner (p<0.05). The tannins present in plane tree leaves exhibited anti-microbial and anti-nutritional effects, leading to negative impacts on digestibility and associated fermentation parameters. However, a beneficial reduction in NH₃-N concentration—a factor of importance for animal production efficiency—was also observed. In conclusion, it was suggested that tannin-rich sources such as plane tree leaves may serve as sustainable and locally available feed additives, particularly in protein-rich feeds or rations. However, further in vivo studies are warranted to support these findings.

Project Number

Çalışma proje ile desteklenmemiştir.

References

  • Amarowicz, R., & Pegg, R. B. (2024). Condensed tannins—Their content in plant foods, changes during processing, antioxidant and biological activities. Advances in Food and Nutrition Research, 110, 327–398. https://doi.org/10.1016/bs.afnr.2024.02.005
  • AOAC. (1990). Official method of analysis (15th ed.). Association of Official Analytical Chemists.
  • Arisya, W., Ridwan, R., Ridla, M., & Jayanegara, A. (2019, October). Tannin treatment for protecting feed protein degradation in the rumen in vitro. In Journal of Physics: Conference Series (Vol. 1360, No. 1, p. 012022). IOP Publishing. https://doi.org/10.1088/1742-6596/1360/1/012022
  • Ban, Y., & Guan, L. L. (2021). Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. Journal of Animal Science and Biotechnology, 12, 109. https://doi.org/10.1186/s40104-021-00617-3
  • Besharati, M., Maggiolino, A., Palangi, V., Kaya, A., Jabbar, M., Eseceli, H., ... & Lorenzo, J. M. (2022). Tannin in ruminant nutrition. Molecules, 27(23), 8273. https://doi.org/10.3390/molecules27238273
  • Blümmel, M., Steingaß, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6), 911–921. https://doi.org/10.1079/BJN19970089
  • Brutti, D. D., Canozzi, M. E. A., Sartori, E. D., Colombatto, D., & Barcellos, J. O. J. (2023). Effects of the use of tannins on the ruminal fermentation of cattle: A meta-analysis and meta-regression. Animal Feed Science and Technology, 306, 115806. https://doi.org/10.1016/j.anifeedsci.2023.115806
  • Chisoro, P., Jaja, I. F., & Assan, N. (2023). Incorporation of local novel feed resources in livestock feed for sustainable food security and circular economy in Africa. Frontiers in Sustainability, 4, 1251179. https://doi.org/10.3389/frsus.2023.1251179
  • Dumlu, B. (2024). Importance of nano-sized feed additives in animal nutrition. Journal of Agricultural Production, 5(1), 55–72.
  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1–42. https://doi.org/10.2307/3001478
  • Fonseca, N. V. B., da Silva Cardoso, A., Granja-Salcedo, Y. T., Siniscalchi, D., Camargo, K. D. V., Dornellas, I. A., ... & Reis, R. A. (2024). Effects of condensed tannin-enriched alternative energy feedstuff supplementation on performance, nitrogen utilization, and rumen microbial diversity in grazing beef cattle. Livestock Science, 287, 105529. https://doi.org/10.1016/j.livsci.2024.105529
  • Fouts, J. Q., Honan, M. C., Roque, B. M., Tricarico, J. M., & Kebreab, E. (2022). Enteric methane mitigation interventions. Translational Animal Science, 6(2), txac041. https://doi.org/10.1093/tas/txac041
  • Goel, G., Makkar, H. P., & Becker, K. (2008). Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1–3), 72–89.
  • Gümüş, E., & Küçükersan, S. (2016). The use of safflower in ruminant nutrition. Journal of Lalahan Livestock Research Institute, 56(1).
  • Habib, G., Khan, N. A., Sultan, A., & Ali, M. (2016). Nutritive value of common tree leaves for livestock in the semi-arid and arid rangelands of Northern Pakistan. Livestock Science, 184, 64–70.
  • Hassanat, F., & Benchaar, C. (2013). Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. Journal of the Science of Food and Agriculture, 93(2), 332–339.
  • Herrero, M., Havlik, P., McIntire, J., Palazzo, A., & Valin, H. (2014). African Livestock Futures: Realizing the potential of livestock for food security, poverty reduction and the environment in Sub-Saharan Africa. World Bank.
  • Irtiza, S., Bhat, G. A., Ahmad, M., Ganaie, H. A., Ganai, B. A., Kamili, A. N., ... & Tantry, M. A. (2016). Antioxidant and anti-inflammatory activities of Platanus orientalis: An oriental plant endemic to Kashmir plains. Pharmacologia, 7, 217–222.
  • Jayanegara, A., Ridla, M., Laconi, E. B., & Nahrowi, N. (2018, November). Tannin as a feed additive for mitigating enteric methane emission from livestock: Meta-analysis from RUSITEC experiments. In IOP Conference Series: Materials Science and Engineering (Vol. 434, No. 1, p. 012108). IOP Publishing.
  • Kamalak, A., & Ozkan, C. O. (2021). Potential nutritive value and anti-methanogenic potential of some fallen tree leaves in Turkey. Livestock Research for Rural Development, 33, 132.
  • Karabulut, A., & Canbolat, Ö. (2005). Yem değerlendirme ve analiz yöntemleri. Uludağ Üniversitesi Yayınları.
  • Makkar, H. P. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research, 49(3), 241–256.
  • Makkar, H. P. S., Blümmel, M., & Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73(3), 315–331.
  • Markham, R. (1942). A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochemical Journal, 36(10–12), 790.
  • Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7–55.
  • Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science, 93, 217–222.
  • Min, B. R., Barry, T. N., Attwood, G. T., & McNabb, W. C. (2003). The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Animal Feed Science and Technology, 106(1–4), 3–19.
  • Norris, A. B., Crossland, W. L., Tedeschi, L. O., Foster, J. L., Muir, J. P., Pinchak, W. E., & Fonseca, M. A. (2020). Inclusion of quebracho tannin extract in a high-roughage cattle diet alters digestibility, nitrogen balance, and energy partitioning. Journal of Animal Science, 98(3), skaa047.
  • Özek, K. (2017). Aspirin yem değeri ve çiftlik hayvanlarının beslenmesinde kullanılabilme olanakları: II. Ruminantların beslenmesinde kullanımı ve etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 20(1), 35–41.
  • Özel, O., & Sarıçiçek, B. (2009). Ruminantlarda rumen mikroorganizmalarının varlığı ve önemi (Derleme). TÜBAV Bilim Dergisi, 2(3), 277–285.
  • Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24–37.
  • Paul, B. K. (2019). At a crossroads: Potential impacts and trade-offs of improved livestock feeding and forages in smallholder farming systems of East Africa (Doctoral dissertation, Wageningen University and Research).
  • Salem, H. B., Makkar, H. P. S., Nefzaoui, A., Hassayoun, L., & Abidi, S. (2005). Benefit from the association of small amounts of tannin-rich shrub foliage (Acacia cyanophylla Lindl.) with soybean meal given as supplements to Barbarine sheep fed on oaten hay. Animal Feed Science and Technology, 122(1–2), 173–186.
  • Serrapica, F., Masucci, F., Raffrenato, E., Sannino, M., Vastolo, A., Barone, C. M. A., & Di Francia, A. (2019). High fiber cakes from Mediterranean multipurpose oilseeds as protein sources for ruminants. Animals, 9(11), 918. https://doi.org/10.3390/ani9110918
  • Singh, S., Singh, T., Kumar, N., Koli, P., Das, M. M., Mahanta, S. K., ... & Katiyar, R. (2025). Verim, besin özellikleri ve silajlama kalitesi açısından Sehima nervosum'daki genetik çeşitliliğin değerlendirilmesi. Heliyon, 11(2).
  • Tapio, I., Snelling, T. J., Strozzi, F., & Wallace, R. J. (2017). The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology, 8, 7.
  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.
  • Vercoe, P. E., Makkar, H. P. S., & Schlink, A. C. (Eds.). (2010). In vitro screening of plant resources for extra-nutritional attributes in ruminants: Nuclear and related methodologies. Springer.
  • Wang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q., ... & Ma, L. (2018). Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential. Journal of Cleaner Production, 195, 448–457.
  • Woodward, S. L., Waghorn, G. C., Ulyatt, M. J., & Lassey, K. R. (2001, April). Early indications that feeding Lotus will reduce methane emissions from ruminants. In Proceedings of the New Zealand Society of Animal Production (Vol. 61, pp. 23–26).
  • Xia, C., Rahman, M. A. U., Yang, H., Shao, T., Qiu, Q., Su, H., & Cao, B. (2018). Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls. Asian-Australasian Journal of Animal Sciences, 31(10), 1643–1652.
  • Yanza, Y. R., Fitri, A., Suwignyo, B., Elfahmi, Hidayatik, N., Kumalasari, N. R., Irawan, A., & Jayanegara, A. (2021). The utilisation of tannin extract as a dietary additive in ruminant nutrition: A meta-analysis. Animals, 11(11), 3317. https://doi.org/10.3390/ani11113317
  • National Research Council, Committee on Animal Nutrition, & Subcommittee on Dairy Cattle Nutrition. (2001). Nutrient requirements of dairy cattle: 2001. National Academies Press.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Zootechny (Other)
Journal Section Research Articles
Authors

Atilla Başer 0000-0002-7218-7543

Ali Kaya 0000-0002-7694-7220

Tuğba Bakir 0000-0003-2185-7137

Bilal Selçuk 0000-0001-9136-5707

Project Number Çalışma proje ile desteklenmemiştir.
Early Pub Date July 25, 2025
Publication Date July 24, 2025
Submission Date June 18, 2025
Acceptance Date July 18, 2025
Published in Issue Year 2025 Volume: 4 Issue: 2

Cite

APA Başer, A., Kaya, A., Bakir, T., Selçuk, B. (2025). Aspir Küspesine (Carthamus tinctorius) yem katkı maddesi olarak Çınar Yaprağının (Platanus orientalis L.) İkamesi; In Vitro Gaz Üretimi ve Sindirilebilirlik Üzerine Etkileri. Journal of Animal Science and Economics, 4(2), 81-87. https://doi.org/10.5281/zenodo.16410013

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929