Research Article
PDF EndNote BibTex Cite

Year 2020, Volume 8, Issue 3, 1231 - 1243, 15.09.2020
https://doi.org/10.17478/jegys.751038

Abstract

References

  • Al-Mutawah, M. A., Thomas, R., Eid, A., Mahmoud, E. Y., & Fateel, M. J. (2019). Conceptual Understanding, Procedural Knowledge and Problem-Solving Skills in Mathematics : High School Graduates Work Analysis and Standpoints. International Journal of Education and Practice 7(3), 258–273. https://doi.org/10.18488/journal.61.2019.73.258.273.al
  • Balera, J. M., & Júnior, V. A. S. (2017). An Algorithm for Combinatorial Interaction Testing: Definitions and Rigorous Evaluations. Journal of Software Engineering Research and Development 5(1), 2-41. https://doi.org/10.1186/s40411-017-0043-z.
  • Batanero, C., Navarro-Pelayo, V., & Godino, J. D. (1997). Effect of the Implicit Combinatorial Model on Combinatorial Reasoning in Secondary School Pupils. Educational Studies in Mathematics 32(2), 181–199. https://doi.org/10.1023/A
  • Cresswell, J. (2012). Educational Research: Planning, Conducting and Evaluating Qualitative and Quantitative Research (4th ed.). Boston: Pearson Education Inc.
  • Cuevas, O., Larios, V., Peralta, J. X., & Jiménez, A. R. (2018). Mathematical Knowledge of Students who Aspire to Enroll in Engineering Programs. International Electronic Journal of Mathematics Education 13(3), 161–169. https://doi.org/10.12973/iejme/3832.
  • Eizenberg, M., M., & Zaslavsky, O. (2004). Students’ Verification Strategies for Combinatorial Problems. Mathematical Thinking and Learning, 6(1): 15–36. https://doi.org/10.1207/s15327833mtl0601_2.
  • English, L.D. (1991). Young children’s combinatoric strategies. Educational Studies in Mathematics, 22(5), 451–474. https://doi.org/10.1007/BF00367908
  • English, L.D. (2005). Combinatorics and the Development of Children’s Combinatorial Reasoning. Exploring Probability in School: Challenges for Teaching and Learning, 121–141. https://doi.org/10.1007/0-387-24530-8_6.
  • Golafshani, N. (2003). Understanding Reliability and Validity in Qualitative Research. The Qualitative Report 8(4): 597-606.
  • Hayashi, T., & Ohsawa, Y. (2013). Processing Combinatorial Thinking: International Journal of Knowledge and Systems Science, 4(3), 14–38. https://doi.org/10.4018/ijkss.2013070102
  • Hufferd-Ackles, K., Fuson, K. C., & Sherin, M. G. (2004). Describing Levels and Components of a Math-Talk Learning Community. Journal for Research in Mathematics Education, 35(2), 81. https://doi.org/10.2307/30034933
  • Jazim, Anwar, B. A., & Rahmawati, D. (2017). The Use of Mathematical Module Based on Constructivism Approach as Media to Implant the Concept of Algebra Operation. International Electronic Journal of Mathematics Education 12(3): 579–583.
  • Kamau, L. M., Kimani, P., & Muthoni, P. (2016). Factors that Influence Teachers' Perceptions of Information Communication And Technology (ICT) in Mathematics Teaching in Kenyan Secondary Schools. International Journal of Education and Practice 4(4), 154–166. https://doi.org/10.18488/journal.61/2016.4.4/61.4.154.166.
  • Lay, Y. F. (2009). Logical Thinking Abilities among Form 4 Students in the Interior Division of Sabah, Malaysia. Journal of Science and Mathematics Education in Southeast Asia, 32, 161–187. Retrieved from http://www.recsam.edu.my/R&D_Journals/YEAR2009/dec2009vol2/logicalthinking(161-187).pdf%5Cnhttp://131.211.208.19/login?auth=eng&url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=eric3&AN=EJ910939
  • Lockwood, E. (2012). Counting Using Sets of Outcomes. Mathematics Teaching in the Middle School 18(3): 125-132. http://10.5951/mathteacmiddscho.18.3.0132.
  • Lockwood, E. (2013). A model of students’ combinatorial thinking. Journal of Mathematical Behavior, 32(2), 251–265. https://doi.org/10.1016/j.jmathb.2013.02.008.
  • Malloy, C. E., & Jones, M.G. (1998). An Investigation of African American Students’ Mathematical Problem Solving. Journal for Research in Mathematics Education, 29(2): 191–196.
  • Melusova, J., & Vidermanova, K. (2015). Upper-secondary Students’ Strategies for Solving Combinatorial Problems. Procedia - Social and Behavioral Sciences, 197(February), 1703–1709. https://doi.org/10.1016/j.sbspro.2015.07.223
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM. NRC. (1989). Everybody Counts: A Report to the Nation on the Future of Mathematics Education. Washington, D.C.: National Academy Press.
  • Pamungkas, A. S., & Khaerunnisa, E. (2020). The analysis of students statistical literacy based on prior knowledge and mathematical self esteem. Journal for the Mathematics Education and Teaching Practices 1(1)): 43–51. Retrieved from https://dergipark.org.tr/en/pub/jmetp/issue/55820/707759.
  • Pizlo, Z., & Li, Z. (2005). Solving combinatorial problems: The 15-puzzle. Memory & Cognition 33(6), 1069–1084. https://doi.org/10.3758/BF03193214
  • Pramusinta, Y., Setyosari, P., Widiati, U., & Kuswandi, D. (2019). Exploring Metacognitive and Critical Thinking Skills of Pre-Service Elementary School Teachers through Discovery Learning Method by Integrating Various Cognitive Styles. Journal for the Education of Gifted Young Scientists 7(4): 999–1017. https://doi.org/10.17478/jegys.614028.
  • Rezaie, M., & Gooya, Z. (2011). What do I mean by combinatorial thinking? Procedia - Social and Behavioral Sciences, 11,122–126. https://doi.org/10.1016/j.sbspro.2011.01.046.
  • Rosidin, U., Suyatna, A., & Abdurrahman, A. (2019). A Combined HOTS-Based Assessment/STEM Learning Model to Improve Secondary Students’ Thinking Skills: A Development and Evaluation Study. Journal for the Education of Gifted Young Scientists 7(2), 435–448. https://doi.org/10.17478/jegys.518464.
  • Setianingsih, R., Sa’dijah, C., As’ari, A. R., & Muksar, M. (2017). Investigating Fifth- Grade Students ’ Construction of Mathematical Knowledge through Classroom Discussion. International Electronic Journal of Mathematics Education 12(4), 383–396.
  • Silwana, A., Subanji, Manyunu, M., & Rashahan, A. A. (2021). Students' Responses Leveling in Solving Mathematical Problem Based on SOLO Taxonomy Viewed from Multiple Intelligences. Indonesian Journal on Learning and Advanced Education (IJOLAE) 3(1), 1–16. https://doi.org/10.23917/ijolae.v3i1.10528
  • Suyono, S. M., Roekhan, & Harsiati, T. (2019). Critical Thinking Patterns of First-Year Students in Argumentative Essay. Journal for the Education of Gifted Young Scientists 7(3), 683–697. https://doi.org/http://dx.doi.org/10.17478/jegys.605324.
  • Tsai, Y. L., Chang, C. K. (2008). Using Combinatorial Approach to Improve Students’ Learning of the Distributive Law and Multiplicative Identities. International Journal of Science and Mathematics Education 7(3), 501-531. https://doi.org/10.1007/s10763-008-9135-x.
  • Yuberti, Y., Rantika, J., Irwandani,I., & Prasetyo, A. E. (2019). The Effect of Instructional Design Based on Learning cycle 7E Model with Mind Map Technique to the Students' Critical Thiking Skills. Journal of Gifted Education and Creativity 6(3), 175-191.
  • Yuen, G. (2008). Problem Solving Strategies Students Use when Solving Combinatorial Problems. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of. Master of Arts in the Faculty of Graduate Studies the University of British Columbia.
  • Yuli, T., Siswono, E., Hartono, S., Kohar, A. W., Karim, K., & Lastiningsih, N. (2019). How do Prospective Teachers Manage Students’ Learning of Mathematics ? 8(2), 677–685. https://doi.org/10.18421/TEM82-49

Level of combinatorial thinking in solving mathematical problems

Year 2020, Volume 8, Issue 3, 1231 - 1243, 15.09.2020
https://doi.org/10.17478/jegys.751038

Abstract

Combinatorial thinking is an important reasoning process in building one's knowledge and experience. The purpose of this study is to describe the characteristics of the level of combinatorial thinking in solving mathematical problems. The subjects of the study were 40 students of Elementary Teacher Education Department (PGSD): 20 students of the second semester and the others of the sixth semester. The reason for choosing subjects from these two levels is to meet all levels of combinatorial thinking. All research subjects were given test questions about combinatorial problems. From 40 subjects, five students were selected to be interviewed as they had fulfilled all five levels of combinatorial thinking. The data validity was conducted by triangulation through recording interview results and comparing it with data from students' written test results to ensure the validity and reliability of this research. The results show that there are five levels of combinatorial thinking in solving mathematical problems: investigating “some cases’, systematically checking cases, using the calculation order, systematically generating all cases, and changing the problem into another combinatorial problem. Level one is the identification of the possibility of students’ understanding the questions incorrectly, or vice versa, already can answer the questions with systematic procedures but the results are less precise. Level two is conducting systematic checking about students' understanding of the combination material. Besides, it also concerns about the ability to answer problems systematically using diagram trees. Level three is students are able to apply the calculation orders, which are addition and multiplication. Level four is systematically generating all cases about the ability to calculate possibilities without schematic, drawings, or diagrams. Level five is changing the problem into another combinatorial problem, it is the ability to calculate possibilities with complex problems Based on the research findings, it turns out there is another level of combinatorial thinking, which is using the calculation order and this is found between level two and level three. The researchers recommend further research to explore more on the application of calculation order.

References

  • Al-Mutawah, M. A., Thomas, R., Eid, A., Mahmoud, E. Y., & Fateel, M. J. (2019). Conceptual Understanding, Procedural Knowledge and Problem-Solving Skills in Mathematics : High School Graduates Work Analysis and Standpoints. International Journal of Education and Practice 7(3), 258–273. https://doi.org/10.18488/journal.61.2019.73.258.273.al
  • Balera, J. M., & Júnior, V. A. S. (2017). An Algorithm for Combinatorial Interaction Testing: Definitions and Rigorous Evaluations. Journal of Software Engineering Research and Development 5(1), 2-41. https://doi.org/10.1186/s40411-017-0043-z.
  • Batanero, C., Navarro-Pelayo, V., & Godino, J. D. (1997). Effect of the Implicit Combinatorial Model on Combinatorial Reasoning in Secondary School Pupils. Educational Studies in Mathematics 32(2), 181–199. https://doi.org/10.1023/A
  • Cresswell, J. (2012). Educational Research: Planning, Conducting and Evaluating Qualitative and Quantitative Research (4th ed.). Boston: Pearson Education Inc.
  • Cuevas, O., Larios, V., Peralta, J. X., & Jiménez, A. R. (2018). Mathematical Knowledge of Students who Aspire to Enroll in Engineering Programs. International Electronic Journal of Mathematics Education 13(3), 161–169. https://doi.org/10.12973/iejme/3832.
  • Eizenberg, M., M., & Zaslavsky, O. (2004). Students’ Verification Strategies for Combinatorial Problems. Mathematical Thinking and Learning, 6(1): 15–36. https://doi.org/10.1207/s15327833mtl0601_2.
  • English, L.D. (1991). Young children’s combinatoric strategies. Educational Studies in Mathematics, 22(5), 451–474. https://doi.org/10.1007/BF00367908
  • English, L.D. (2005). Combinatorics and the Development of Children’s Combinatorial Reasoning. Exploring Probability in School: Challenges for Teaching and Learning, 121–141. https://doi.org/10.1007/0-387-24530-8_6.
  • Golafshani, N. (2003). Understanding Reliability and Validity in Qualitative Research. The Qualitative Report 8(4): 597-606.
  • Hayashi, T., & Ohsawa, Y. (2013). Processing Combinatorial Thinking: International Journal of Knowledge and Systems Science, 4(3), 14–38. https://doi.org/10.4018/ijkss.2013070102
  • Hufferd-Ackles, K., Fuson, K. C., & Sherin, M. G. (2004). Describing Levels and Components of a Math-Talk Learning Community. Journal for Research in Mathematics Education, 35(2), 81. https://doi.org/10.2307/30034933
  • Jazim, Anwar, B. A., & Rahmawati, D. (2017). The Use of Mathematical Module Based on Constructivism Approach as Media to Implant the Concept of Algebra Operation. International Electronic Journal of Mathematics Education 12(3): 579–583.
  • Kamau, L. M., Kimani, P., & Muthoni, P. (2016). Factors that Influence Teachers' Perceptions of Information Communication And Technology (ICT) in Mathematics Teaching in Kenyan Secondary Schools. International Journal of Education and Practice 4(4), 154–166. https://doi.org/10.18488/journal.61/2016.4.4/61.4.154.166.
  • Lay, Y. F. (2009). Logical Thinking Abilities among Form 4 Students in the Interior Division of Sabah, Malaysia. Journal of Science and Mathematics Education in Southeast Asia, 32, 161–187. Retrieved from http://www.recsam.edu.my/R&D_Journals/YEAR2009/dec2009vol2/logicalthinking(161-187).pdf%5Cnhttp://131.211.208.19/login?auth=eng&url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=eric3&AN=EJ910939
  • Lockwood, E. (2012). Counting Using Sets of Outcomes. Mathematics Teaching in the Middle School 18(3): 125-132. http://10.5951/mathteacmiddscho.18.3.0132.
  • Lockwood, E. (2013). A model of students’ combinatorial thinking. Journal of Mathematical Behavior, 32(2), 251–265. https://doi.org/10.1016/j.jmathb.2013.02.008.
  • Malloy, C. E., & Jones, M.G. (1998). An Investigation of African American Students’ Mathematical Problem Solving. Journal for Research in Mathematics Education, 29(2): 191–196.
  • Melusova, J., & Vidermanova, K. (2015). Upper-secondary Students’ Strategies for Solving Combinatorial Problems. Procedia - Social and Behavioral Sciences, 197(February), 1703–1709. https://doi.org/10.1016/j.sbspro.2015.07.223
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM. NRC. (1989). Everybody Counts: A Report to the Nation on the Future of Mathematics Education. Washington, D.C.: National Academy Press.
  • Pamungkas, A. S., & Khaerunnisa, E. (2020). The analysis of students statistical literacy based on prior knowledge and mathematical self esteem. Journal for the Mathematics Education and Teaching Practices 1(1)): 43–51. Retrieved from https://dergipark.org.tr/en/pub/jmetp/issue/55820/707759.
  • Pizlo, Z., & Li, Z. (2005). Solving combinatorial problems: The 15-puzzle. Memory & Cognition 33(6), 1069–1084. https://doi.org/10.3758/BF03193214
  • Pramusinta, Y., Setyosari, P., Widiati, U., & Kuswandi, D. (2019). Exploring Metacognitive and Critical Thinking Skills of Pre-Service Elementary School Teachers through Discovery Learning Method by Integrating Various Cognitive Styles. Journal for the Education of Gifted Young Scientists 7(4): 999–1017. https://doi.org/10.17478/jegys.614028.
  • Rezaie, M., & Gooya, Z. (2011). What do I mean by combinatorial thinking? Procedia - Social and Behavioral Sciences, 11,122–126. https://doi.org/10.1016/j.sbspro.2011.01.046.
  • Rosidin, U., Suyatna, A., & Abdurrahman, A. (2019). A Combined HOTS-Based Assessment/STEM Learning Model to Improve Secondary Students’ Thinking Skills: A Development and Evaluation Study. Journal for the Education of Gifted Young Scientists 7(2), 435–448. https://doi.org/10.17478/jegys.518464.
  • Setianingsih, R., Sa’dijah, C., As’ari, A. R., & Muksar, M. (2017). Investigating Fifth- Grade Students ’ Construction of Mathematical Knowledge through Classroom Discussion. International Electronic Journal of Mathematics Education 12(4), 383–396.
  • Silwana, A., Subanji, Manyunu, M., & Rashahan, A. A. (2021). Students' Responses Leveling in Solving Mathematical Problem Based on SOLO Taxonomy Viewed from Multiple Intelligences. Indonesian Journal on Learning and Advanced Education (IJOLAE) 3(1), 1–16. https://doi.org/10.23917/ijolae.v3i1.10528
  • Suyono, S. M., Roekhan, & Harsiati, T. (2019). Critical Thinking Patterns of First-Year Students in Argumentative Essay. Journal for the Education of Gifted Young Scientists 7(3), 683–697. https://doi.org/http://dx.doi.org/10.17478/jegys.605324.
  • Tsai, Y. L., Chang, C. K. (2008). Using Combinatorial Approach to Improve Students’ Learning of the Distributive Law and Multiplicative Identities. International Journal of Science and Mathematics Education 7(3), 501-531. https://doi.org/10.1007/s10763-008-9135-x.
  • Yuberti, Y., Rantika, J., Irwandani,I., & Prasetyo, A. E. (2019). The Effect of Instructional Design Based on Learning cycle 7E Model with Mind Map Technique to the Students' Critical Thiking Skills. Journal of Gifted Education and Creativity 6(3), 175-191.
  • Yuen, G. (2008). Problem Solving Strategies Students Use when Solving Combinatorial Problems. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of. Master of Arts in the Faculty of Graduate Studies the University of British Columbia.
  • Yuli, T., Siswono, E., Hartono, S., Kohar, A. W., Karim, K., & Lastiningsih, N. (2019). How do Prospective Teachers Manage Students’ Learning of Mathematics ? 8(2), 677–685. https://doi.org/10.18421/TEM82-49

Details

Primary Language English
Subjects Education and Educational Research
Published Date September 2020
Journal Section Thinking Skills
Authors

Yulıa Maftuhah HİDAYATİ> (Primary Author)
Universitas Muhammadiyah Surakarta
0000-0003-0842-0897
Indonesia


Abdul NGALİM>
Universitas Muhammadiyah Surakarta
0000-0001-9196-3918
Indonesia


Sutama SUTAMA>
Universitas Muhammadiyah Surakarta
0000-0002-9006-8388
Indonesia


Zainal ARİFİN>
Universitas Muhammadiyah Surakarta
0000-0002-0945-0943
Indonesia


Zaenal ABİDİN>
Universitas Muhammadiyah Surakarta
0000-0003-1102-430X
Indonesia


Eka RAHMAWATİ>
Universitas Muhammadiyah Surakarta
0000-0003-0484-2937
Indonesia

Supporting Institution Universitas Muhammadiyah Surakarta
Publication Date September 15, 2020
Published in Issue Year 2020, Volume 8, Issue 3

Cite

Bibtex @research article { jegys751038, journal = {Journal for the Education of Gifted Young Scientists}, eissn = {2149-360X}, address = {editorjegys@gmail.com}, publisher = {Genç Bilge Yayıncılık}, year = {2020}, volume = {8}, number = {3}, pages = {1231 - 1243}, doi = {10.17478/jegys.751038}, title = {Level of combinatorial thinking in solving mathematical problems}, key = {cite}, author = {Hidayati, Yulıa Maftuhah and Ngalim, Abdul and Sutama, Sutama and Arifin, Zainal and Abidin, Zaenal and Rahmawati, Eka} }
APA Hidayati, Y. M. , Ngalim, A. , Sutama, S. , Arifin, Z. , Abidin, Z. & Rahmawati, E. (2020). Level of combinatorial thinking in solving mathematical problems . Journal for the Education of Gifted Young Scientists , 8 (3) , 1231-1243 . DOI: 10.17478/jegys.751038
MLA Hidayati, Y. M. , Ngalim, A. , Sutama, S. , Arifin, Z. , Abidin, Z. , Rahmawati, E. "Level of combinatorial thinking in solving mathematical problems" . Journal for the Education of Gifted Young Scientists 8 (2020 ): 1231-1243 <https://dergipark.org.tr/en/pub/jegys/issue/55332/751038>
Chicago Hidayati, Y. M. , Ngalim, A. , Sutama, S. , Arifin, Z. , Abidin, Z. , Rahmawati, E. "Level of combinatorial thinking in solving mathematical problems". Journal for the Education of Gifted Young Scientists 8 (2020 ): 1231-1243
RIS TY - JOUR T1 - Level of combinatorial thinking in solving mathematical problems AU - Yulıa Maftuhah Hidayati , Abdul Ngalim , Sutama Sutama , Zainal Arifin , Zaenal Abidin , Eka Rahmawati Y1 - 2020 PY - 2020 N1 - doi: 10.17478/jegys.751038 DO - 10.17478/jegys.751038 T2 - Journal for the Education of Gifted Young Scientists JF - Journal JO - JOR SP - 1231 EP - 1243 VL - 8 IS - 3 SN - -2149-360X M3 - doi: 10.17478/jegys.751038 UR - https://doi.org/10.17478/jegys.751038 Y2 - 2020 ER -
EndNote %0 Journal for the Education of Gifted Young Scientists Level of combinatorial thinking in solving mathematical problems %A Yulıa Maftuhah Hidayati , Abdul Ngalim , Sutama Sutama , Zainal Arifin , Zaenal Abidin , Eka Rahmawati %T Level of combinatorial thinking in solving mathematical problems %D 2020 %J Journal for the Education of Gifted Young Scientists %P -2149-360X %V 8 %N 3 %R doi: 10.17478/jegys.751038 %U 10.17478/jegys.751038
ISNAD Hidayati, Yulıa Maftuhah , Ngalim, Abdul , Sutama, Sutama , Arifin, Zainal , Abidin, Zaenal , Rahmawati, Eka . "Level of combinatorial thinking in solving mathematical problems". Journal for the Education of Gifted Young Scientists 8 / 3 (September 2020): 1231-1243 . https://doi.org/10.17478/jegys.751038
AMA Hidayati Y. M. , Ngalim A. , Sutama S. , Arifin Z. , Abidin Z. , Rahmawati E. Level of combinatorial thinking in solving mathematical problems. JEGYS. 2020; 8(3): 1231-1243.
Vancouver Hidayati Y. M. , Ngalim A. , Sutama S. , Arifin Z. , Abidin Z. , Rahmawati E. Level of combinatorial thinking in solving mathematical problems. Journal for the Education of Gifted Young Scientists. 2020; 8(3): 1231-1243.
IEEE Y. M. Hidayati , A. Ngalim , S. Sutama , Z. Arifin , Z. Abidin and E. Rahmawati , "Level of combinatorial thinking in solving mathematical problems", Journal for the Education of Gifted Young Scientists, vol. 8, no. 3, pp. 1231-1243, Sep. 2020, doi:10.17478/jegys.751038

Submitted Articles: 589   Rejected Articles: 268 Published Articles: 320  Acceptance Rate:  %54   (Updated at February 9, 2022)

Journal for the Education of Gifted Young Scientists indexed from SCOPUS June 2018- December 2020. SOBIAD Impact Factor Score (1,171) Top One of Turkey at SOBIAD Index at 2019. Thanks for the contributions. 3rd International Congress on Gifted Youth and Sustainability of the Education (ICGYSE) 12-13 November 2022 (Please click for attendance).

Dergimiz "Education Full Text (H.W.Wilson) Database Coverage List" tarafından dizinlenmektedir. HTML  PDF   JEGYS'nin kapsamı;  eğitim bilimleri, alan eğitimi (tüm alan eğitimleri), üstün zekalılar eğitimi, interdisipliner eğitim çalışmaları, eğitimde sürdürülebilirlik çalışmaları, yetenek eğitimi gibi konulardır. Yazarların, araştırmalarında; yeni yöntem, model, yaklaşım, yetenek gelişimi, ileri (advanced) eğitim yenilikleri, karakter eğitimi, eğitimde sürdürülebilirlik gibi yönlerinden birini ya da birkaçını vurgulamaları JEGYS'nin yayın hedeflerini gerçekleştirmesi açısından önemlidir. 

JEGYS NOT INDEXED citefactor

    21871  17854      25126  20742           17865                   22217           21870        SCImago Journal & Country Rank (SJR) 25746257472574825749DHET Accredited Journal List (Department of Higher Education and Training of South Africa)
 

JOIN OUR EDITORIAL BOARD, PLEASE SEND YOUR CV TO EDITORJEGYS@GMAIL.COM



POPULARITY OF THE JEGYS OVER THE WORLD

                                                                 Free counters!

Note: Counter started on 28 February 2021

Giftedupoint.com Meeting point of the talent and giftedness

Young Wise Publishing/Genç Bilge Yayıncılık
Management-Publication Process-Office (Adress 1): 63 – 66 Hatton Garden, Fifth Floor, Suite 23, EC1N 8LE, London, UK
Web site: https://youngwisepub.com/ E-mail: info@youngwisepub.com

ISSN-Ownership-Office (Adress 2): Bahcelievler District 3015 St. No:9/1  Isparta, Turkey
Web site: http://gencbilgeyayincilik.com/ E-mail: gencbilgeyayincilik@gmail.com