Other
BibTex RIS Cite

Application of design thinking as a differentiation strategy for the education of gifted students: “City X”

Year 2022, Volume: 10 Issue: 4, 573 - 590, 30.12.2022
https://doi.org/10.17478/jegys.1183220

Abstract

This research aims to apply the City X Project as a 6-hour workshop for gifted students and evaluate the workshop. The study group consists of 25 gifted secondary school students (13 Female, 12 Male) who continue their education at the Science and Art Center (SAC) in a city center. During the application process, gifted students were introduced to the City X project, and information regarding the design thinking method was presented. The story of City X was provided to the students via a digital presentation. The given information was as follows: in the recent past, 40 people from the world were sent to a distant planet to form a colony and these people started to found City X city. City X citizens illustrate the specifics of the issues they face through "citizen cards" in many fields such as health, transportation, safety, and communication to the students and ask them for assistance in addressing the problems. The students are divided into 9 groups that have 2 to 3 participants using the game "Team Meter" during the execution of the workshop. Worksheets, a laptop or desktop computer with an internet connection, citizenship cards, a pen and paper were provided to each group to be used at each stage of the design thinking process. Students selected one of the citizenship cards and used the design thinking method to solve the problem written by the owner of the citizenship card. At the stage of empathy, they evaluated the emotions of the person they selected, and in the definition stage, they defined the social area of the problem raised by the City X citizen. The students later generated ideas for the solution of the specified problem, wrote their ideas on the worksheet, and picked an idea to prototype by group decision. The students prototyped their ideas during the prototyping and testing stages by drawing on the worksheet and completed their creations in various versions by providing feedback to each other. In the sharing stage, 2-dimensional drawings are transformed into 3-dimensional forms via Tinkercad and SketchUp programs. The 3D drawings were saved and submitted to the e-mail address of the City X administrator to be printed on the City X 3D printer. The worksheets used in the design thinking process, three-dimensional models, and the working dynamics of the groups were evaluated by students via Kahoot! web 2.0 tool. The criteria stated in the Kahoot! digital evaluation tools were scored in the range of 1-4 points. The views of students about the workshop were also collected verbally. The students reported that they enjoyed the process of design thinking, that they were pleased to do 3D drawings, that they wished to specialize in 3D design, and that they had several problems with teammates occasionally. One can suggest that the methods applied in the City X workshop can also be included in the course designs within the scope of STEM courses and design thinking methods can be adopted in SAC framework programs.

References

  • Akyol, C., Uygur, M., & Yanpar-Yelken, T. (2022). The use of 3D design programs and 3D printers in the education of the gifted and the opinions of students and teachers. Journal for the Education of Gifted Young Scientists, 10(2), 173-205.
  • Arifin, N. R., & Mahmud, S. N. D. (2021). A Systematic literature review of design thinking application in STEM integration. Creative Education, 12(7), 1558-1571.
  • Atacan, B. (2020). 7. sınıf fen bilgisi dersinde tasarım odaklı düşünmeye yönelik etkinliğin öğrencilerin motivasyon, ekip çalışması ve derse ilişkin bakış açılarına etkisi (Yayımlanmamış yüksek lisans tezi). Balıkesir Üniversitesi/Fen Bilimleri Enstitüsü, Balıkesir.
  • Avcu, Y. E. (2019). Özel yetenekli öğrenciler için bilişim teknolojileri ve yazılım alanına yönelik bir öğretim tasarımının geliştirilmesi (Yayımlanmamış doktora tezi). Balıkesir Üniversitesi/Sosyal Bilimler Enstitüsü, Balıkesir.
  • Avcu, Y. E., & Er, K. O. (2020). Design thinking applications in teaching programming to gifted students. Journal of Educational Technology and Online Learning, 3(1), 1-30.
  • Avcu, Y. E., & Ayverdi, L. (2021, Kasım). Özel yetenekli öğrencilerle gerçekleştirilen bir tasarım odaklı düşünme uygulaması [Öz]. İGATE'21’de sunulan bildiri, İnönü Üniveristesi, Malatya.
  • Avcu, Y. E., & Yaman, Y. (2022). Effectiveness of the differentiated instructional design for value education of gifted: a mixed study. Journal of Gifted Education and Creativity, 9(1), 1-23.
  • Aydemir, A., & Çetin, T. (2021). Tasarım odaklı düşünme yaklaşımı aracılığıyla sosyal bilgiler dersine yönelik geliştirilen ürünlerin etkililiği. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 41(2), 885-910.
  • Ayverdi, L. (2018). Özel yetenekli öğrencilerin fen eğitiminde teknoloji, mühendislik ve matematiğin kullanımı: FeTeMM yaklaşımı (Yayımlanmamış doktora tezi). Balıkesir Üniversitesi/Fen Bilimleri Enstitüsü, Balıkesir
  • Bootcamp Bootleg d.school. (2011). Design Thinking. Web: http://longevity3.stanford.edu/designchallenge2015/files/2013/09/Bootleg.pdf adresinden 21.09.2022 tarihinde alınmıştır.
  • Brown, T. (2008). Design thinking. Harvard business review, 86(6), 84.
  • Carroll, M., Goldman, S., Britos, L., Koh, J., Royalty, A., & Hornstein, M. (2010). Destination, imagination and the fires within: Design Thinking in a middle school classroom. International Journal of Art & Design Education, 29(1), 37–53.
  • Carroll, M. (2014). Shoot for the moon! the mentors and the middle schoolers explore the ıntersection of design thinking and STEM. Journal of Pre-College Engineering Education Research (J-PEER), 4(1), 14-30.
  • Carroll, M. (2015). Stretch, dream, and do- a 21st century design thinking & STEM journey. Journal of Research in STEM Education, 1(1), 59-70.
  • Çiftçi, A., & Topçu, M. S. (2020). Design thinking: Opinions and experiences of middle school students [Tasarim odakli düsünme: Ortaokul ögrencilerinin görüs ve deneyimleri]. Pegem Journal of Education and Instruction, 10(3), 961-1000.
  • Caferoğlu, M. (2021). Tasarım odaklı düşünce yöntemiyle oyun tasarımı: Nunki hikâye bohçası tasarımı örneği. Journal of Social and Humanities Sciences Research, 8(75), 2563-2576.
  • Chen, J., Yun Dai, D., & Zhou, Y. (2013). Enable, enhance, and transform: How technology use can improve gifted education. Roeper Review, 35(3), 166-176.
  • Coleman, M. R., & Hughes, C. E. (2009). Meeting the needs of gifted students within an RtI framework. Gifted Child Today, 32(3), 14-17.
  • Cross, T. L. (1997). Psychological and social aspects of educating gifted students. Peabody Journal of Education, 72(3-4), 180-200.
  • Darbellay, F., Moody, Z., & Lubart, T. (2017). Introduction: Thinking Creativity, Design and Interdisciplinarity in a Changing World. In F. Darbellay, Z. Moody and T. Lubart (Eds.), Creativity, Design Thinking and Interdisciplinarity (p.xi-xx), New York: Springer.
  • Davis, G. A., Rimm, S. B., & Siegle, D. (2014). Education of the gifted and talented (Sixth Edition). Edinburgh: Pearson Education Limited.
  • Dukes, C., & Koch, K. (2012). Crafting a delightful experience: Teaching interaction design to teens. Interactions, 19(2), 46-50.
  • Duman, B. ve Kayalı, D. (2017). Teknopedagojik Öğretme Yaklaşımının Tasarım Odaklı Düşünme Becerilerine Etkisi. Burak Akkoyunlu, Aytekin İşman, Hatice Ferhan Odabaşı (Editörler). Eğitimde Teknoloji Okumaları (ss.176-184). Ankara: TOJET.
  • Emir, S. (2021). Üstün zekalı ve yetenekliler için program farklılaştırma. Ankara: Vize Yayıncılık.
  • Fischer, K. W., & Rose, L. T. (2001). Webs of skill: How students learn. Educational Leadership, 59(3), 6-123.
  • Gaitas, S., & Martins, A. M. (2017). Teacher perceived difficulty in implementing differentiated instructional strategies in primary school. International Journal of Inclusive Education, 21(5), 544-556.
  • Girgin, D. (2019). Öğretmenlerin tasarım odaklı düşünmeye ilişkin bilişsel yapıları ve kavramsal değişimleri. Ahi Evran Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(2), 459-482.
  • Heacox, D. (2002). Differentiating instruction in the regular classroom: How to reach and teach all learners, grades 3-12. Minneapolis: Free Spirit Publishing.
  • Henriksen, D., Richardson, C., & Mehta, R. (2017). Design thinking: A creative approach to educational problems of practice. Thinking Skills and Creativity, 26, 140–153.
  • Hsiao, H. S., Yu, K. C., Chang, Y. S., Chien, Y. H., Lin, K. Y., Lin, C. Y., ... & Lin, Y. W. (2017, November). The study on integrating the design thinking model and STEM activity unit for senior high school living technology course. In 2017 7th World Engineering Education Forum (WEEF) (pp. 383-390). IEEE.
  • Kalbfleisch, M. L., & Tomlinson, C. A. (1998). Teach me, teach my brain a call for differentiated classrooms. Educational Leadership, 56(3), 52-55.
  • Kaplan Sayı, A. (2020). Handling Individual Di!erences in Generation Alpha. In Nuran Yurtseven (Ed.), The Teacher of Generation Alpha (p.75-93), Berlin: Peter Lang GmbH.
  • Kaplan Sayı, A., & Soysal, Ö. M. (2022). Digital differentiation in gifted Education. In J. L. Nyberg & J. A. Manzone (Eds.), Creating equitable services for the gifted: protocols for identification, implementation, and evaluation (pp. 205-225). IGI Global.
  • Kelley, T., & Kelley, D. (2013). Yaratıcı özgüven, içimizdeki yaratıcı potansiyeli serbest bırakmak (Çev. P. Şengözer). Pasifik Ofset: İstanbul.
  • Kitsantas, A., Bland, L., & Chirinos, D. S. (2017). Gifted students’ perceptions of gifted programs: An inquiry into their academic and social-emotional functioning. Journal for the Education of the Gifted, 40(3), 266-288.
  • Koh, J. H. L., Chai, C. S., Wong, B., & Hong, H. (2015). Design thinking for education: conceptions and applications in teaching and learning. Singapore: Springer.
  • Lee, D., Yoon, J., & Kang, S. J. (2014). The introduction of design thinking to science education and exploration of its characterizations as a method for group creativity education. Journal of the Korean Association for Science Education, 34(2), 93-105.
  • Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). Design and design thinking in STEM education. Journal for STEM Education Research, 2(2), 93-104.
  • Lor, R. R. (2017, May). Design Thinking in education: A critical review of literature. Paper presented at Asian Conference on Education & Psychology, Bangkok, Thailand.
  • Maker, C. J., & Schiever, S. W. (2010). Curriculum development and teaching strategies for gifted learners. Texas, USA:Pro.ed An Internatinal Publisher.
  • Odabaşı, H. F., Dursun, Ö. Ö., Ersöz, R. A., & Kılınç, H. (2018). Öğretmen Eğitiminde Yeni Bir Yaklaşım: Tasarımcı düşünme. B. Akkoyunlu, A. İşman, H. F. Odabaşı (Editörler), Eğitimde Teknoloji Okumaları içinde (s.392-424). Ankara: TOJET.
  • Ordóñez, A. S., Lema, C. G., Puga, M. F. M., Lema, C. P., & Vega, F. C. (2017). Design thinking as a methodology for solving problems: Contributions from academia to society. In Global Partnerships for Development and Engineering Education: Proceedings of the 15th LACCEI International Multi-Conference for Engineering, Education and Technology (pp. 19-21).
  • Öngöz, S., & Aksoy, D. A. (2015). Üstün yetenekli öğrenciler bilişim teknolojileri dersinden ne bekliyorlar? Journal of Education & Special Education Technology, 1(1), 34-47.
  • Öztürk, A. (2020). Co-developing STEM activities through design thinking approach for fifth graders (Unpublished Doctoral dissertation), Middle East Technical University, Ankara.
  • Panke, S. (2019). Design thinking in education: Perspectives, opportunities and challenges. Open Education Studies, 1(1), 281-306.
  • Periathiruvadi, S., & Rinn, A. N. (2012). Technology in gifted education: A review of best practices and empirical research. Journal of Research on Technology in Education, 45(2), 153-169.
  • Polat, S., & Bayram, H. (2021). Drama dersinin tasarım odaklı düşünme becerilerinin gelişimine katkısını araştıran bir durum çalışması. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 23(2), 476-497.
  • Preckel, F., Götz, T., & Frenzel, A. (2010). Ability grouping of gifted students: Effects on academic self‐concept and boredom. British Journal of Educational Psychology, 80(3), 451-472.
  • Pyryt, M. C. (2009). Recent developments in technology: Implications for gifted education. In International handbook on giftedness (pp. 1173-1180). Springer.
  • Retna, K. S. (2016). Thinking about design thinking: A study of teacher experiences. Asia Pacific Journal of Education, 36(1), 5-19.
  • Rogers, K. B. (2007). Lessons learned about educating the gifted and talented: A synthesis of the research on educational practice. Gifted child quarterly, 51(4), 382-396.
  • Sarıkoç, Z., & Ersoy, H. (2022). Tasarım odaklı düşünme yaklaşımıyla STEM uygulamaları: SPAM eTwinning projesi örneği. Fen Matematik Girişimcilik ve Teknoloji Eğitimi Dergisi, 5(2), 98-122.
  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599.
  • Shavinina, L. V. (2009). High intellectual and creative educational multimedia technologies for the gifted. In International handbook on giftedness (pp. 1181-1202). Springer. Siegle, D. (2005). Using media & technology with gifted students. Prufrock Press Inc.
  • Siegle, D. (2014). Technology: Differentiating instruction by flipping the classroom. Gifted Child Today, 37(1), 51-55.
  • Simeon, M. I., Samsudin, M. A., & Yakob, N. (2022). Effect of design thinking approach on students’ achievement in some selected physics concepts in the context of STEM learning. International Journal of Technology and Design Education, 185-212.
  • Smets, W., & Struyven, K. (2020). A teachers’ professional development programme to implement differentiated instruction in secondary education: How far do teachers reach? Cogent Education, 7(1), 1742273.
  • Sprague, D. R., & Shaklee, B. (2015). Differentiating through Technology for Gifted Students. In Cases on Instructional Technology in Gifted and Talented Education (pp. 269-286). IGI Global.
  • Taktat, Y., Saraçoğlu, S., & Ateş, H. (2022). Fen eğitimi alanindaki akademisyenlerin stem eğitimi inançlari. Araştırma ve Deneyim Dergisi, 7(1), 1-18.
  • Tomlinson, C.A. (1995). How to differentiate ınstruction in mixed ability classrooms. Alexendria VA: Association for Supervision and Curriculum Development.
  • Tomlinson, C. A. (1999). The differentiated classroom: Responding to the needs of all learners. Alexandria, VA, USA: ASCD.
  • Tomlinson, C.A. (2017). How to differentiate instruction in academically diverse classrooms (3rd edition). Alexandria, VA, USA: ASCD.
  • Tomlinson, C., & Jarvis, J. (2009). Differentiation: Making curriculum work for all students through responsive planning and instruction. In Systems and models for developing programs for the gifted and talented (pp. 599-628). Mansfield Center USA: Creative Learning Press.
  • Tortop, H. S. (2015). Üstün zekâlılar eğitiminde farklılaştırılmış öğretim müfredat farklılaştırma modelleri. Ankara: Genç Bilge Yayıncılık.
  • Tucker, B., Hafenstein, N. L., Jones, S., Bernick, R., & Haines, K. (1997). An integrated‐thematic curriculum for gifted learners. Roeper Review, 19(4), 196-199.
  • VanTassel-Baska, J. (2003). Selecting instructional strategies for gifted learners. Focus on exceptional children, 36(3), 1-12.
  • VanTassel-Baska, J., & Brown, E. F. (2007). Toward best practice: An analysis of the efficacy of curriculum models in gifted education. Gifted child quarterly, 51(4), 342-358.
  • VanTassel-Baska, J., & Stambaugh, T. (2006). Comprehensive curriculum for gifted learners. Pearson Education.
  • Yıldırım, B., & Türk, C. (2018). Sınıf öğretmeni adaylarının STEM eğitimine yönelik görüşleri: uygulamalı bir çalışma. Trakya Eğitim Dergisi, 8(2),195-213
  • Ziadat, A. H., & Sakarneh, M. A. (2021). Online design thinking problems for enhancing motivation of gifted students. International Journal of Learning, Teaching and Educational Research, 20(8), 81-107.
Year 2022, Volume: 10 Issue: 4, 573 - 590, 30.12.2022
https://doi.org/10.17478/jegys.1183220

Abstract

References

  • Akyol, C., Uygur, M., & Yanpar-Yelken, T. (2022). The use of 3D design programs and 3D printers in the education of the gifted and the opinions of students and teachers. Journal for the Education of Gifted Young Scientists, 10(2), 173-205.
  • Arifin, N. R., & Mahmud, S. N. D. (2021). A Systematic literature review of design thinking application in STEM integration. Creative Education, 12(7), 1558-1571.
  • Atacan, B. (2020). 7. sınıf fen bilgisi dersinde tasarım odaklı düşünmeye yönelik etkinliğin öğrencilerin motivasyon, ekip çalışması ve derse ilişkin bakış açılarına etkisi (Yayımlanmamış yüksek lisans tezi). Balıkesir Üniversitesi/Fen Bilimleri Enstitüsü, Balıkesir.
  • Avcu, Y. E. (2019). Özel yetenekli öğrenciler için bilişim teknolojileri ve yazılım alanına yönelik bir öğretim tasarımının geliştirilmesi (Yayımlanmamış doktora tezi). Balıkesir Üniversitesi/Sosyal Bilimler Enstitüsü, Balıkesir.
  • Avcu, Y. E., & Er, K. O. (2020). Design thinking applications in teaching programming to gifted students. Journal of Educational Technology and Online Learning, 3(1), 1-30.
  • Avcu, Y. E., & Ayverdi, L. (2021, Kasım). Özel yetenekli öğrencilerle gerçekleştirilen bir tasarım odaklı düşünme uygulaması [Öz]. İGATE'21’de sunulan bildiri, İnönü Üniveristesi, Malatya.
  • Avcu, Y. E., & Yaman, Y. (2022). Effectiveness of the differentiated instructional design for value education of gifted: a mixed study. Journal of Gifted Education and Creativity, 9(1), 1-23.
  • Aydemir, A., & Çetin, T. (2021). Tasarım odaklı düşünme yaklaşımı aracılığıyla sosyal bilgiler dersine yönelik geliştirilen ürünlerin etkililiği. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 41(2), 885-910.
  • Ayverdi, L. (2018). Özel yetenekli öğrencilerin fen eğitiminde teknoloji, mühendislik ve matematiğin kullanımı: FeTeMM yaklaşımı (Yayımlanmamış doktora tezi). Balıkesir Üniversitesi/Fen Bilimleri Enstitüsü, Balıkesir
  • Bootcamp Bootleg d.school. (2011). Design Thinking. Web: http://longevity3.stanford.edu/designchallenge2015/files/2013/09/Bootleg.pdf adresinden 21.09.2022 tarihinde alınmıştır.
  • Brown, T. (2008). Design thinking. Harvard business review, 86(6), 84.
  • Carroll, M., Goldman, S., Britos, L., Koh, J., Royalty, A., & Hornstein, M. (2010). Destination, imagination and the fires within: Design Thinking in a middle school classroom. International Journal of Art & Design Education, 29(1), 37–53.
  • Carroll, M. (2014). Shoot for the moon! the mentors and the middle schoolers explore the ıntersection of design thinking and STEM. Journal of Pre-College Engineering Education Research (J-PEER), 4(1), 14-30.
  • Carroll, M. (2015). Stretch, dream, and do- a 21st century design thinking & STEM journey. Journal of Research in STEM Education, 1(1), 59-70.
  • Çiftçi, A., & Topçu, M. S. (2020). Design thinking: Opinions and experiences of middle school students [Tasarim odakli düsünme: Ortaokul ögrencilerinin görüs ve deneyimleri]. Pegem Journal of Education and Instruction, 10(3), 961-1000.
  • Caferoğlu, M. (2021). Tasarım odaklı düşünce yöntemiyle oyun tasarımı: Nunki hikâye bohçası tasarımı örneği. Journal of Social and Humanities Sciences Research, 8(75), 2563-2576.
  • Chen, J., Yun Dai, D., & Zhou, Y. (2013). Enable, enhance, and transform: How technology use can improve gifted education. Roeper Review, 35(3), 166-176.
  • Coleman, M. R., & Hughes, C. E. (2009). Meeting the needs of gifted students within an RtI framework. Gifted Child Today, 32(3), 14-17.
  • Cross, T. L. (1997). Psychological and social aspects of educating gifted students. Peabody Journal of Education, 72(3-4), 180-200.
  • Darbellay, F., Moody, Z., & Lubart, T. (2017). Introduction: Thinking Creativity, Design and Interdisciplinarity in a Changing World. In F. Darbellay, Z. Moody and T. Lubart (Eds.), Creativity, Design Thinking and Interdisciplinarity (p.xi-xx), New York: Springer.
  • Davis, G. A., Rimm, S. B., & Siegle, D. (2014). Education of the gifted and talented (Sixth Edition). Edinburgh: Pearson Education Limited.
  • Dukes, C., & Koch, K. (2012). Crafting a delightful experience: Teaching interaction design to teens. Interactions, 19(2), 46-50.
  • Duman, B. ve Kayalı, D. (2017). Teknopedagojik Öğretme Yaklaşımının Tasarım Odaklı Düşünme Becerilerine Etkisi. Burak Akkoyunlu, Aytekin İşman, Hatice Ferhan Odabaşı (Editörler). Eğitimde Teknoloji Okumaları (ss.176-184). Ankara: TOJET.
  • Emir, S. (2021). Üstün zekalı ve yetenekliler için program farklılaştırma. Ankara: Vize Yayıncılık.
  • Fischer, K. W., & Rose, L. T. (2001). Webs of skill: How students learn. Educational Leadership, 59(3), 6-123.
  • Gaitas, S., & Martins, A. M. (2017). Teacher perceived difficulty in implementing differentiated instructional strategies in primary school. International Journal of Inclusive Education, 21(5), 544-556.
  • Girgin, D. (2019). Öğretmenlerin tasarım odaklı düşünmeye ilişkin bilişsel yapıları ve kavramsal değişimleri. Ahi Evran Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(2), 459-482.
  • Heacox, D. (2002). Differentiating instruction in the regular classroom: How to reach and teach all learners, grades 3-12. Minneapolis: Free Spirit Publishing.
  • Henriksen, D., Richardson, C., & Mehta, R. (2017). Design thinking: A creative approach to educational problems of practice. Thinking Skills and Creativity, 26, 140–153.
  • Hsiao, H. S., Yu, K. C., Chang, Y. S., Chien, Y. H., Lin, K. Y., Lin, C. Y., ... & Lin, Y. W. (2017, November). The study on integrating the design thinking model and STEM activity unit for senior high school living technology course. In 2017 7th World Engineering Education Forum (WEEF) (pp. 383-390). IEEE.
  • Kalbfleisch, M. L., & Tomlinson, C. A. (1998). Teach me, teach my brain a call for differentiated classrooms. Educational Leadership, 56(3), 52-55.
  • Kaplan Sayı, A. (2020). Handling Individual Di!erences in Generation Alpha. In Nuran Yurtseven (Ed.), The Teacher of Generation Alpha (p.75-93), Berlin: Peter Lang GmbH.
  • Kaplan Sayı, A., & Soysal, Ö. M. (2022). Digital differentiation in gifted Education. In J. L. Nyberg & J. A. Manzone (Eds.), Creating equitable services for the gifted: protocols for identification, implementation, and evaluation (pp. 205-225). IGI Global.
  • Kelley, T., & Kelley, D. (2013). Yaratıcı özgüven, içimizdeki yaratıcı potansiyeli serbest bırakmak (Çev. P. Şengözer). Pasifik Ofset: İstanbul.
  • Kitsantas, A., Bland, L., & Chirinos, D. S. (2017). Gifted students’ perceptions of gifted programs: An inquiry into their academic and social-emotional functioning. Journal for the Education of the Gifted, 40(3), 266-288.
  • Koh, J. H. L., Chai, C. S., Wong, B., & Hong, H. (2015). Design thinking for education: conceptions and applications in teaching and learning. Singapore: Springer.
  • Lee, D., Yoon, J., & Kang, S. J. (2014). The introduction of design thinking to science education and exploration of its characterizations as a method for group creativity education. Journal of the Korean Association for Science Education, 34(2), 93-105.
  • Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). Design and design thinking in STEM education. Journal for STEM Education Research, 2(2), 93-104.
  • Lor, R. R. (2017, May). Design Thinking in education: A critical review of literature. Paper presented at Asian Conference on Education & Psychology, Bangkok, Thailand.
  • Maker, C. J., & Schiever, S. W. (2010). Curriculum development and teaching strategies for gifted learners. Texas, USA:Pro.ed An Internatinal Publisher.
  • Odabaşı, H. F., Dursun, Ö. Ö., Ersöz, R. A., & Kılınç, H. (2018). Öğretmen Eğitiminde Yeni Bir Yaklaşım: Tasarımcı düşünme. B. Akkoyunlu, A. İşman, H. F. Odabaşı (Editörler), Eğitimde Teknoloji Okumaları içinde (s.392-424). Ankara: TOJET.
  • Ordóñez, A. S., Lema, C. G., Puga, M. F. M., Lema, C. P., & Vega, F. C. (2017). Design thinking as a methodology for solving problems: Contributions from academia to society. In Global Partnerships for Development and Engineering Education: Proceedings of the 15th LACCEI International Multi-Conference for Engineering, Education and Technology (pp. 19-21).
  • Öngöz, S., & Aksoy, D. A. (2015). Üstün yetenekli öğrenciler bilişim teknolojileri dersinden ne bekliyorlar? Journal of Education & Special Education Technology, 1(1), 34-47.
  • Öztürk, A. (2020). Co-developing STEM activities through design thinking approach for fifth graders (Unpublished Doctoral dissertation), Middle East Technical University, Ankara.
  • Panke, S. (2019). Design thinking in education: Perspectives, opportunities and challenges. Open Education Studies, 1(1), 281-306.
  • Periathiruvadi, S., & Rinn, A. N. (2012). Technology in gifted education: A review of best practices and empirical research. Journal of Research on Technology in Education, 45(2), 153-169.
  • Polat, S., & Bayram, H. (2021). Drama dersinin tasarım odaklı düşünme becerilerinin gelişimine katkısını araştıran bir durum çalışması. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 23(2), 476-497.
  • Preckel, F., Götz, T., & Frenzel, A. (2010). Ability grouping of gifted students: Effects on academic self‐concept and boredom. British Journal of Educational Psychology, 80(3), 451-472.
  • Pyryt, M. C. (2009). Recent developments in technology: Implications for gifted education. In International handbook on giftedness (pp. 1173-1180). Springer.
  • Retna, K. S. (2016). Thinking about design thinking: A study of teacher experiences. Asia Pacific Journal of Education, 36(1), 5-19.
  • Rogers, K. B. (2007). Lessons learned about educating the gifted and talented: A synthesis of the research on educational practice. Gifted child quarterly, 51(4), 382-396.
  • Sarıkoç, Z., & Ersoy, H. (2022). Tasarım odaklı düşünme yaklaşımıyla STEM uygulamaları: SPAM eTwinning projesi örneği. Fen Matematik Girişimcilik ve Teknoloji Eğitimi Dergisi, 5(2), 98-122.
  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599.
  • Shavinina, L. V. (2009). High intellectual and creative educational multimedia technologies for the gifted. In International handbook on giftedness (pp. 1181-1202). Springer. Siegle, D. (2005). Using media & technology with gifted students. Prufrock Press Inc.
  • Siegle, D. (2014). Technology: Differentiating instruction by flipping the classroom. Gifted Child Today, 37(1), 51-55.
  • Simeon, M. I., Samsudin, M. A., & Yakob, N. (2022). Effect of design thinking approach on students’ achievement in some selected physics concepts in the context of STEM learning. International Journal of Technology and Design Education, 185-212.
  • Smets, W., & Struyven, K. (2020). A teachers’ professional development programme to implement differentiated instruction in secondary education: How far do teachers reach? Cogent Education, 7(1), 1742273.
  • Sprague, D. R., & Shaklee, B. (2015). Differentiating through Technology for Gifted Students. In Cases on Instructional Technology in Gifted and Talented Education (pp. 269-286). IGI Global.
  • Taktat, Y., Saraçoğlu, S., & Ateş, H. (2022). Fen eğitimi alanindaki akademisyenlerin stem eğitimi inançlari. Araştırma ve Deneyim Dergisi, 7(1), 1-18.
  • Tomlinson, C.A. (1995). How to differentiate ınstruction in mixed ability classrooms. Alexendria VA: Association for Supervision and Curriculum Development.
  • Tomlinson, C. A. (1999). The differentiated classroom: Responding to the needs of all learners. Alexandria, VA, USA: ASCD.
  • Tomlinson, C.A. (2017). How to differentiate instruction in academically diverse classrooms (3rd edition). Alexandria, VA, USA: ASCD.
  • Tomlinson, C., & Jarvis, J. (2009). Differentiation: Making curriculum work for all students through responsive planning and instruction. In Systems and models for developing programs for the gifted and talented (pp. 599-628). Mansfield Center USA: Creative Learning Press.
  • Tortop, H. S. (2015). Üstün zekâlılar eğitiminde farklılaştırılmış öğretim müfredat farklılaştırma modelleri. Ankara: Genç Bilge Yayıncılık.
  • Tucker, B., Hafenstein, N. L., Jones, S., Bernick, R., & Haines, K. (1997). An integrated‐thematic curriculum for gifted learners. Roeper Review, 19(4), 196-199.
  • VanTassel-Baska, J. (2003). Selecting instructional strategies for gifted learners. Focus on exceptional children, 36(3), 1-12.
  • VanTassel-Baska, J., & Brown, E. F. (2007). Toward best practice: An analysis of the efficacy of curriculum models in gifted education. Gifted child quarterly, 51(4), 342-358.
  • VanTassel-Baska, J., & Stambaugh, T. (2006). Comprehensive curriculum for gifted learners. Pearson Education.
  • Yıldırım, B., & Türk, C. (2018). Sınıf öğretmeni adaylarının STEM eğitimine yönelik görüşleri: uygulamalı bir çalışma. Trakya Eğitim Dergisi, 8(2),195-213
  • Ziadat, A. H., & Sakarneh, M. A. (2021). Online design thinking problems for enhancing motivation of gifted students. International Journal of Learning, Teaching and Educational Research, 20(8), 81-107.
There are 70 citations in total.

Details

Primary Language English
Subjects Special Education and Disabled Education
Journal Section Teaching Techniques and Activities for Gifted
Authors

Yunus Emre Avcu 0000-0003-0564-9004

Leyla Ayverdi 0000-0003-2142-0330

Publication Date December 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Avcu, Y. E., & Ayverdi, L. (2022). Application of design thinking as a differentiation strategy for the education of gifted students: “City X”. Journal for the Education of Gifted Young Scientists, 10(4), 573-590. https://doi.org/10.17478/jegys.1183220
AMA Avcu YE, Ayverdi L.Application of design thinking as a differentiation strategy for the education of gifted students: “City X.” JEGYS. December 2022;10(4):573-590. doi:10.17478/jegys.1183220
Chicago Avcu, Yunus Emre, and Leyla Ayverdi. “Application of Design Thinking As a Differentiation Strategy for the Education of Gifted Students: ‘City X’”. Journal for the Education of Gifted Young Scientists 10, no. 4 (December 2022): 573-90. https://doi.org/10.17478/jegys.1183220.
EndNote Avcu YE, Ayverdi L (December 1, 2022) Application of design thinking as a differentiation strategy for the education of gifted students: “City X”. Journal for the Education of Gifted Young Scientists 10 4 573–590.
IEEE Y. E. Avcu and L. Ayverdi, “Application of design thinking as a differentiation strategy for the education of gifted students: ‘City X’”, JEGYS, vol. 10, no. 4, pp. 573–590, 2022, doi: 10.17478/jegys.1183220.
ISNAD Avcu, Yunus Emre - Ayverdi, Leyla. “Application of Design Thinking As a Differentiation Strategy for the Education of Gifted Students: ‘City X’”. Journal for the Education of Gifted Young Scientists 10/4 (December 2022), 573-590. https://doi.org/10.17478/jegys.1183220.
JAMA Avcu YE, Ayverdi L. Application of design thinking as a differentiation strategy for the education of gifted students: “City X”. JEGYS. 2022;10:573–590.
MLA Avcu, Yunus Emre and Leyla Ayverdi. “Application of Design Thinking As a Differentiation Strategy for the Education of Gifted Students: ‘City X’”. Journal for the Education of Gifted Young Scientists, vol. 10, no. 4, 2022, pp. 573-90, doi:10.17478/jegys.1183220.
Vancouver Avcu YE, Ayverdi L. Application of design thinking as a differentiation strategy for the education of gifted students: “City X”. JEGYS. 2022;10(4):573-90.
By introducing the concept of the "Gifted Young Scientist," JEGYS has initiated a new research trend at the intersection of science-field education and gifted education.