Research Article
BibTex RIS Cite

A bibliometric analysis on renewable energy's public health benefits

Year 2023, , 132 - 157, 31.03.2023
https://doi.org/10.30521/jes.1252122

Abstract

Renewable energy (RE) is a field in which an increasing number of academic studies are being conducted on multiple dimensions, including technical, economic, political, and social. Wide and varied disciplines conduct research on the processes of making an investment decision in renewable energy, developing, and adopting policies for this purpose, selecting RE suitable for the location, establishing it by taking economic and environmental factors into account, developing energy distribution and storage systems, and supporting regional development. To accurately calculate the installation costs, which are viewed as one of the barriers to a greater use of renewable energy, the co-benefits of RE must be analyzed and transferred to this calculation, and thus to the decision-making processes. Understanding these co-benefits will also facilitate consumer adoption of sustainable energy sources. In addition to economic growth, financial development, employment growth, and regional development, it is crucial to understand the public health benefits of renewable energy. Through bibliometric analysis, which permits the quantification and visualization of qualitative data, the status and development of the literature on the health benefits of RE are examined in this study. That is determined the most researched topics, current issues and trends, and prominent issues in academic studies, too. Thus, the transition to environmentally friendly energies can be accelerated by increasing public awareness of health co-benefits from a more holistic perspective.

References

  • [1] Asumadu, S., Strezov S. A review on Environmental Kuznets Curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 2018; 649: 128–145. DOI: 10.1016/j.scitotenv.2018.08.276.
  • [2] Yue, X., Neha, P., Joseph, D., Alessandro, C., Fionn, R., Deane, J. Least cost energy system pathways towards 100% renewable energy in Ireland by 2050. Energy 2020; 207: 118264, DOI: 10.1016/j.energy.2020.118264.
  • [3] Roman, V., Indra, O., Daniel S. Renewable energy and geopolitics: A review, Renew. Sustain. Energy Rev. 2020; 122: 109547 DOI: 10.1016/j.rser.2019.109547.
  • [4] Manish, R., Arman, A., Christian, B. Job creation during the global energy transition towards 100% renewable power system by 2050, Technol. Forecast. Soc. Change 2020; 151: 119682, DOI: 10.1016/j.techfore.2019.06.008.
  • [5] Ghulam, M., Hussain Jawad, S. Air pollutants, economic growth and public health: implications for sustainable development in OECD countries, Environ. Sci. Pollut. Res. 2021; 28: 12686–12698, DOI: 10.1007/s11356-020-11212-1.
  • [6] Manali, Z., Akhil, A., Faruque, H., Renewable-integrated flexible carbon capture: a synergistic path forward to clean energy future, Energy Environ. Sci. 2021; 14: 3986–4008, DOI: 10.1039/D0EE03946B.
  • [7] Shashi, K., Amit, K., Ravi, K., Anil, K., Vijay, K., Yung-Hun, Y. Trends in renewable energy production employing biomass-based biochar, Bioresour. Technol. 2021; 340: 125644, DOI: 10.1016/j.biortech.2021.125644.
  • [8] Romanos, I., Demetris, K. A review of land use, visibility and public perception of renewable energy in the context of landscape impact, Appl. Energy 2020; 276: 115367, DOI: 10.1016/j.apenergy.2020.115367.
  • [9] Taha Enas, S., Tabbi, W., Khaled, E., Hussien Kamal, R., Mohammad Ali A., Kyu-Jung C., Ghani Abdul O. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ. 2021; 766: 144505, DOI: 10.1016/j.scitotenv.2020.144505.
  • [10] Sequeira, T. N., Santos, M.S. Renewable energy and politics: A systematic review and new evidence. J. Clean. Prod 2018; 192: 553–568, DOI: 10.1016/j.jclepro.2018.04.190
  • [11] Gallagher, L., Holloway, T. Integrating Air Quality and Public Health Benefits in U.S. Decarbonization Strategies. Front. Public Health 2020; 8. DOI: 10.3389/fpubh.2020.563358
  • [12] Shen, N.R., Liao, H., Shevchuk, O., Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review. Util. Policy 2020; 64: 101055. DOI: 10.1016/j.jup.2020.101055
  • [13] Gai, Y, Minet, L, I. Posen, D., Smargiassi, A., Tétreault, L.-F., Hatzopoulou, M. Health and climate benefits of Electric Vehicle Deployment in the Greater Toronto and Hamilton Area. Environ. Pollut. 2020; 265: 114983. DOI: 10.1016/j.envpol.2020.114983.
  • [14] Da Silva, S., Iyer, G., Wild, T., Hejazi, M., Vernon, C., Binsted, M., Miralles-Wilhelm, F. The implications of uncertain renewable resource potentials for global wind and solar electricity projections. Environ. Res. Lett 2021; 16: 124060. DOI: 10.1088/1748-9326/ac3c6b.
  • [15] Diallo, A., Moussa R.K., The effects of solar home system on welfare in off-grid areas: Evidence from Côte d’Ivoire. Energy 2020; 194: 116835. DOI: 10.1016/j.energy.2019.116835.
  • [16] Zhang, Y., Smith, S., Bowden, J., Adelman, Z., West, J., Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050. Environ. Res. Lett. ERL 2017; 12: 114033. DOI: 10.1088/1748-9326/aa8f76.
  • [17] Chang, R., Zuo, J., Zillante, G., Gan, X.-L., Soebarto, V. Evolving theories of sustainability and firms: History, future directions and implications for renewable energy research. Renew. Sustain. Energy Rev., 2017; 72: 48–56. DOI: 10.1016/j.rser.2017.01.029.
  • [18] Montoya, F.G., Montoya, M.G., Gómez, J., Manzano-Agugliaro, F. Alameda-Hernández, E. The research on energy in Spain: A scientometric approach. Renewable and Sustainable Energy Reviews 2014; 29: 173-183. DOI: 10.1016/j.rser.2013.08.094
  • [19] Shen, N, Rumeng, D., Shevchuk, O. Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review. Util. Policy. 2020; 64: 101055. DOI: 10.1016/j.jup.2020.101055.
  • [20] Sequeira, T., Santos M. Education and Energy Intensity: Simple Economic Modelling and Preliminary Empirical Results. Sustainability 2018; 10: 2625. DOI: 10.3390/su10082625.
  • [21] Garrido, S, Sequeira, T., Santos, M. Renewable Energy and Sustainability from the Supply Side: A Critical Review and Analysis. Appl. Sci. 2020; 10: 5755. DOI: 10.3390/app10175755.
  • [22] Oliveira, H., Moutinho. V. Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis. Energies 2021; 14: 4578. DOI: 10.3390/en14154578.
  • [23] Ye, P, Li, Y, Zhang, H., Shen, H., Bibliometric analysis on the research of offshore wind power based on web of science. Econ. Res.-Ekon. Istraživan. 2020; 33: 887-903. DOI: 10.1080/1331677X.2020.1734853.
  • [24] Perea-Moreno, M-Á., Samerón-Manzano, E., Perea A. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability 2019; 11: 863. DOI: 10.3390/su11030863.
  • [25] Elie, L, Granier, C, Rigot, S. The different types of renewable energy finance: A Bibliometric analysis. Energy Econ. 2021; 93:101376. DOI: 10.1016/j.eneco.2020.101376.
  • [26] Zolfaghari, Z., Aslani, A., Moshari, A., Malekli, M. Direct air capture from demonstration to commercialization stage: A bibliometric analysis. Int. J. Energy Res. 2022; 46: 383–396. DOI: 10.1002/er.7203.
  • [27] Martinho, VJP. Interrelationships between renewable energy and agricultural economics: An overview. Energy Strategy Rev. 2018; 22: 396–409. DOI: 10.1016/j.esr.2018.11.002.
  • [28] Wuni, IY, Shen, GQP., Osei-Kyei, R. Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy Build. 2019; 190: 69–85. DOI: 10.1016/j.enbuild.2019.02.010.
  • [29] Azevedo, S, Santos, M, Antón, J. Supply chain of renewable energy: A bibliometric review approach. Biomass Bioenergy 2019; 126: 70–83. DOI: 10.1016/j.biombioe.2019.04.022.
  • [30] Mu, Y, Wang, C, Cai, W. The economic impact of China’s INDC: Distinguishing the roles of the renewable energy quota and the carbon market. Renew. Sustain. Energy Rev. 2018; 81: 2955–2966. DOI: 10.1016/j.rser.2017.06.105.
  • [31] Fragiacomo, P, Genovese, M., Technical-economic analysis of a hydrogen production facility for power-to-gas and hydrogen mobility under different renewable sources in Southern Italy. Energy Convers. Manag. 2020; 223: 113332. DOI: 10.1016/j.enconman.2020.113332.
  • [32] Buonocore, J., Choma E., Villavicencio A., Spengler J., Koehler D., Evans J., Lelieveld J., Klop P., Sanchez R., Metrics for the sustainable development goals: renewable energy and transportation. Palgrave Communications 2019; 5: DOI: 10.1057/s41599-019-0336-4
  • [33] Rafea, K., Elkamel, A., Abdul-Wahab, S. A. Cost-analysis of health impacts associated with emissions from combined cycle power plant. Journal of Cleaner Production 2017; 139: 1408-1424. DOI: doi.org/10.1016/j.jclepro.2016.09.001
  • [34] Dimanchev, E. G., Paltsev S., Yuan M., Alexander D., Tessum C., Marshall J., Selin N. Health co-benefits of sub-national renewable energy policy in the US. IOP Publishing 2019; dspace.mit.edu/handle/1721.1/123490
  • [35] Shih, Y.-H., Tseng, C.-H., Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach. Applied Energy 2014; 119: 57-66. DOI: 10.1016/j.apenergy.2013.12.031
  • [36] Yinon, L., Thurston, G., An evaluation of the health benefits achieved at the time of an air quality intervention in three Israeli cities. Environment International 2017; 102: 66-73. DOI: 10.1016/j.envint.2016.12.025
  • [37] Rodgers, M., Coit, D., Felder, FA., Carlton, AG. A metamodeling framework for quantifying health damages of power grid expansion plans. International Journal of Environmental Research and Public Health 2019; 16: 1-21. DOI: 10.3390/ijerph16101857
  • [38] Tham, R., Morgan, G., Dharmage, S., Marks, G., Cowie, C. Scoping review to understand the potential for public health impacts of transitioning to lower carbon emission technologies and policies. Environmental Research Communications 2020; 2: 065003. DOI: 10.1088/2515-7620/ab9526
  • [39] Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly, C. M., Sharma, S. Global lake responses to climate change. Nature Reviews Earth & Environment 2020; 1: 388-403. DOI: 10.1038/s43017-020-0067-5.
  • [40] Druckman, J. N., McGrath, M. C. The evidence for motivated reasoning in climate change preference formation. Nature Climate Change 2019; 9: 111-119. DOI: 10.1038/s41558-018-0360-1.
  • [41] Al-Ghussain, L. Global warming: review on driving forces and mitigation. Environmental Progress & Sustainable Energy 2019; 38: 13-21. DOI: 10.1002/ep.13041.
  • [42] Hussain, M., Hussain, A., Khattak, M. I., Murtaza, G., Farooq, A. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environmental Monitoring and Assessment 2019; 192: 48. DOI: 10.1007/s10661-019-7956-4.
  • [43] Palinkas, L. A., O’Donnell, M. L., Lau, W., Wong, M. Strategies for delivering mental health services in response to global climate change: A narrative review. International Journal of Environmental Research and Public Health 2020; 17: 8562. DOI: 10.3390/ijerph17228562.
  • [44] Vincent, W. F. Arctic Climate Change: Local Impacts, Global Consequences, and Policy Implications. In The Palgrave Handbook of Arctic Policy and Politics, Germany, Springer International Publishing, 2019
  • [45] Konapala, G., Mishra, A. K., Wada, Y., Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications 2020; 11: 3044. DOI: 10.1038/s41467-020-16757.
  • [46] Dube, K., Nhamo, G. Evidence and impact of climate change on South African national parks. Potential implications for tourism in the Kruger National Park. Environment, Development and Sustainability 2020; 22: 1677-1698. DOI: 10.1007/s10668-019-00308-9.
  • [47] Zhao, H., Liu, G., Li, J., Sun, X., Wang, Y., Li, Y., Li, G. Impacts of nitrogen pollution on corals in the context of global climate change and potential strategies to conserve coral reefs. Science of the Total Environment 2021; 774: 145017. DOI: 10.1016/j.scitotenv.2021.145017.
  • [48] Pham, Y., Reardon-Smith, K., Mushtaq, S., Cockfield G., The impact of climate change and variability on coffee production: a systematic review. Clim. Change 2019; 156: 609–630. DOI: 10.1007/s10584-019-02538-y.
  • [49] Whyte, K, Too late for indigenous climate justice: Ecological and relational tipping points. WIREs Clim. Change 2020; 11: 603. DOI: 10.1002/wcc.603.
  • [50] Aghion, P., Hepburn, C., Teytelboym, A., Zenghelis, D. Path dependence, innovation and the economics of climate change. Roger F., Cheltenham, Handb. Green Growth, 2019; pp.67–83. DOI: 10.4337/9781788110686.00011
  • [51] Zhang, R. Fujimori, S. The role of transport electrification in global climate change mitigation scenarios. Environ. Res. Lett 2020; 15: 034019. DOI: 10.1088/1748-9326/ab6658.
  • [52] Piggott-McKellar A. E., Nunn P. D., McNamara K. E., Sekinini S. T. Dam(n) Seawalls: A Case of Climate Change Maladaptation in Fiji, in Managing Climate Change Adaptation in the Pacific Region, W. Leal Filho, Switzerland, Springer International Publishing, 2020; pp. 69–84. DOI: 10.1007/978-3-030-40552-6_4.
  • [53] Nazarnia, H., Nazarnia, M., Sarmasti, H., Wills, W. A systematic review of civil and environmental infrastructures for coastal adaptation to sea level rise. Civ. Eng. J 2020; 6: 1375–1399. DOI: 10.28991/cej-2020-03091555
  • [54] Doelman, J. C., Stehfest E., Tabeau A., Meijl H. Making the Paris agreement climate targets consistent with food security objectives. Glob. Food Secur. 2019; 23: 93–103. DOI: 10.1016/j.gfs.2019.04.003.
  • [55] Rehman, A., Ma H., Irfan M., and Ahmad M. Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China, Environ. Sci. Pollut. Res. 2020; 27: 28768–28779. DOI: 10.1007/s11356-020-08912-z.
  • [56] Ramanathan, V. Climate change, air pollution, and health: common sources, similar impacts, and common solutions, in Health of People, Health of Planet and Our Responsibility, Switzerland, Springer, 2020. DOI: https://doi.org/10.1007/978-3-030-31125-4-5
  • [57] Wan Mohd Jaafar, W. S. Abdul Maulud, K. N., Muhmad Kamarulzaman, M. A., Raihan, A., Md Sah, S., Ahmad, A., Maizah Saad, S. N., Mohd Azmi, A. T., Jusoh Syukri, N. K. A., Razzaq Khan, W. The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests 2020; 11: 670. DOI: 10.3390/f11060670.
  • [58] Mikhaylov, A., Moiseev, N., Aleshin, K., Burkhardt, T. Global climate change and greenhouse effect. Entrep. Sustain 2020; 7: 2897. DOI: 10.9770/jesi.2020.7.4(21).
  • [59] Mohamad, N., Muthusamy, K., Embong, R., Kusbiantoro, A., Hashim, M. H., Environmental impact of cement production and Solutions: A review. Mater. Today Proc. 2022; 48: 741–746. DOI: 10.1016/j.matpr.2021.02.212.
  • [60] Avagyan, AB., Theory of bioenergy accumulation and transformation: application to evolution, energy, sustainable development, climate change, manufacturing, agriculture, military activity and pandemic challenges. Athens J Sci 2021; 8: 57–80. DOI: 10.30958/ajs.8-1-4.
  • [61] Alsheyab MAT. Recycling of construction and demolition waste and its impact on climate change and sustainable development. Int. J. Environ. Sci. Technol. 2022; 19; 2129–2138. DOI: 10.1007/s13762-021-03217-1.
  • [62] Bezabih Beyene, B. Li, J, Yuan, J., Dong, Y., Liu, D., Chen, Z., Kim, J., Kang, H., Freeman, C., Ding, W. Non-native plant invasion can accelerate global climate change by increasing wetland methane and terrestrial nitrous oxide emissions. Glob. Change Biol. 2022; 28: 5453–5468. DOI: 10.1111/gcb.16290.
  • [63] Yang M. Chen L., Wang J., Msigwa G., Osman A., Fawzy S., Rooney D., Yap P., Circular economy strategies for combating climate change and other environmental issues. Environ. Chem. Lett. 2022; 21: 55-80. DOI: 10.1007/s10311-022-01499-6.
  • [64] Blair, J., Mataraarachchi, S. A Review of Landfills, Waste and the Nearly Forgotten Nexus with Climate Change. Environments 2021; 8. DOI: 10.3390/environments8080073.
  • [65] Godde C. M., Mason-D’Croz D., Mayberry D. E., Thornton P. K., Herrero M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Secur. 2021; 28: 100488. DOI: 10.1016/j.gfs.2020.100488.
  • [66] Mashamaite, C. V., Ngcobo, B. L., Manyevere, A., Bertling, I., Fawole, O. A. Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review. Plants 2022; 11. DOI: 10.3390/plants11172214.
  • [67] Liu, J., Desjardins, R.L., Wang, S., Worth, D.E., Qian B., Shang J. Climate impact from agricultural management practices in the Canadian Prairies: Carbon equivalence due to albedo change. J. Environ. Manage. 2022; 302: 113938. DOI: 10.1016/j.jenvman.2021.113938.
  • [68] Ukhurebor, K.E., Aigbe U.O., Onyancha R.B., Adetunji C.O. Climate Change and Pesticides: Their Consequence on Microorganisms. in Microbial Rejuvenation of Polluted Environment, C. O. Adetunji, D. G. Panpatte, Y. K. Jhala, Eds. Singapore: Springer, 2021.
  • [69] De Abreu, V. H.S., Da Costa, M. G., Da Costa, V. X., De Assis, T. F., Santos, A. S., de A. D’Agosto M. The Role of the Circular Economy in Road Transport to Mitigate Climate Change and Reduce Resource Depletion. Sustainability 2022; 14(14):8951. DOI: 10.3390/su14148951.
  • [70] Gössling, S., Dolnicar, S., A review of air travel behavior and climate change. WIREs Clim. Change 2023; 14: e802. DOI: 10.1002/wcc.802.
  • [71] Röck, M. Mendes, Saade, M. R., Balouktsi, M., Rasmussen, F., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., Passer, A., Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Appl. Energy 2020; 258: 114107. DOI: 10.1016/j.apenergy.2019.114107.
  • [72] Orsini F., Marrone P. Approaches for a low-carbon production of building materials: A review. J. Clean. Prod. 2019; 241: 118380. DOI: 10.1016/j.jclepro.2019.118380.
  • [73] Abu Qdais, H., Wuensch, C., Dornack, C., Nassour, A. The role of solid waste composting in mitigating climate change in Jordan. Waste Manag. Res. 2019; 37: 833–842. DOI: 10.1177/0734242X19855424.
  • [74] Chetri, J. K., Reddy, K. R. Methane Recovery from Landfills. in Sustainable Resource Management, John Wiley & Sons, Ltd, 2021, pp. 699–722. DOI: 10.1002/9783527825394.ch24.
  • [75] Christensen, T. H., Bisinella, V. Climate change impacts of introducing carbon capture and utilisation (CCU) in waste incineration. Waste Manag. 2021; 126: 754–770. DOI: 10.1016/j.wasman.2021.03.046.
  • [76] Ravindra, K., Rattan, P., Mor, S., Aggarwal, A. N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 2019; 132: 104987. DOI: 10.1016/j.envint.2019.104987.
  • [77] Damle, N. S. Climate Change and Human Health – ProQuest. PubMed 2021; 104: 11-12.
  • [78] Filho, W. L., Scheday, S., Boenecke, J., Gogoi, A., Maharaj, A., Korovou, S. Climate Change, Health and Mosquito-Borne Diseases: Trends and Implications to the Pacific Region. Int. J. Environ. Res. Public. Health, 2019; 16(24):5114. DOI: 10.3390/ijerph16245114.
  • [79] Pawankar, R. Wang, J., Wang, I., Thien, F., Chang, Y. S., Abdul Latiff, A. H., Fujisawa, T., Zhang, L., Yu-Hor, Thong, B., Chatchatee, P., Fan, Leung, T., Kamchaisatian W., Rengganis I., Joo Yoon H., Munkhbayarlakh, S., Recto, M., Goh, Eng Neo, A., Le Pham, D., Tuyet, Lan, L. T., Mary Davies, J., Won Oh, J. Asia Pacific Association of Allergy Asthma and Clinical Immunology White Paper 2020 on climate change, air pollution, and biodiversity in Asia-Pacific and impact on allergic diseases. Asia Pac. Allergy, 2020; 10: DOI: 10.5415/apallergy.2020.10.e11.
  • [80] Romanello, M. Di Napoli, C., Drummond, P., Green, C., Kennard, H., Lampard, P., Scamman, D., Arnell N., Ayeb-Karlsson S., et al. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. The Lancet, 2022; 400: 1619–1654, DOI: 10.1016/S0140-6736(22)01540-9.
  • [81] Adlong W., Dietsch E. Nursing and climate change: An emerging connection. Coll. R. Coll. Nurs. Aust. 2015; 22: 19–24. DOI: 10.1016/j.colegn.2013.10.003.
  • [82] Leisner, C.P. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Sci. 2020; 293: 110412. DOI: 10.1016/j.plantsci.2020.110412.
  • [83] Benevolenza, M.A., DeRigne, L. The impact of climate change and natural disasters on vulnerable populations: A systematic review of literature. J. Hum. Behav. Soc. Environ. 2019; 29: 266–281. DOI: 10.1080/10911359.2018.1527739.
  • [84] WHO, Climate change, World Health Organization, 2023.
  • [85] Zammit, C., Torzhenskaya, N., Ozarkar, P. D., Calleja Agius, J. Neurological disorders vis-à-vis climate change. Early Hum. Dev. 2021; 155: 105217. DOI: 10.1016/j.earlhumdev.2020.105217.
  • [86] D’Amato, G. Jose Chong-Neto, H., Monge, Ortega, O.. P., Vitale, C., Ansotegui, I., Rosario, N., Haahtela T., Galan, C., Pawankar, R., Murrieta-Aguttes, M., Cecchi, L., Bergmann, C., Ridolo, E., Ramon, G., Gonzalez Diaz, S., D’Amato, M., Maesano, I. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 2020; 75: 2219–2228. DOI: 10.1111/all.14476.
  • [87] Bartlow, A. W. Manore, C., Xu, C., Kaufeld, K., Del Valle, S., Ziemann, A., Fairchild. G., M. Fair. J. Forecasting Zoonotic Infectious Disease Response to Climate Change: Mosquito Vectors and a Changing Environment. Vet. Sci. 2019; 6. DOI: 10.3390/vetsci6020040.
  • [88] Cissé, G. Food-borne and water-borne diseases under climate change in low- and middle-income countries: Further efforts needed for reducing environmental health exposure risks. Acta Trop. 2019; 194: 181–188. DOI: 10.1016/j.actatropica.2019.03.012.
  • [89] Schnitter, R., Berry, P. The Climate Change, Food Security and Human Health Nexus in Canada: A Framework to Protect Population Health. Int. J. Environ. Res. Public. Health 2019; 16(14): 2531. DOI: 10.3390/ijerph16142531.
  • [90] Palinkas, L. A., Wong M. Global climate change and mental health. Curr. Opin. Psychol. 2020; 32: 12–16. DOI: 10.1016/j.copsyc.2019.06.023.
  • [91] Anguelovski, I. J. T. Connolly, J., Pearsall, H., Shokry, G., Checker, M., Maantay, J., Gould, K., Lewis, T., Maroko, A., Timmons, Roberts, J. Why green ‘climate gentrification’ threatens poor and vulnerable populations. Proc. Natl. Acad. Sci. 2019; 116: 26139–26143. DOI: 10.1073/pnas.1920490117.
  • [92] Fang, J., Lau, C. K. M., Lu, Z., Wu, W., Zhu, L., Natural disasters, climate change, and their impact on inclusive wealth in G20 countries. Environ. Sci. Pollut. Res. 2019; 26: 1455–1463. DOI: 10.1007/s11356-018-3634-2.
  • [93] Buonocore, J., Luckow, P., Norris, G., Spengler, J., Biewald, B., Fisher, J., Levy, J. Health and climate benefits of different energy-efficiency and renewable energy choices. Nat. Clim. Change 2015; 6. DOI: 10.1038/nclimate2771.
  • [94] López-Medina, I., Álvarez Nieto, C., Grose, J., Elsbernd, A., Huss, N., Huynen, M., Richardson, J. Competencies On Environmental Health And Pedagogical Approaches In The Nursing Curriculum: A Systematic Review Of The Literature. Nurse Educ. Pract. 2019; 37. DOI: 10.1016/j.nepr.2019.04.004.
  • [95] Lee, K. K., Bing, R., Kiang, J., Bashir, S., Spath N., Stelzle, D., Mortimer, K., Bularga, A., Doudesis, D., S Joshi S., Strachan, F., Gumy, S., Adair-Rohani H., Attia E., Chung M., Miller M., Newby D., Mills N., McAllister D., Shah A. Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Glob. Health 2020; 8: e1427–e1434. DOI: 10.1016/S2214-109X(20)30343-0.
  • [96] Greene, J., Morrissey, M. Estimated Pollution Reduction from Wind Farms in Oklahoma and Associated Economic and Human Health Benefits. J. Renew. Energy 2013; 2013: 924920. DOI: 10.1155/2013/924920.
  • [97] Zhang Y. H. Bowden, J., Adelman Z., Naik V., W. Horowitz L., J. Smith S., Jason West J., Co-benefits of global and regional greenhouse gas mitigation on U.S. air quality in 2050. Atmospheric Chem. Phys. 2016;16: 9533–9548. DOI: 10.5194/acp-16-9533-2016.
  • [98] Abel D., Holloway T., Harkey M., Rrushaj A., Brinkman G., Duran P., Janssen M., Denholm P., Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States. Atmos. Environ. 2018; 175: 65–74. DOI: 10.1016/j.atmosenv.2017.11.049.
  • [99] Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner N., Gorini R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019; 24: 38–50. DOI: 10.1016/j.esr.2019.01.006.
  • [100] Zahoor, Z., Latif, M. I., Khan, I., Hou, F. Abundance of natural resources and environmental sustainability: the roles of manufacturing value-added, urbanization, and permanent cropland. Environ. Sci. Pollut. Res. 2022; 29: 82365–82378. DOI: 10.1007/s11356-022-21545-8.
  • [101] Li, J., Zhou, J., Chen, B. Review of wind power scenario generation methods for optimal operation of renewable energy systems. Appl. Energy 2020; 280: 115992. DOI: 10.1016/j.apenergy.2020.115992.
  • [102] Halkos, G. E., Gkampoura, E.-C. Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies 2020; 13: 11. DOI: 10.3390/en13112906.
  • [103] Van de Ven D.-J., Capellan-Peréz I., Arto I., Cazcarro I., Castro C., Patel P., Eguino M., The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 2021; 11: 1. DOI: 10.1038/s41598-021-82042-5.
  • [104] Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J.-L., Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 2020; 5: 2. DOI: 10.1038/s41560-020-0558-0.
  • [105] Boxwell, M. Solar Electricity Handbook: A Simple, Practical Guide to Solar Energy - Designing and Installing Photovoltaic Solar Electric Systems. England: Greenstream Publishing, 2010.
  • [106] Lovegrove, K., Stein, W. Concentrating Solar Power Technology: Principles, Developments and Applications. England: Elsevier, 2012.
  • [107] Garg, H.P., Mullick S.C., Bhargava V.K. Solar Thermal Energy Storage. Springer Science & Business Media. Dordrecht, Springer, 2012.
  • [108] Assaf, J., Shabani, B. A novel hybrid renewable solar energy solution for continuous heat and power supply to standalone-alone applications with ultimate reliability and cost effectiveness. Renew. Energy 2019; 138: 509–520. DOI: 10.1016/j.renene.2019.01.099.
  • [109] Bashir, A., Khan, S. Renewable Energy Sources: A Study Focused on Wind Energy. in Mitigating Climate Change, Cham, 2022, pp. 99–118. DOI: 10.1007/978-3-030-92148-4_5.
  • [110] Wadi, M., Elmasry W. Statistical analysis of wind energy potential using different estimation methods for Weibull parameters: a case study. Electr. Eng. 2021; 103: 2573–2594. DOI: 10.1007/s00202-021-01254-0.
  • [111] Zeng, Z., Ziegler, A., Searchinger, T., Yang, L., Chen, A., Ju, K., Piao, S., Li, L., Ciais, P., Chen, D., Liu, J., Azorin-Molina, C., Chappell, A., Medvigy, D., Wood, E. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 2019; 9: 12 DOI: 10.1038/s41558-019-0622-6.
  • [112] Wind Electricity – Analysis, IEA, 2022.
  • [113] Munoz-Hernandez, G. A., Mansoor, S. P., Jones, D. I. Modelling and Controlling Hydropower Plants. London, Springer Science & Business Media, 2012.
  • [114] National G. Hydropower facts and information. Environment, 2019
  • [115] Lee, S., Speight, J.G., Loyalka S.K. Handbook of Alternative Fuel Technologies, Second Edition, 2nd ed. USA, CRC Press, 2018.
  • [116] Bertani, R. Geothermal power generation in the world 2005–2010 update report. Geothermics 2012; 41: 1–29. DOI: 10.1016/j.geothermics.2011.10.001.
  • [117] Tester, J. W., Beckers, K. F., Hawkins, A. J., Lukawski, M. Z. The evolving role of geothermal energy for decarbonizing the United States. Energy Environ. Sci. 2021; 14: 6211–6241. DOI: 10.1039/D1EE02309H.
  • [118] Rosillo-Calle F., De Groot P., Hemstock S. L., Woods J. The Biomass Assessment Handbook: Energy for a sustainable environment. England, Routledge, 2015.
  • [119] Jha, S., Nanda, S., Acharya, B., Dalai, A. K. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022; 15: 17. DOI: 10.3390/en15176352.
  • [120] Multon, B. Marine Renewable Energy Handbook. John Wiley & Sons, United Kingdom, 2013
  • [121] Khojasteh D. Lewis M., Tavakoli S., Farzadkhoo M., Felder S., Iglesias G., Glamore W., Sea level rise will change estuarine tidal energy: A review. Renew. Sustain. Energy Rev. 2022; 156: 111855, DOI: 10.1016/j.rser.2021.111855.
  • [122] Shetty, C., Priyam, A. A review on tidal energy technologies. Mater. Today Proc. 2022; 56: 2774–2779. DOI: 10.1016/j.matpr.2021.10.020.
  • [123] Benson, T. Renewable energy could save us trillions in health costs: Harvard study, Inverse, 2019.
  • [124] Jacobson, M., Von Krauland, A. K., Burton, Z., Coughlin, S., Jaeggli, C., Nelli, D., Nelson, A., Shu, Y., Smith, M., Tan, C., Wood, C., Wood, K. Transitioning All Energy in 74 Metropolitan Areas, Including 30 Megacities, to 100% Clean and Renewable Wind, Water, and Sunlight (WWS). Energies 2020; 13: 4934. DOI: 10.3390/en13184934.
  • [125] Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?. Sustainability 2022; 14: 8. DOI: 10.3390/su14084792.
  • [126] Becchio, C., Bottero, M. C., Corgnati, S. P., Dell’Anna, F. Evaluating Health Benefits of Urban Energy Retrofitting: An Application for the City of Turin. In: Bisello, A., Vettorato, D., Laconte, P., Costa, S. (eds) Smart and Sustainable Planning for Cities and Regions. SSPCR 2017. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-75774-2_20.
  • [127] Bisello, A., Vettorato, D., Ludlow, D., Baranzelli, C., Eds., Smart and Sustainable Planning for Cities and Regions: Results of SSPCR 2019, Springer Nature, 2021. DOI: 10.1007/978-3-030-57764-3.
  • [128] Brent, A.C. Renewable Energy for Sustainable Development. Sustainability 2021; 13: 12. DOI: 10.3390/su13126920.
  • [129] Manzano-Agugliaro, F., Alcayde, A., Montoya, F.G. Zapata-Sierra, A. Gil, C., Scientific production of renewable energies worldwide: An overview. Renew. Sustain. Energy Rev. 2013; 18: 134–143. DOI: 10.1016/j.rser.2012.10.020.
  • [130] Development Asia, “What Makes Floating Solar Farms a Cool Solution,” Development Asia, 2020.
  • [131] Scott, M., Sander, R., Nemet, G., Patz, J. Improving Human Health in China Through Alternative Energy. Front. Public Health 2021; 9. DOI: https://doi.org/10.3389/fpubh.2021.613517.
  • [132] Workman, A., Blashki, G., Bowen, K.J., Karoly, D. J., Wiseman, J. Political leadership on climate change: the role of health in Obama-era U.S. climate policies. Environ. Res. Lett. 2020; 15: 105003. DOI: 10.1088/1748-9326/aba8c3.
  • [133] Hernandez R., Easter S., Murphy M., Maestre F., Tavassoli M., Allen E., Barrows C., Belnap J., Hueso R., Ravi S., Allen M., Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014; 29, DOI: 10.1016/j.rser.2013.08.041.
  • [134] Gernaat, D. E. H. J., de Boer, H. S., Daioglou, V., Yalew, S. G., Müller, C., van Vuuren, D. P. Climate change impacts on renewable energy supply. Nat. Clim. Change 2021; 11: 119-125. DOI: 10.1038/s41558-020-00949-9.
  • [135] Solaun, K., Cerdá, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 2019; 116: 109415. DOI: 10.1016/j.rser.2019.109415.
  • [136] Luderer, G., Pehl, M., Arvesen, A., Gibon, T., Bodirsky, B.L., Boer, H.S., Fricko, O., Hejazi, M., Humpenöder, F., Lyer, G., Mima, S., Mouratiadou, I., Pietzcker, R.C., Popp, A., Berg, M., Vuuren, D., Hertwich, E. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 2019; 10: 5229. DOI: 10.1038/s41467-019-13067-8.
  • [137] IEA. Renewables – Global Energy Review– Analysis, IEA, 2021.
  • [138] Karamikli, A., Şaşmaz, M.Ü. The Effect of Renewable Energy Consumption on Economic Growth and Health Expenditures in Türkiye. Pamukkale Univ. J. Soc. Sci. Inst. 2021; 46: 293-304. DOI: 10.30794/pausbed.846221.
  • [139] Ürge-Vorsatz, D., Herrero, S. T., Dubash, N. K., Lecocq, F. Measuring the Co-Benefits of Climate Change Mitigation. Annu. Rev. Environ. Resour. 2014; 39: 549–582. DOI: 10.1146/annurev-environ-031312-125456.
  • [140] Nemet, G. F., Holloway, T., Meier, P. Implications of incorporating air-quality co-benefits into climate change policymaking. Environ. Res. Lett. 2010; 5: 014007. DOI: 10.1088/1748-9326/5/1/014007.
  • [141] Celiktas, M. S., Sevgili, T., Kocar, G. A snapshot of renewable energy research in Türkiye. Renew. Energy, 2009; 34: 1479–1486, DOI: 10.1016/j.renene.2008.10.021
  • [142] Sampedro, J., Smith, S., Arto, I., Eguino, M., Markandya, A., Mulvaney, K., Irizar, C., Dingenen, R. Health co-benefits and mitigation costs as per the Paris Agreement under different technological pathways for energy supply. Environ. Int. 2020; 136: 105513. DOI: 10.1016/j.envint.2020.105513.
  • [143] Pablo-Romero, M. D., Collado, R. R., Sanchez-Braza A., Yniguez, R. Renewable Energy, Emissions, and Health. Wenping Cao and Yihua H, 2016, DOI: 10.5772/61717.
  • [144] Belfer, C., Potential Co-benefits of Electrification for Air Quality, Health, and CO2 Mitigation in 2030, China: 2018.
  • [145] Workman, A., Blashki, G., Bowen, K. J., Karoly, D. J., Wiseman, J. The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda. Int. J. Environ. Res. Public. Health 2018; 15: 674. DOI: 10.3390/ijerph15040674.
  • [146] Buonocore, J. J., Hughes, E. J., Michanowicz, D. R., Heo, J., Allen, J. G., Williams, A., Climate and health benefits of increasing renewable energy deployment in the United States. Environ. Res. Lett. 2019; 14: 114010. DOI: 10.1088/1748-9326/ab49bc.
  • [147] UCSUSA. Benefits of Renewable Energy Use | Union of Concerned Scientists, 2017.
  • [148] D. of H., H. Services. Climate change and health, betterhealth, 2021.
  • [149] Maibach, E., Sarfaty, M., Gould, R., Damle, N., Armstrong F. A Call to Action by Health Professionals, in Health of People, Health of Planet and Our Responsibility: Climate Change, Air Pollution and Health, Al-Delaimy, W. K., Ramanathan, V., Sánchez Sorondo, M., Eds. Cham: Springer International Publishing, 2020. DOI: 10.1007/978-3-030-31125-4_33.
Year 2023, , 132 - 157, 31.03.2023
https://doi.org/10.30521/jes.1252122

Abstract

References

  • [1] Asumadu, S., Strezov S. A review on Environmental Kuznets Curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 2018; 649: 128–145. DOI: 10.1016/j.scitotenv.2018.08.276.
  • [2] Yue, X., Neha, P., Joseph, D., Alessandro, C., Fionn, R., Deane, J. Least cost energy system pathways towards 100% renewable energy in Ireland by 2050. Energy 2020; 207: 118264, DOI: 10.1016/j.energy.2020.118264.
  • [3] Roman, V., Indra, O., Daniel S. Renewable energy and geopolitics: A review, Renew. Sustain. Energy Rev. 2020; 122: 109547 DOI: 10.1016/j.rser.2019.109547.
  • [4] Manish, R., Arman, A., Christian, B. Job creation during the global energy transition towards 100% renewable power system by 2050, Technol. Forecast. Soc. Change 2020; 151: 119682, DOI: 10.1016/j.techfore.2019.06.008.
  • [5] Ghulam, M., Hussain Jawad, S. Air pollutants, economic growth and public health: implications for sustainable development in OECD countries, Environ. Sci. Pollut. Res. 2021; 28: 12686–12698, DOI: 10.1007/s11356-020-11212-1.
  • [6] Manali, Z., Akhil, A., Faruque, H., Renewable-integrated flexible carbon capture: a synergistic path forward to clean energy future, Energy Environ. Sci. 2021; 14: 3986–4008, DOI: 10.1039/D0EE03946B.
  • [7] Shashi, K., Amit, K., Ravi, K., Anil, K., Vijay, K., Yung-Hun, Y. Trends in renewable energy production employing biomass-based biochar, Bioresour. Technol. 2021; 340: 125644, DOI: 10.1016/j.biortech.2021.125644.
  • [8] Romanos, I., Demetris, K. A review of land use, visibility and public perception of renewable energy in the context of landscape impact, Appl. Energy 2020; 276: 115367, DOI: 10.1016/j.apenergy.2020.115367.
  • [9] Taha Enas, S., Tabbi, W., Khaled, E., Hussien Kamal, R., Mohammad Ali A., Kyu-Jung C., Ghani Abdul O. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ. 2021; 766: 144505, DOI: 10.1016/j.scitotenv.2020.144505.
  • [10] Sequeira, T. N., Santos, M.S. Renewable energy and politics: A systematic review and new evidence. J. Clean. Prod 2018; 192: 553–568, DOI: 10.1016/j.jclepro.2018.04.190
  • [11] Gallagher, L., Holloway, T. Integrating Air Quality and Public Health Benefits in U.S. Decarbonization Strategies. Front. Public Health 2020; 8. DOI: 10.3389/fpubh.2020.563358
  • [12] Shen, N.R., Liao, H., Shevchuk, O., Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review. Util. Policy 2020; 64: 101055. DOI: 10.1016/j.jup.2020.101055
  • [13] Gai, Y, Minet, L, I. Posen, D., Smargiassi, A., Tétreault, L.-F., Hatzopoulou, M. Health and climate benefits of Electric Vehicle Deployment in the Greater Toronto and Hamilton Area. Environ. Pollut. 2020; 265: 114983. DOI: 10.1016/j.envpol.2020.114983.
  • [14] Da Silva, S., Iyer, G., Wild, T., Hejazi, M., Vernon, C., Binsted, M., Miralles-Wilhelm, F. The implications of uncertain renewable resource potentials for global wind and solar electricity projections. Environ. Res. Lett 2021; 16: 124060. DOI: 10.1088/1748-9326/ac3c6b.
  • [15] Diallo, A., Moussa R.K., The effects of solar home system on welfare in off-grid areas: Evidence from Côte d’Ivoire. Energy 2020; 194: 116835. DOI: 10.1016/j.energy.2019.116835.
  • [16] Zhang, Y., Smith, S., Bowden, J., Adelman, Z., West, J., Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050. Environ. Res. Lett. ERL 2017; 12: 114033. DOI: 10.1088/1748-9326/aa8f76.
  • [17] Chang, R., Zuo, J., Zillante, G., Gan, X.-L., Soebarto, V. Evolving theories of sustainability and firms: History, future directions and implications for renewable energy research. Renew. Sustain. Energy Rev., 2017; 72: 48–56. DOI: 10.1016/j.rser.2017.01.029.
  • [18] Montoya, F.G., Montoya, M.G., Gómez, J., Manzano-Agugliaro, F. Alameda-Hernández, E. The research on energy in Spain: A scientometric approach. Renewable and Sustainable Energy Reviews 2014; 29: 173-183. DOI: 10.1016/j.rser.2013.08.094
  • [19] Shen, N, Rumeng, D., Shevchuk, O. Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review. Util. Policy. 2020; 64: 101055. DOI: 10.1016/j.jup.2020.101055.
  • [20] Sequeira, T., Santos M. Education and Energy Intensity: Simple Economic Modelling and Preliminary Empirical Results. Sustainability 2018; 10: 2625. DOI: 10.3390/su10082625.
  • [21] Garrido, S, Sequeira, T., Santos, M. Renewable Energy and Sustainability from the Supply Side: A Critical Review and Analysis. Appl. Sci. 2020; 10: 5755. DOI: 10.3390/app10175755.
  • [22] Oliveira, H., Moutinho. V. Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis. Energies 2021; 14: 4578. DOI: 10.3390/en14154578.
  • [23] Ye, P, Li, Y, Zhang, H., Shen, H., Bibliometric analysis on the research of offshore wind power based on web of science. Econ. Res.-Ekon. Istraživan. 2020; 33: 887-903. DOI: 10.1080/1331677X.2020.1734853.
  • [24] Perea-Moreno, M-Á., Samerón-Manzano, E., Perea A. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability 2019; 11: 863. DOI: 10.3390/su11030863.
  • [25] Elie, L, Granier, C, Rigot, S. The different types of renewable energy finance: A Bibliometric analysis. Energy Econ. 2021; 93:101376. DOI: 10.1016/j.eneco.2020.101376.
  • [26] Zolfaghari, Z., Aslani, A., Moshari, A., Malekli, M. Direct air capture from demonstration to commercialization stage: A bibliometric analysis. Int. J. Energy Res. 2022; 46: 383–396. DOI: 10.1002/er.7203.
  • [27] Martinho, VJP. Interrelationships between renewable energy and agricultural economics: An overview. Energy Strategy Rev. 2018; 22: 396–409. DOI: 10.1016/j.esr.2018.11.002.
  • [28] Wuni, IY, Shen, GQP., Osei-Kyei, R. Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy Build. 2019; 190: 69–85. DOI: 10.1016/j.enbuild.2019.02.010.
  • [29] Azevedo, S, Santos, M, Antón, J. Supply chain of renewable energy: A bibliometric review approach. Biomass Bioenergy 2019; 126: 70–83. DOI: 10.1016/j.biombioe.2019.04.022.
  • [30] Mu, Y, Wang, C, Cai, W. The economic impact of China’s INDC: Distinguishing the roles of the renewable energy quota and the carbon market. Renew. Sustain. Energy Rev. 2018; 81: 2955–2966. DOI: 10.1016/j.rser.2017.06.105.
  • [31] Fragiacomo, P, Genovese, M., Technical-economic analysis of a hydrogen production facility for power-to-gas and hydrogen mobility under different renewable sources in Southern Italy. Energy Convers. Manag. 2020; 223: 113332. DOI: 10.1016/j.enconman.2020.113332.
  • [32] Buonocore, J., Choma E., Villavicencio A., Spengler J., Koehler D., Evans J., Lelieveld J., Klop P., Sanchez R., Metrics for the sustainable development goals: renewable energy and transportation. Palgrave Communications 2019; 5: DOI: 10.1057/s41599-019-0336-4
  • [33] Rafea, K., Elkamel, A., Abdul-Wahab, S. A. Cost-analysis of health impacts associated with emissions from combined cycle power plant. Journal of Cleaner Production 2017; 139: 1408-1424. DOI: doi.org/10.1016/j.jclepro.2016.09.001
  • [34] Dimanchev, E. G., Paltsev S., Yuan M., Alexander D., Tessum C., Marshall J., Selin N. Health co-benefits of sub-national renewable energy policy in the US. IOP Publishing 2019; dspace.mit.edu/handle/1721.1/123490
  • [35] Shih, Y.-H., Tseng, C.-H., Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach. Applied Energy 2014; 119: 57-66. DOI: 10.1016/j.apenergy.2013.12.031
  • [36] Yinon, L., Thurston, G., An evaluation of the health benefits achieved at the time of an air quality intervention in three Israeli cities. Environment International 2017; 102: 66-73. DOI: 10.1016/j.envint.2016.12.025
  • [37] Rodgers, M., Coit, D., Felder, FA., Carlton, AG. A metamodeling framework for quantifying health damages of power grid expansion plans. International Journal of Environmental Research and Public Health 2019; 16: 1-21. DOI: 10.3390/ijerph16101857
  • [38] Tham, R., Morgan, G., Dharmage, S., Marks, G., Cowie, C. Scoping review to understand the potential for public health impacts of transitioning to lower carbon emission technologies and policies. Environmental Research Communications 2020; 2: 065003. DOI: 10.1088/2515-7620/ab9526
  • [39] Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly, C. M., Sharma, S. Global lake responses to climate change. Nature Reviews Earth & Environment 2020; 1: 388-403. DOI: 10.1038/s43017-020-0067-5.
  • [40] Druckman, J. N., McGrath, M. C. The evidence for motivated reasoning in climate change preference formation. Nature Climate Change 2019; 9: 111-119. DOI: 10.1038/s41558-018-0360-1.
  • [41] Al-Ghussain, L. Global warming: review on driving forces and mitigation. Environmental Progress & Sustainable Energy 2019; 38: 13-21. DOI: 10.1002/ep.13041.
  • [42] Hussain, M., Hussain, A., Khattak, M. I., Murtaza, G., Farooq, A. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environmental Monitoring and Assessment 2019; 192: 48. DOI: 10.1007/s10661-019-7956-4.
  • [43] Palinkas, L. A., O’Donnell, M. L., Lau, W., Wong, M. Strategies for delivering mental health services in response to global climate change: A narrative review. International Journal of Environmental Research and Public Health 2020; 17: 8562. DOI: 10.3390/ijerph17228562.
  • [44] Vincent, W. F. Arctic Climate Change: Local Impacts, Global Consequences, and Policy Implications. In The Palgrave Handbook of Arctic Policy and Politics, Germany, Springer International Publishing, 2019
  • [45] Konapala, G., Mishra, A. K., Wada, Y., Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications 2020; 11: 3044. DOI: 10.1038/s41467-020-16757.
  • [46] Dube, K., Nhamo, G. Evidence and impact of climate change on South African national parks. Potential implications for tourism in the Kruger National Park. Environment, Development and Sustainability 2020; 22: 1677-1698. DOI: 10.1007/s10668-019-00308-9.
  • [47] Zhao, H., Liu, G., Li, J., Sun, X., Wang, Y., Li, Y., Li, G. Impacts of nitrogen pollution on corals in the context of global climate change and potential strategies to conserve coral reefs. Science of the Total Environment 2021; 774: 145017. DOI: 10.1016/j.scitotenv.2021.145017.
  • [48] Pham, Y., Reardon-Smith, K., Mushtaq, S., Cockfield G., The impact of climate change and variability on coffee production: a systematic review. Clim. Change 2019; 156: 609–630. DOI: 10.1007/s10584-019-02538-y.
  • [49] Whyte, K, Too late for indigenous climate justice: Ecological and relational tipping points. WIREs Clim. Change 2020; 11: 603. DOI: 10.1002/wcc.603.
  • [50] Aghion, P., Hepburn, C., Teytelboym, A., Zenghelis, D. Path dependence, innovation and the economics of climate change. Roger F., Cheltenham, Handb. Green Growth, 2019; pp.67–83. DOI: 10.4337/9781788110686.00011
  • [51] Zhang, R. Fujimori, S. The role of transport electrification in global climate change mitigation scenarios. Environ. Res. Lett 2020; 15: 034019. DOI: 10.1088/1748-9326/ab6658.
  • [52] Piggott-McKellar A. E., Nunn P. D., McNamara K. E., Sekinini S. T. Dam(n) Seawalls: A Case of Climate Change Maladaptation in Fiji, in Managing Climate Change Adaptation in the Pacific Region, W. Leal Filho, Switzerland, Springer International Publishing, 2020; pp. 69–84. DOI: 10.1007/978-3-030-40552-6_4.
  • [53] Nazarnia, H., Nazarnia, M., Sarmasti, H., Wills, W. A systematic review of civil and environmental infrastructures for coastal adaptation to sea level rise. Civ. Eng. J 2020; 6: 1375–1399. DOI: 10.28991/cej-2020-03091555
  • [54] Doelman, J. C., Stehfest E., Tabeau A., Meijl H. Making the Paris agreement climate targets consistent with food security objectives. Glob. Food Secur. 2019; 23: 93–103. DOI: 10.1016/j.gfs.2019.04.003.
  • [55] Rehman, A., Ma H., Irfan M., and Ahmad M. Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China, Environ. Sci. Pollut. Res. 2020; 27: 28768–28779. DOI: 10.1007/s11356-020-08912-z.
  • [56] Ramanathan, V. Climate change, air pollution, and health: common sources, similar impacts, and common solutions, in Health of People, Health of Planet and Our Responsibility, Switzerland, Springer, 2020. DOI: https://doi.org/10.1007/978-3-030-31125-4-5
  • [57] Wan Mohd Jaafar, W. S. Abdul Maulud, K. N., Muhmad Kamarulzaman, M. A., Raihan, A., Md Sah, S., Ahmad, A., Maizah Saad, S. N., Mohd Azmi, A. T., Jusoh Syukri, N. K. A., Razzaq Khan, W. The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests 2020; 11: 670. DOI: 10.3390/f11060670.
  • [58] Mikhaylov, A., Moiseev, N., Aleshin, K., Burkhardt, T. Global climate change and greenhouse effect. Entrep. Sustain 2020; 7: 2897. DOI: 10.9770/jesi.2020.7.4(21).
  • [59] Mohamad, N., Muthusamy, K., Embong, R., Kusbiantoro, A., Hashim, M. H., Environmental impact of cement production and Solutions: A review. Mater. Today Proc. 2022; 48: 741–746. DOI: 10.1016/j.matpr.2021.02.212.
  • [60] Avagyan, AB., Theory of bioenergy accumulation and transformation: application to evolution, energy, sustainable development, climate change, manufacturing, agriculture, military activity and pandemic challenges. Athens J Sci 2021; 8: 57–80. DOI: 10.30958/ajs.8-1-4.
  • [61] Alsheyab MAT. Recycling of construction and demolition waste and its impact on climate change and sustainable development. Int. J. Environ. Sci. Technol. 2022; 19; 2129–2138. DOI: 10.1007/s13762-021-03217-1.
  • [62] Bezabih Beyene, B. Li, J, Yuan, J., Dong, Y., Liu, D., Chen, Z., Kim, J., Kang, H., Freeman, C., Ding, W. Non-native plant invasion can accelerate global climate change by increasing wetland methane and terrestrial nitrous oxide emissions. Glob. Change Biol. 2022; 28: 5453–5468. DOI: 10.1111/gcb.16290.
  • [63] Yang M. Chen L., Wang J., Msigwa G., Osman A., Fawzy S., Rooney D., Yap P., Circular economy strategies for combating climate change and other environmental issues. Environ. Chem. Lett. 2022; 21: 55-80. DOI: 10.1007/s10311-022-01499-6.
  • [64] Blair, J., Mataraarachchi, S. A Review of Landfills, Waste and the Nearly Forgotten Nexus with Climate Change. Environments 2021; 8. DOI: 10.3390/environments8080073.
  • [65] Godde C. M., Mason-D’Croz D., Mayberry D. E., Thornton P. K., Herrero M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Secur. 2021; 28: 100488. DOI: 10.1016/j.gfs.2020.100488.
  • [66] Mashamaite, C. V., Ngcobo, B. L., Manyevere, A., Bertling, I., Fawole, O. A. Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review. Plants 2022; 11. DOI: 10.3390/plants11172214.
  • [67] Liu, J., Desjardins, R.L., Wang, S., Worth, D.E., Qian B., Shang J. Climate impact from agricultural management practices in the Canadian Prairies: Carbon equivalence due to albedo change. J. Environ. Manage. 2022; 302: 113938. DOI: 10.1016/j.jenvman.2021.113938.
  • [68] Ukhurebor, K.E., Aigbe U.O., Onyancha R.B., Adetunji C.O. Climate Change and Pesticides: Their Consequence on Microorganisms. in Microbial Rejuvenation of Polluted Environment, C. O. Adetunji, D. G. Panpatte, Y. K. Jhala, Eds. Singapore: Springer, 2021.
  • [69] De Abreu, V. H.S., Da Costa, M. G., Da Costa, V. X., De Assis, T. F., Santos, A. S., de A. D’Agosto M. The Role of the Circular Economy in Road Transport to Mitigate Climate Change and Reduce Resource Depletion. Sustainability 2022; 14(14):8951. DOI: 10.3390/su14148951.
  • [70] Gössling, S., Dolnicar, S., A review of air travel behavior and climate change. WIREs Clim. Change 2023; 14: e802. DOI: 10.1002/wcc.802.
  • [71] Röck, M. Mendes, Saade, M. R., Balouktsi, M., Rasmussen, F., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., Passer, A., Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Appl. Energy 2020; 258: 114107. DOI: 10.1016/j.apenergy.2019.114107.
  • [72] Orsini F., Marrone P. Approaches for a low-carbon production of building materials: A review. J. Clean. Prod. 2019; 241: 118380. DOI: 10.1016/j.jclepro.2019.118380.
  • [73] Abu Qdais, H., Wuensch, C., Dornack, C., Nassour, A. The role of solid waste composting in mitigating climate change in Jordan. Waste Manag. Res. 2019; 37: 833–842. DOI: 10.1177/0734242X19855424.
  • [74] Chetri, J. K., Reddy, K. R. Methane Recovery from Landfills. in Sustainable Resource Management, John Wiley & Sons, Ltd, 2021, pp. 699–722. DOI: 10.1002/9783527825394.ch24.
  • [75] Christensen, T. H., Bisinella, V. Climate change impacts of introducing carbon capture and utilisation (CCU) in waste incineration. Waste Manag. 2021; 126: 754–770. DOI: 10.1016/j.wasman.2021.03.046.
  • [76] Ravindra, K., Rattan, P., Mor, S., Aggarwal, A. N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 2019; 132: 104987. DOI: 10.1016/j.envint.2019.104987.
  • [77] Damle, N. S. Climate Change and Human Health – ProQuest. PubMed 2021; 104: 11-12.
  • [78] Filho, W. L., Scheday, S., Boenecke, J., Gogoi, A., Maharaj, A., Korovou, S. Climate Change, Health and Mosquito-Borne Diseases: Trends and Implications to the Pacific Region. Int. J. Environ. Res. Public. Health, 2019; 16(24):5114. DOI: 10.3390/ijerph16245114.
  • [79] Pawankar, R. Wang, J., Wang, I., Thien, F., Chang, Y. S., Abdul Latiff, A. H., Fujisawa, T., Zhang, L., Yu-Hor, Thong, B., Chatchatee, P., Fan, Leung, T., Kamchaisatian W., Rengganis I., Joo Yoon H., Munkhbayarlakh, S., Recto, M., Goh, Eng Neo, A., Le Pham, D., Tuyet, Lan, L. T., Mary Davies, J., Won Oh, J. Asia Pacific Association of Allergy Asthma and Clinical Immunology White Paper 2020 on climate change, air pollution, and biodiversity in Asia-Pacific and impact on allergic diseases. Asia Pac. Allergy, 2020; 10: DOI: 10.5415/apallergy.2020.10.e11.
  • [80] Romanello, M. Di Napoli, C., Drummond, P., Green, C., Kennard, H., Lampard, P., Scamman, D., Arnell N., Ayeb-Karlsson S., et al. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. The Lancet, 2022; 400: 1619–1654, DOI: 10.1016/S0140-6736(22)01540-9.
  • [81] Adlong W., Dietsch E. Nursing and climate change: An emerging connection. Coll. R. Coll. Nurs. Aust. 2015; 22: 19–24. DOI: 10.1016/j.colegn.2013.10.003.
  • [82] Leisner, C.P. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Sci. 2020; 293: 110412. DOI: 10.1016/j.plantsci.2020.110412.
  • [83] Benevolenza, M.A., DeRigne, L. The impact of climate change and natural disasters on vulnerable populations: A systematic review of literature. J. Hum. Behav. Soc. Environ. 2019; 29: 266–281. DOI: 10.1080/10911359.2018.1527739.
  • [84] WHO, Climate change, World Health Organization, 2023.
  • [85] Zammit, C., Torzhenskaya, N., Ozarkar, P. D., Calleja Agius, J. Neurological disorders vis-à-vis climate change. Early Hum. Dev. 2021; 155: 105217. DOI: 10.1016/j.earlhumdev.2020.105217.
  • [86] D’Amato, G. Jose Chong-Neto, H., Monge, Ortega, O.. P., Vitale, C., Ansotegui, I., Rosario, N., Haahtela T., Galan, C., Pawankar, R., Murrieta-Aguttes, M., Cecchi, L., Bergmann, C., Ridolo, E., Ramon, G., Gonzalez Diaz, S., D’Amato, M., Maesano, I. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 2020; 75: 2219–2228. DOI: 10.1111/all.14476.
  • [87] Bartlow, A. W. Manore, C., Xu, C., Kaufeld, K., Del Valle, S., Ziemann, A., Fairchild. G., M. Fair. J. Forecasting Zoonotic Infectious Disease Response to Climate Change: Mosquito Vectors and a Changing Environment. Vet. Sci. 2019; 6. DOI: 10.3390/vetsci6020040.
  • [88] Cissé, G. Food-borne and water-borne diseases under climate change in low- and middle-income countries: Further efforts needed for reducing environmental health exposure risks. Acta Trop. 2019; 194: 181–188. DOI: 10.1016/j.actatropica.2019.03.012.
  • [89] Schnitter, R., Berry, P. The Climate Change, Food Security and Human Health Nexus in Canada: A Framework to Protect Population Health. Int. J. Environ. Res. Public. Health 2019; 16(14): 2531. DOI: 10.3390/ijerph16142531.
  • [90] Palinkas, L. A., Wong M. Global climate change and mental health. Curr. Opin. Psychol. 2020; 32: 12–16. DOI: 10.1016/j.copsyc.2019.06.023.
  • [91] Anguelovski, I. J. T. Connolly, J., Pearsall, H., Shokry, G., Checker, M., Maantay, J., Gould, K., Lewis, T., Maroko, A., Timmons, Roberts, J. Why green ‘climate gentrification’ threatens poor and vulnerable populations. Proc. Natl. Acad. Sci. 2019; 116: 26139–26143. DOI: 10.1073/pnas.1920490117.
  • [92] Fang, J., Lau, C. K. M., Lu, Z., Wu, W., Zhu, L., Natural disasters, climate change, and their impact on inclusive wealth in G20 countries. Environ. Sci. Pollut. Res. 2019; 26: 1455–1463. DOI: 10.1007/s11356-018-3634-2.
  • [93] Buonocore, J., Luckow, P., Norris, G., Spengler, J., Biewald, B., Fisher, J., Levy, J. Health and climate benefits of different energy-efficiency and renewable energy choices. Nat. Clim. Change 2015; 6. DOI: 10.1038/nclimate2771.
  • [94] López-Medina, I., Álvarez Nieto, C., Grose, J., Elsbernd, A., Huss, N., Huynen, M., Richardson, J. Competencies On Environmental Health And Pedagogical Approaches In The Nursing Curriculum: A Systematic Review Of The Literature. Nurse Educ. Pract. 2019; 37. DOI: 10.1016/j.nepr.2019.04.004.
  • [95] Lee, K. K., Bing, R., Kiang, J., Bashir, S., Spath N., Stelzle, D., Mortimer, K., Bularga, A., Doudesis, D., S Joshi S., Strachan, F., Gumy, S., Adair-Rohani H., Attia E., Chung M., Miller M., Newby D., Mills N., McAllister D., Shah A. Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Glob. Health 2020; 8: e1427–e1434. DOI: 10.1016/S2214-109X(20)30343-0.
  • [96] Greene, J., Morrissey, M. Estimated Pollution Reduction from Wind Farms in Oklahoma and Associated Economic and Human Health Benefits. J. Renew. Energy 2013; 2013: 924920. DOI: 10.1155/2013/924920.
  • [97] Zhang Y. H. Bowden, J., Adelman Z., Naik V., W. Horowitz L., J. Smith S., Jason West J., Co-benefits of global and regional greenhouse gas mitigation on U.S. air quality in 2050. Atmospheric Chem. Phys. 2016;16: 9533–9548. DOI: 10.5194/acp-16-9533-2016.
  • [98] Abel D., Holloway T., Harkey M., Rrushaj A., Brinkman G., Duran P., Janssen M., Denholm P., Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States. Atmos. Environ. 2018; 175: 65–74. DOI: 10.1016/j.atmosenv.2017.11.049.
  • [99] Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner N., Gorini R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019; 24: 38–50. DOI: 10.1016/j.esr.2019.01.006.
  • [100] Zahoor, Z., Latif, M. I., Khan, I., Hou, F. Abundance of natural resources and environmental sustainability: the roles of manufacturing value-added, urbanization, and permanent cropland. Environ. Sci. Pollut. Res. 2022; 29: 82365–82378. DOI: 10.1007/s11356-022-21545-8.
  • [101] Li, J., Zhou, J., Chen, B. Review of wind power scenario generation methods for optimal operation of renewable energy systems. Appl. Energy 2020; 280: 115992. DOI: 10.1016/j.apenergy.2020.115992.
  • [102] Halkos, G. E., Gkampoura, E.-C. Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies 2020; 13: 11. DOI: 10.3390/en13112906.
  • [103] Van de Ven D.-J., Capellan-Peréz I., Arto I., Cazcarro I., Castro C., Patel P., Eguino M., The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 2021; 11: 1. DOI: 10.1038/s41598-021-82042-5.
  • [104] Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J.-L., Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 2020; 5: 2. DOI: 10.1038/s41560-020-0558-0.
  • [105] Boxwell, M. Solar Electricity Handbook: A Simple, Practical Guide to Solar Energy - Designing and Installing Photovoltaic Solar Electric Systems. England: Greenstream Publishing, 2010.
  • [106] Lovegrove, K., Stein, W. Concentrating Solar Power Technology: Principles, Developments and Applications. England: Elsevier, 2012.
  • [107] Garg, H.P., Mullick S.C., Bhargava V.K. Solar Thermal Energy Storage. Springer Science & Business Media. Dordrecht, Springer, 2012.
  • [108] Assaf, J., Shabani, B. A novel hybrid renewable solar energy solution for continuous heat and power supply to standalone-alone applications with ultimate reliability and cost effectiveness. Renew. Energy 2019; 138: 509–520. DOI: 10.1016/j.renene.2019.01.099.
  • [109] Bashir, A., Khan, S. Renewable Energy Sources: A Study Focused on Wind Energy. in Mitigating Climate Change, Cham, 2022, pp. 99–118. DOI: 10.1007/978-3-030-92148-4_5.
  • [110] Wadi, M., Elmasry W. Statistical analysis of wind energy potential using different estimation methods for Weibull parameters: a case study. Electr. Eng. 2021; 103: 2573–2594. DOI: 10.1007/s00202-021-01254-0.
  • [111] Zeng, Z., Ziegler, A., Searchinger, T., Yang, L., Chen, A., Ju, K., Piao, S., Li, L., Ciais, P., Chen, D., Liu, J., Azorin-Molina, C., Chappell, A., Medvigy, D., Wood, E. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 2019; 9: 12 DOI: 10.1038/s41558-019-0622-6.
  • [112] Wind Electricity – Analysis, IEA, 2022.
  • [113] Munoz-Hernandez, G. A., Mansoor, S. P., Jones, D. I. Modelling and Controlling Hydropower Plants. London, Springer Science & Business Media, 2012.
  • [114] National G. Hydropower facts and information. Environment, 2019
  • [115] Lee, S., Speight, J.G., Loyalka S.K. Handbook of Alternative Fuel Technologies, Second Edition, 2nd ed. USA, CRC Press, 2018.
  • [116] Bertani, R. Geothermal power generation in the world 2005–2010 update report. Geothermics 2012; 41: 1–29. DOI: 10.1016/j.geothermics.2011.10.001.
  • [117] Tester, J. W., Beckers, K. F., Hawkins, A. J., Lukawski, M. Z. The evolving role of geothermal energy for decarbonizing the United States. Energy Environ. Sci. 2021; 14: 6211–6241. DOI: 10.1039/D1EE02309H.
  • [118] Rosillo-Calle F., De Groot P., Hemstock S. L., Woods J. The Biomass Assessment Handbook: Energy for a sustainable environment. England, Routledge, 2015.
  • [119] Jha, S., Nanda, S., Acharya, B., Dalai, A. K. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022; 15: 17. DOI: 10.3390/en15176352.
  • [120] Multon, B. Marine Renewable Energy Handbook. John Wiley & Sons, United Kingdom, 2013
  • [121] Khojasteh D. Lewis M., Tavakoli S., Farzadkhoo M., Felder S., Iglesias G., Glamore W., Sea level rise will change estuarine tidal energy: A review. Renew. Sustain. Energy Rev. 2022; 156: 111855, DOI: 10.1016/j.rser.2021.111855.
  • [122] Shetty, C., Priyam, A. A review on tidal energy technologies. Mater. Today Proc. 2022; 56: 2774–2779. DOI: 10.1016/j.matpr.2021.10.020.
  • [123] Benson, T. Renewable energy could save us trillions in health costs: Harvard study, Inverse, 2019.
  • [124] Jacobson, M., Von Krauland, A. K., Burton, Z., Coughlin, S., Jaeggli, C., Nelli, D., Nelson, A., Shu, Y., Smith, M., Tan, C., Wood, C., Wood, K. Transitioning All Energy in 74 Metropolitan Areas, Including 30 Megacities, to 100% Clean and Renewable Wind, Water, and Sunlight (WWS). Energies 2020; 13: 4934. DOI: 10.3390/en13184934.
  • [125] Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?. Sustainability 2022; 14: 8. DOI: 10.3390/su14084792.
  • [126] Becchio, C., Bottero, M. C., Corgnati, S. P., Dell’Anna, F. Evaluating Health Benefits of Urban Energy Retrofitting: An Application for the City of Turin. In: Bisello, A., Vettorato, D., Laconte, P., Costa, S. (eds) Smart and Sustainable Planning for Cities and Regions. SSPCR 2017. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-75774-2_20.
  • [127] Bisello, A., Vettorato, D., Ludlow, D., Baranzelli, C., Eds., Smart and Sustainable Planning for Cities and Regions: Results of SSPCR 2019, Springer Nature, 2021. DOI: 10.1007/978-3-030-57764-3.
  • [128] Brent, A.C. Renewable Energy for Sustainable Development. Sustainability 2021; 13: 12. DOI: 10.3390/su13126920.
  • [129] Manzano-Agugliaro, F., Alcayde, A., Montoya, F.G. Zapata-Sierra, A. Gil, C., Scientific production of renewable energies worldwide: An overview. Renew. Sustain. Energy Rev. 2013; 18: 134–143. DOI: 10.1016/j.rser.2012.10.020.
  • [130] Development Asia, “What Makes Floating Solar Farms a Cool Solution,” Development Asia, 2020.
  • [131] Scott, M., Sander, R., Nemet, G., Patz, J. Improving Human Health in China Through Alternative Energy. Front. Public Health 2021; 9. DOI: https://doi.org/10.3389/fpubh.2021.613517.
  • [132] Workman, A., Blashki, G., Bowen, K.J., Karoly, D. J., Wiseman, J. Political leadership on climate change: the role of health in Obama-era U.S. climate policies. Environ. Res. Lett. 2020; 15: 105003. DOI: 10.1088/1748-9326/aba8c3.
  • [133] Hernandez R., Easter S., Murphy M., Maestre F., Tavassoli M., Allen E., Barrows C., Belnap J., Hueso R., Ravi S., Allen M., Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014; 29, DOI: 10.1016/j.rser.2013.08.041.
  • [134] Gernaat, D. E. H. J., de Boer, H. S., Daioglou, V., Yalew, S. G., Müller, C., van Vuuren, D. P. Climate change impacts on renewable energy supply. Nat. Clim. Change 2021; 11: 119-125. DOI: 10.1038/s41558-020-00949-9.
  • [135] Solaun, K., Cerdá, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 2019; 116: 109415. DOI: 10.1016/j.rser.2019.109415.
  • [136] Luderer, G., Pehl, M., Arvesen, A., Gibon, T., Bodirsky, B.L., Boer, H.S., Fricko, O., Hejazi, M., Humpenöder, F., Lyer, G., Mima, S., Mouratiadou, I., Pietzcker, R.C., Popp, A., Berg, M., Vuuren, D., Hertwich, E. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 2019; 10: 5229. DOI: 10.1038/s41467-019-13067-8.
  • [137] IEA. Renewables – Global Energy Review– Analysis, IEA, 2021.
  • [138] Karamikli, A., Şaşmaz, M.Ü. The Effect of Renewable Energy Consumption on Economic Growth and Health Expenditures in Türkiye. Pamukkale Univ. J. Soc. Sci. Inst. 2021; 46: 293-304. DOI: 10.30794/pausbed.846221.
  • [139] Ürge-Vorsatz, D., Herrero, S. T., Dubash, N. K., Lecocq, F. Measuring the Co-Benefits of Climate Change Mitigation. Annu. Rev. Environ. Resour. 2014; 39: 549–582. DOI: 10.1146/annurev-environ-031312-125456.
  • [140] Nemet, G. F., Holloway, T., Meier, P. Implications of incorporating air-quality co-benefits into climate change policymaking. Environ. Res. Lett. 2010; 5: 014007. DOI: 10.1088/1748-9326/5/1/014007.
  • [141] Celiktas, M. S., Sevgili, T., Kocar, G. A snapshot of renewable energy research in Türkiye. Renew. Energy, 2009; 34: 1479–1486, DOI: 10.1016/j.renene.2008.10.021
  • [142] Sampedro, J., Smith, S., Arto, I., Eguino, M., Markandya, A., Mulvaney, K., Irizar, C., Dingenen, R. Health co-benefits and mitigation costs as per the Paris Agreement under different technological pathways for energy supply. Environ. Int. 2020; 136: 105513. DOI: 10.1016/j.envint.2020.105513.
  • [143] Pablo-Romero, M. D., Collado, R. R., Sanchez-Braza A., Yniguez, R. Renewable Energy, Emissions, and Health. Wenping Cao and Yihua H, 2016, DOI: 10.5772/61717.
  • [144] Belfer, C., Potential Co-benefits of Electrification for Air Quality, Health, and CO2 Mitigation in 2030, China: 2018.
  • [145] Workman, A., Blashki, G., Bowen, K. J., Karoly, D. J., Wiseman, J. The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda. Int. J. Environ. Res. Public. Health 2018; 15: 674. DOI: 10.3390/ijerph15040674.
  • [146] Buonocore, J. J., Hughes, E. J., Michanowicz, D. R., Heo, J., Allen, J. G., Williams, A., Climate and health benefits of increasing renewable energy deployment in the United States. Environ. Res. Lett. 2019; 14: 114010. DOI: 10.1088/1748-9326/ab49bc.
  • [147] UCSUSA. Benefits of Renewable Energy Use | Union of Concerned Scientists, 2017.
  • [148] D. of H., H. Services. Climate change and health, betterhealth, 2021.
  • [149] Maibach, E., Sarfaty, M., Gould, R., Damle, N., Armstrong F. A Call to Action by Health Professionals, in Health of People, Health of Planet and Our Responsibility: Climate Change, Air Pollution and Health, Al-Delaimy, W. K., Ramanathan, V., Sánchez Sorondo, M., Eds. Cham: Springer International Publishing, 2020. DOI: 10.1007/978-3-030-31125-4_33.
There are 149 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Hafize Nurgül Durmuş Şenyapar 0000-0003-0927-1643

Publication Date March 31, 2023
Acceptance Date March 11, 2023
Published in Issue Year 2023

Cite

Vancouver Durmuş Şenyapar HN. A bibliometric analysis on renewable energy’s public health benefits. Journal of Energy Systems. 2023;7(1):132-57.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0