Research Article
BibTex RIS Cite

A new capacitive inductive system design for LASER-induced kilotesla magnetic field generation

Year 2024, Volume: 8 Issue: 1, 75 - 88, 31.03.2024
https://doi.org/10.30521/jes.1439709

Abstract

This research focuses on exploring the nanosecond laser-driven coil systems capable of generating kT magnetic fields and the diverse applications of this system. Through investigating the effects of laser parameters and coil structures, the aim of this study is to unveil the physics of these generated intense magnetic fields. The outcomes gained from this research give an important and fundamental understanding on high magnetic field production, informing the development in laser-driven systems. The implications of this study extend to plasma physics, astrophysics simulations and fusion research. Furthermore, the study explains the advantages and applications of these intense magnetic fields and includes measurements of laser pulse powers according to coil materials.

References

  • [1] Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., Sunahara, A., Yamamoto, N., Nakashima, H., Watanabe, T., Shiraga, H., Nishimura, H., & Azechi, H., Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser, Scientific Reports, 3(1) (2013), 01170;1-7, DOI: 10.1038/srep01170
  • [2] Murdin, B., Li, J., Pang, M., Bowyer, E., Litvinenko, K., Clowes, S., et al., Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars, Nature Communications, 4(1) (2013), 1469;1-7, DOI: 10.1038/ncomms2466
  • [3] Gilch, P., Pollinger-Dammer, F., Musewald, C., Michel-Beyerle, M., Steiner, U., Magnetic Field Effect on Picosecond Electron Transfer, Science (New York, N.Y.), 281(5379) (1998), 982-984, DOI: 10.1126/science.281.5379.982
  • [4] Lai, D., Matter in Strong Magnetic Fields. Reviews of Modern Physics, 73 (2001), 629-661, DOI: 10.1103/RevModPhys.73.629
  • [5] Zhang, Z., Zhu, B., Li, Y., Jiang, W., Yuan, D., Wei, H., et al., Generation of strong magnetic fields with a laser-driven coil, High Power Laser Science and Engineering, 6 (2018), e38;1-8, DOI: 10.1017/hpl.2018.33
  • [6] Sano, T., Inoue, T., Nishihara, K., Critical magnetic field strength for suppression of the Richtmyer-Meshkov instability in plasmas, Physical Review Letters, 111(20) (2013), 205001;1-5, DOI: 10.1103/PhysRevLett.111.205001
  • [7] Matsuo, K., Nagatomo, H., Zhang, Z., Nicolaï, P., Sano, T., Sakata, S., et al., Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field, Physical Review E, 95(5-1) (2017), 053204, DOI: 10.1103/PhysRevE.95.053204
  • [8] Plechaty, C., Presura,. R, Stein, S., Martinez, D., Neff, S., Ivanov, V., et al., Penetration of a laser-produced plasma across an applied magnetic field, High Energy Density Physics, 6(2) (2013), 258-261, DOI: 10.1016/j.hedp.2009.12.006
  • [9] Albertazzi, B., Ciardi, A., Nakatsutsumi, M., Vinci, T., Béard, J., Bonito, R., et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science (New York, N.Y.), 346(6207) (2014), 325-328, DOI: 10.1126/science.1259694
  • [10] Schaeffer, D., Fox, W., Haberberger, D., Fiksel, G., Bhattacharjee, A., Barnak, D., et al., High-Mach number, laser-driven magnetized collisionless shocks, Physics of Plasmas, 24(12) (2017), 122702;1-11, DOI: 10.1063/1.4989562
  • [11] Byvank, T., Banasek, J., Potter, W., Greenly, J., Seyler, C., Kusse, B.. Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation, Phys Plasmas, 24(12) (2017), 122701;1-11, DOI: 10.1063/1.5003777
  • [12] Matsuo, K., Higashi, N., Iwata, N., Sakata, S., Lee, S., Johzaki, T., et al., Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse, Phys Rev Lett, 124(3) (2020), 035001;1-8 DOI: 10.1103/PhysRevLett.124.035001
  • [13] Tatarakis, M., Watts, I., Beg, F., et al., Measuring huge magnetic fields, Nature, 415(6869), p. 280 (2003). DOI: 10.1038/415280
  • [14] Wagner, U., Tatarakis, M., Gopal, A., Beg, F., Clark, E., Dangor, A.E., et al., Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas, Physical Review E, 70(2) (2004), 026401;1-5, DOI: 10.1103/PhysRevE.70.026401
  • [15] Santos, J., Bailly-Grandvaux, M., Giuffrida, L., Forestier-Colleoni, P., Fujioka, S., Zhang, Z., et al., Laser-driven platform for generation and characterization of strong quasi-static magnetic fields, New Journal of Physics, 17 (2015), 083051;1-10 DOI: 10.1088/1367-2630/17/8/08305
  • [16] Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., et al., Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser, Scientific Reports, 3 (2013), 1170;1-7, DOI: 10.1038/srep01170
  • [17] Zhu, B., Li, Y., Yuan, D., Li, Y., Li, F., Liao, G., et al., Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses, Applied Physics Letters, 107(26) (2015), 261903;1-5 DOI: 10.1063/1.4939119
  • [18] Chang, P.Y., Fiksel, G., Hohenberger, M., Knauer, J.P., Betti, R., Marshall, F.J., et al., Fusion yield enhancement in magnetized laser-driven implosions, Phys Rev Lett, 107(3) (2011), 035006;1-4, DOI 10.1103/PhysRevLett.107.035006
  • [19] Pollock, B., Froula, D., Davis, P., Ross, J., Fulkerson, S., Bower, J., et al., High magnetic field generation for laser-plasma experiments, Review of Scientific Instruments, 77(11) (2016), 114703;1-6, DOI: 10.1063/1.2356854
  • [20] Froula, D., Ross, J., Pollock, B., Davis, P., James, A., Divol, L., et al., Quenching of the Nonlocal Electron Heat Transport by Large External Magnetic Fields in a Laser-Produced Plasma Measured with Imaging Thomson Scattering, Physical Review Letters, 98(13) (2007), 135001;1-4, DOI: 10.1103/PhysRevLett.98.135001
  • [21] Higginson, D.P., Revet, G., Khiar, B., Béard, J., Blecher, M., Borghesi, M., et al., Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle, High Energy Density Physics, 23 (2017), 48-59, DOI: 10.1016/j.hedp.2017.02.003
  • [22] Albertazzi, B., Béard, J., Ciardi, A., Vinci, T., Albrecht, J., Billette, J., et al., Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields, Review of Scientific Instruments, 84(4) (2013), 043505;1-7, DOI: https://doi.org/10.1063/1.4795551
  • [23] Daido, H., Miki, F., Mima, K., Fujita, M., Sawai, K., Fujita, H., et al., Generation of a strong magnetic field by an intense CO2 laser pulse, Phys Rev Lett, 56(8) (1986), 846-849, DOI: 10.1103/PhysRevLett.56.846
  • [24] Williams, G., Patankar, S., Mariscal, D., Bude, J., Carr, C., Goyon, C., et al., Laser intensity scaling of the magnetic field from a laser-driven coil target, Journal of Applied Physics,.127(8) (2020), 083302;1-18, DOI: 10.1063/1.511716
  • [25] Goyon, C., Pollock, B.B., Turnbull, D.P., Hazi, A., Divol, L., Farmer, W.A., et al., Ultrafast probing of magnetic field growth inside a laser-driven solenoid, Phys Rev E, 95(3) (2017), 033208;1-12, DOI: 10.1103/PhysRevE.95.033208
  • [26] Chien. A., Gao, L., Zhang, S., Ji, H., Blackman, E., Chen, H., et al., Pulse width dependence of magnetic field generation using laser-powered capacitor coils, Physics of Plasmas, 28 (2021), 052105;1-10, DOI: 10.1063/5.0044048
  • [27] Morita, H., Pollock, B.B., Goyon, C.S., Williams, G.J., Law, K.F.F., Fujioka, S., et al., Dynamics of laser-generated magnetic fields using long laser pulses, Phys Rev E, 103(3-1) (2021), 033201, DOI: 10.1103/PhysRevE.103.033201
  • [28] Zhu, B., Li, Y., Yuan, D., Li, Y., Li, F., Liao, G., et al., Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses, Applied Physics Letters, 107(26) (2015), 261903;1-5 DOI: 10.1063/1.4939119
  • [29] Zhu, B., Zhang, Z., Jiang, W., Wang, J., Zhu, C., Tan, J., et al., Ultrafast pulsed magnetic fields generated by a femtosecond laser, Applied Physics Letters, 113(7) (2018), 072405;1-4, DOI: 10.1063/1.5038047
  • [30] Gao, L., Ji, H., Fiksel, G., Fox, W., Evans, M., Alfonso, N., Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current, Physics of Plasmas, 23(4) (2016), 043106;1-7. DOI: 10.1063/1.4945643
  • [31] Bailly-Grandvaux, M., Santos, J., Poye, A., Quasi-stationary magnetic fields generation with a laser-driven capacitor-coil assembly, Physical Review E, 96 (2017), 023202;1-10, DOI: 10.1103/PhysRevE.96.023202
  • [32] Chubar, O., Elleaume, P., Chavanne, J., A three-dimensional magnetostatics computer code for insertion devices, J. Synchrotron Radiation, 5 (1998), 481-484, DOI: 10.1107/S0909049597013502
  • [33] Morita, H., Fujioka, S., Generation, measurement, and modeling of strong magnetic fields generated by laser-driven micro coils., Reviews of Modern Plasma Physics, 7:13;1-45 (2023), DOI: 10.1007/s41614-023-00115-6
  • [34] Liao, G.-Q., Li, Y., Zhu, B.-J., Li, Y., Li, F., Mengchao, Li., et al., Proton radiography of magnetic fields generated with an open-ended coil driven by high power laser pulses, Matter and Radiation at Extremes, 1(2016), 187-191, DOI: 10.1016/j.mre.2016.06.003
  • [35] Strickland, D., Mourou, G., Compression of amplified chirped optical pulse, Optics Communications, 56(3) (1985), 219-221, DOI: 10.1016/0030-4018(85)90120-8
  • [36] Li, X.X., Cheng, R.J., Wang, Q., Liu, D.J., Lv, S.Y., Huang, Z.M., et al, Anomalous staged hot-electron acceleration by two-plasmon decay instability in magnetized plasmas, Phys Rev E.,108(5) (2023), L053201;1-6. DOI: 10.1103/PhysRevE.108.L053201
  • [37] Peebles, J.L., Davies, J.R., Barnak, D.H., Garcia-Rubio, F., Heuer, P.V., Brent, G., et al., An assessment of generating quasi-static magnetic fields using laser-driven “capacitor” coils, Phys Plasmas, 29(8) (2022), 080501;1-28, DOI: 10.1063/5.0096784
  • [38] Dursun, B., Kurt, E., Tekerek, M., A power circuit design for the poloidal field coils in a torus-shaped plasma system, Jornal of Energy Systems, 2019;3(3):123-128. DOI: 10.30521/jes.609667
  • [39] Kurt, E., Dursun, B. Particle Trajectories and Energy Distribution from a New IEC Fusion Device: A Many-Body Approach., J. Fusion Energy 35, 483–492 (2016). DOI: 10.1007/s10894-015-0033-2
  • [40] Dursun, B., Kurt, E., Kurt, H., Energy distributions and radiation emissions in an inertial electrostatic confinement (IEC) device under low and moderate magnetic fields, Int. J. Hydrogen Energy, 42 (2017), 17874-17885, DOI: 10.1016/j.ijhydene.2017.02.015
Year 2024, Volume: 8 Issue: 1, 75 - 88, 31.03.2024
https://doi.org/10.30521/jes.1439709

Abstract

References

  • [1] Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., Sunahara, A., Yamamoto, N., Nakashima, H., Watanabe, T., Shiraga, H., Nishimura, H., & Azechi, H., Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser, Scientific Reports, 3(1) (2013), 01170;1-7, DOI: 10.1038/srep01170
  • [2] Murdin, B., Li, J., Pang, M., Bowyer, E., Litvinenko, K., Clowes, S., et al., Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars, Nature Communications, 4(1) (2013), 1469;1-7, DOI: 10.1038/ncomms2466
  • [3] Gilch, P., Pollinger-Dammer, F., Musewald, C., Michel-Beyerle, M., Steiner, U., Magnetic Field Effect on Picosecond Electron Transfer, Science (New York, N.Y.), 281(5379) (1998), 982-984, DOI: 10.1126/science.281.5379.982
  • [4] Lai, D., Matter in Strong Magnetic Fields. Reviews of Modern Physics, 73 (2001), 629-661, DOI: 10.1103/RevModPhys.73.629
  • [5] Zhang, Z., Zhu, B., Li, Y., Jiang, W., Yuan, D., Wei, H., et al., Generation of strong magnetic fields with a laser-driven coil, High Power Laser Science and Engineering, 6 (2018), e38;1-8, DOI: 10.1017/hpl.2018.33
  • [6] Sano, T., Inoue, T., Nishihara, K., Critical magnetic field strength for suppression of the Richtmyer-Meshkov instability in plasmas, Physical Review Letters, 111(20) (2013), 205001;1-5, DOI: 10.1103/PhysRevLett.111.205001
  • [7] Matsuo, K., Nagatomo, H., Zhang, Z., Nicolaï, P., Sano, T., Sakata, S., et al., Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field, Physical Review E, 95(5-1) (2017), 053204, DOI: 10.1103/PhysRevE.95.053204
  • [8] Plechaty, C., Presura,. R, Stein, S., Martinez, D., Neff, S., Ivanov, V., et al., Penetration of a laser-produced plasma across an applied magnetic field, High Energy Density Physics, 6(2) (2013), 258-261, DOI: 10.1016/j.hedp.2009.12.006
  • [9] Albertazzi, B., Ciardi, A., Nakatsutsumi, M., Vinci, T., Béard, J., Bonito, R., et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science (New York, N.Y.), 346(6207) (2014), 325-328, DOI: 10.1126/science.1259694
  • [10] Schaeffer, D., Fox, W., Haberberger, D., Fiksel, G., Bhattacharjee, A., Barnak, D., et al., High-Mach number, laser-driven magnetized collisionless shocks, Physics of Plasmas, 24(12) (2017), 122702;1-11, DOI: 10.1063/1.4989562
  • [11] Byvank, T., Banasek, J., Potter, W., Greenly, J., Seyler, C., Kusse, B.. Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation, Phys Plasmas, 24(12) (2017), 122701;1-11, DOI: 10.1063/1.5003777
  • [12] Matsuo, K., Higashi, N., Iwata, N., Sakata, S., Lee, S., Johzaki, T., et al., Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse, Phys Rev Lett, 124(3) (2020), 035001;1-8 DOI: 10.1103/PhysRevLett.124.035001
  • [13] Tatarakis, M., Watts, I., Beg, F., et al., Measuring huge magnetic fields, Nature, 415(6869), p. 280 (2003). DOI: 10.1038/415280
  • [14] Wagner, U., Tatarakis, M., Gopal, A., Beg, F., Clark, E., Dangor, A.E., et al., Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas, Physical Review E, 70(2) (2004), 026401;1-5, DOI: 10.1103/PhysRevE.70.026401
  • [15] Santos, J., Bailly-Grandvaux, M., Giuffrida, L., Forestier-Colleoni, P., Fujioka, S., Zhang, Z., et al., Laser-driven platform for generation and characterization of strong quasi-static magnetic fields, New Journal of Physics, 17 (2015), 083051;1-10 DOI: 10.1088/1367-2630/17/8/08305
  • [16] Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., et al., Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser, Scientific Reports, 3 (2013), 1170;1-7, DOI: 10.1038/srep01170
  • [17] Zhu, B., Li, Y., Yuan, D., Li, Y., Li, F., Liao, G., et al., Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses, Applied Physics Letters, 107(26) (2015), 261903;1-5 DOI: 10.1063/1.4939119
  • [18] Chang, P.Y., Fiksel, G., Hohenberger, M., Knauer, J.P., Betti, R., Marshall, F.J., et al., Fusion yield enhancement in magnetized laser-driven implosions, Phys Rev Lett, 107(3) (2011), 035006;1-4, DOI 10.1103/PhysRevLett.107.035006
  • [19] Pollock, B., Froula, D., Davis, P., Ross, J., Fulkerson, S., Bower, J., et al., High magnetic field generation for laser-plasma experiments, Review of Scientific Instruments, 77(11) (2016), 114703;1-6, DOI: 10.1063/1.2356854
  • [20] Froula, D., Ross, J., Pollock, B., Davis, P., James, A., Divol, L., et al., Quenching of the Nonlocal Electron Heat Transport by Large External Magnetic Fields in a Laser-Produced Plasma Measured with Imaging Thomson Scattering, Physical Review Letters, 98(13) (2007), 135001;1-4, DOI: 10.1103/PhysRevLett.98.135001
  • [21] Higginson, D.P., Revet, G., Khiar, B., Béard, J., Blecher, M., Borghesi, M., et al., Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle, High Energy Density Physics, 23 (2017), 48-59, DOI: 10.1016/j.hedp.2017.02.003
  • [22] Albertazzi, B., Béard, J., Ciardi, A., Vinci, T., Albrecht, J., Billette, J., et al., Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields, Review of Scientific Instruments, 84(4) (2013), 043505;1-7, DOI: https://doi.org/10.1063/1.4795551
  • [23] Daido, H., Miki, F., Mima, K., Fujita, M., Sawai, K., Fujita, H., et al., Generation of a strong magnetic field by an intense CO2 laser pulse, Phys Rev Lett, 56(8) (1986), 846-849, DOI: 10.1103/PhysRevLett.56.846
  • [24] Williams, G., Patankar, S., Mariscal, D., Bude, J., Carr, C., Goyon, C., et al., Laser intensity scaling of the magnetic field from a laser-driven coil target, Journal of Applied Physics,.127(8) (2020), 083302;1-18, DOI: 10.1063/1.511716
  • [25] Goyon, C., Pollock, B.B., Turnbull, D.P., Hazi, A., Divol, L., Farmer, W.A., et al., Ultrafast probing of magnetic field growth inside a laser-driven solenoid, Phys Rev E, 95(3) (2017), 033208;1-12, DOI: 10.1103/PhysRevE.95.033208
  • [26] Chien. A., Gao, L., Zhang, S., Ji, H., Blackman, E., Chen, H., et al., Pulse width dependence of magnetic field generation using laser-powered capacitor coils, Physics of Plasmas, 28 (2021), 052105;1-10, DOI: 10.1063/5.0044048
  • [27] Morita, H., Pollock, B.B., Goyon, C.S., Williams, G.J., Law, K.F.F., Fujioka, S., et al., Dynamics of laser-generated magnetic fields using long laser pulses, Phys Rev E, 103(3-1) (2021), 033201, DOI: 10.1103/PhysRevE.103.033201
  • [28] Zhu, B., Li, Y., Yuan, D., Li, Y., Li, F., Liao, G., et al., Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses, Applied Physics Letters, 107(26) (2015), 261903;1-5 DOI: 10.1063/1.4939119
  • [29] Zhu, B., Zhang, Z., Jiang, W., Wang, J., Zhu, C., Tan, J., et al., Ultrafast pulsed magnetic fields generated by a femtosecond laser, Applied Physics Letters, 113(7) (2018), 072405;1-4, DOI: 10.1063/1.5038047
  • [30] Gao, L., Ji, H., Fiksel, G., Fox, W., Evans, M., Alfonso, N., Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current, Physics of Plasmas, 23(4) (2016), 043106;1-7. DOI: 10.1063/1.4945643
  • [31] Bailly-Grandvaux, M., Santos, J., Poye, A., Quasi-stationary magnetic fields generation with a laser-driven capacitor-coil assembly, Physical Review E, 96 (2017), 023202;1-10, DOI: 10.1103/PhysRevE.96.023202
  • [32] Chubar, O., Elleaume, P., Chavanne, J., A three-dimensional magnetostatics computer code for insertion devices, J. Synchrotron Radiation, 5 (1998), 481-484, DOI: 10.1107/S0909049597013502
  • [33] Morita, H., Fujioka, S., Generation, measurement, and modeling of strong magnetic fields generated by laser-driven micro coils., Reviews of Modern Plasma Physics, 7:13;1-45 (2023), DOI: 10.1007/s41614-023-00115-6
  • [34] Liao, G.-Q., Li, Y., Zhu, B.-J., Li, Y., Li, F., Mengchao, Li., et al., Proton radiography of magnetic fields generated with an open-ended coil driven by high power laser pulses, Matter and Radiation at Extremes, 1(2016), 187-191, DOI: 10.1016/j.mre.2016.06.003
  • [35] Strickland, D., Mourou, G., Compression of amplified chirped optical pulse, Optics Communications, 56(3) (1985), 219-221, DOI: 10.1016/0030-4018(85)90120-8
  • [36] Li, X.X., Cheng, R.J., Wang, Q., Liu, D.J., Lv, S.Y., Huang, Z.M., et al, Anomalous staged hot-electron acceleration by two-plasmon decay instability in magnetized plasmas, Phys Rev E.,108(5) (2023), L053201;1-6. DOI: 10.1103/PhysRevE.108.L053201
  • [37] Peebles, J.L., Davies, J.R., Barnak, D.H., Garcia-Rubio, F., Heuer, P.V., Brent, G., et al., An assessment of generating quasi-static magnetic fields using laser-driven “capacitor” coils, Phys Plasmas, 29(8) (2022), 080501;1-28, DOI: 10.1063/5.0096784
  • [38] Dursun, B., Kurt, E., Tekerek, M., A power circuit design for the poloidal field coils in a torus-shaped plasma system, Jornal of Energy Systems, 2019;3(3):123-128. DOI: 10.30521/jes.609667
  • [39] Kurt, E., Dursun, B. Particle Trajectories and Energy Distribution from a New IEC Fusion Device: A Many-Body Approach., J. Fusion Energy 35, 483–492 (2016). DOI: 10.1007/s10894-015-0033-2
  • [40] Dursun, B., Kurt, E., Kurt, H., Energy distributions and radiation emissions in an inertial electrostatic confinement (IEC) device under low and moderate magnetic fields, Int. J. Hydrogen Energy, 42 (2017), 17874-17885, DOI: 10.1016/j.ijhydene.2017.02.015
There are 40 citations in total.

Details

Primary Language English
Subjects Nuclear Energy Systems
Journal Section Research Articles
Authors

Ahmet Nuri Akay 0009-0000-2102-3701

Melda Varol 0009-0004-1517-8896

Erol Kurt 0000-0002-3615-6926

Early Pub Date April 1, 2024
Publication Date March 31, 2024
Submission Date February 19, 2024
Acceptance Date March 11, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

Vancouver Akay AN, Varol M, Kurt E. A new capacitive inductive system design for LASER-induced kilotesla magnetic field generation. Journal of Energy Systems. 2024;8(1):75-88.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0